Evgeny Epelbaum, Ruhr-University Bochum

Nuclear physics from QCD, INT Seattle, March 21 - May 27, 2016

Confronting lattice-QCD results for the NN system with low-energy theorems

in collaboration with Vadim Baru, Arseniy Filin and Jambul Gegelia

- Introduction
- Low-energy theorems for NN scattering
- Testing conjectured linear extrapolation $M_{\pi} r^{3S1} = A + B M_{\pi}$
- Implications for the NPLQCD results at $M_{\pi} \sim 450 \mbox{ MeV}$
- Summary

Lattice-QCD results for NN scattering observables

Further, the HAL QCD Collaboration claims [by first generating the NN potential] weaker attraction in both ${}^{1}S_{0}$ and ${}^{3}S_{1}$ - ${}^{3}D_{1}$ channels and no bound states for $M_{\pi} > 411$ MeV Ishii et al.'12

Lattice-QCD results for NN scattering observables

Further, the HAL QCD Collaboration claims [by first generating the NN potential] weaker attraction in both ${}^{1}S_{0}$ and ${}^{3}S_{1}$ - ${}^{3}D_{1}$ channels and no bound states for $M_{\pi} > 411$ MeV Ishii et al.'12

(Some) tools to extrapolate and/or check consistency of lattice QCD results:

- pionless EFT: extrapolate in the number of nucleons [large M_{π}] Barnea, Kirscher, van Kolck, ...
- chiral EFT: extrapolate in M_{π} (and the number of nucleons) [small M_{π}] Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, ...
- Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed M_{π} Baru, EE, Filin, Gegelia

Low-energy theorems for nucleon-nucleon scattering

Long-range interactions govern the low-energy behavior of the amplitude and imply correlations between coefficients in the ERE which may be regarded as Low Energy Theorems

For a reconstruction of the amplitude based on dispersion relations + unitarity constraints see: Gasparyan, Lutz, EE, EPJA49 (13) 115; Albalodejo, Oller, PRC84 (11) 054009

ERE, MERE and LETs

Two-range potential
$$V(r) = V_L(r) + V_S(r), \ M_L^{-1} \gg M_H^{-1}$$

$$S_{l} = e^{2i\delta_{l}(k)} = 1 - i\left(\frac{km}{8\pi^{2}}\right)T_{l}(k), \quad T_{l}(k) = -\frac{16\pi^{2}}{m}\frac{k^{2l}}{F_{l}(k) - ik^{2l+1}}$$

effective range function $E_{l} = k^{2l+1}\cot\delta_{l}$

 $F_l(k^2)$ is a real meromorphic function of k^2 for $|k| < M_L/2$

 \rightarrow ERE: $F_l = -\frac{1}{a} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots$ Landau, Smorodinsky '44; Blatt, Jackson'49; Bethe'49

ERE, MERE and LETS

Two-range potential
$$V(r) = V_L(r) + V_S(r), \ M_L^{-1} \gg M_H^{-1}$$

$$S_{l} = e^{2i\delta_{l}(k)} = 1 - i\left(\frac{km}{8\pi^{2}}\right)T_{l}(k), \quad T_{l}(k) = -\frac{16\pi^{2}}{m}\frac{k^{2l}}{F_{l}(k) - ik^{2l+1}}$$

effective range function, $P_l \equiv \kappa$ COU 0_l

 $F_l(k^2)$ is a real meromorphic function of k^2 for $|k| < M_L/2$

 \rightarrow ERE: $F_l = -\frac{1}{a} + \frac{1}{2}rk^2 + v_2k^4 + v_3k^6 + v_4k^8 + \dots$ Landau, Smorodinsky '44; Blatt, Jackson'49; Bethe'49

Generalization to the modified ERE by "subtracting" effects due to the long-range force van Haeringen, Kok PRA 26 (1982) 1218

$$F_{l}^{M}(k^{2}) \equiv M_{l}^{L}(k) + \frac{k^{2l+1}}{|f_{l}^{L}(k)|^{2}} \cot \left[\delta_{l}(k) - \delta_{l}^{L}(k)\right]$$

$$\int_{l}^{L}(k) = \lim_{r \to 0} \left(\frac{l!}{(2l)!}(-2ikr)^{l}f_{l}^{L}(k,r)\right)$$
Jost function for $V_{L}(r)$

$$M_{l}^{L}(k) = Re\left[\frac{(-ik/2)^{l}}{l!}\lim_{r \to 0} \left(\frac{d^{2l+1}}{dr^{2l+1}}\frac{r^{l}f_{l}^{L}(k,r)}{f_{l}^{L}(k)}\right)\right]$$

Per construction, F_l^M reduces to F_l for $V_L = 0$ and is a real meromorphic function for $|k| < M_H/2$

ERE, MERE and LETs

Example: proton-proton scattering

$$F_{C}(k^{2}) = C_{0}^{2}(\eta) k \operatorname{cot}[\delta(k) - \delta^{C}(k)] + 2k \eta h(\eta) = -\frac{1}{a^{M}} + \frac{1}{2}r^{M}k^{2} + v_{2}^{M}k^{4} + \dots$$
where $\delta^{C} \equiv \arg \Gamma(1 + i\eta)$, $\eta = \frac{m}{2k}\alpha$, $C_{0}^{2}(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$, $h(\eta) = \operatorname{Re}\left[\Psi(i\eta)\right] - \ln(\eta)$
Coulomb phase shift Sommerfeld factor Digamma function $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$

ERE, MERE and LETs

Example: proton-proton scattering

$$F_{C}(k^{2}) = C_{0}^{2}(\eta) k \operatorname{cot}[\delta(k) - \delta^{C}(k)] + 2k \eta h(\eta) = -\frac{1}{a^{M}} + \frac{1}{2}r^{M}k^{2} + v_{2}^{M}k^{4} + \dots$$
where $\delta^{C} \equiv \arg \Gamma(1 + i\eta)$, $\eta = \frac{m}{2k}\alpha$, $C_{0}^{2}(\eta) = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$, $h(\eta) = \operatorname{Re}\left[\Psi(i\eta)\right] - \ln(\eta)$
Coulomb phase shift Sommerfeld factor Digamma function $\Psi(z) \equiv \Gamma'(z)/\Gamma(z)$

MERE and low-energy theorems

Long-range forces impose correlations between the ER coefficients (low-energy theorems) Cohen, Hansen '99; Steele, Furnstahl '00

The emergence of the LETs can be understood in the framework of MERE:

$$F_l^M(k^2) \equiv M_l^L(k) + \frac{k^{2l+1}}{|f_l^L(k)|^2} \cot \left[\delta_l(k) - \delta_l^L(k)\right]$$
meromorphic for
$$k^2 < (M_H/2)^2$$
can be computed if the long-range force is known

- approximate $F_l^M(k^2)$ by first 1,2,3,... terms in the Taylor expansion in k^2/M_H^2
- calculate all "light" quantities
- reconstruct $\delta_l^L(k)$ and predict all coefficients in the ERE

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_H e^{-M_H r} f(r)}_{V_H}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

300 200 200 100 0 0 0 0 1.5 1.5 2.5 3 r [fm]

and $M_L = 1.0$, $v_L = -0.875$, $M_H = 3.75$, $v_H = 7.5$ (all in fm⁻¹)

ERE and MERE

	a	r	v_2	v_3	v_4
$F_0 \; [\mathrm{fm}^n]$	5.458	2.432	0.113	0.515	-0.993
$F_0^M \left[M_S^{-n} \right]$	1.710	-1.063	-0.434	-0.680	2.624

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}_{V_L}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
$F_0 \; [\mathrm{fm}^n]$	5.458	2.432	0.113	0.515	-0.993
$ \begin{bmatrix} F_0^M & [M_S^{-n}] \end{bmatrix} $	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
r				2.432197161
v_2				0.112815751
v_3				0.51529
v_4				-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M \; [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
r	2.447(38)			2.432197161
$v_2 \ v_3$	$0.12(11) \\ 0.61(12)$			$0.112815751 \\ 0.51529$
v_4	-0.95(5)			-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}_{V_L}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M \; [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
$\frac{r}{v_2}\\v_3$	$\begin{array}{c c} 2.447(38) \\ 0.12(11) \\ 0.61(12) \\ 0.25(5) \end{array}$	$\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ 0.201(111) \end{array}$		$\begin{array}{c} 2.432197161 \\ 0.112815751 \\ 0.51529 \end{array}$
v_4	$\ -0.95(5) \ $	-0.991(14)		-0.9928

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}_{V_L}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
F_0 [fm ⁿ]	5.458	2.432	0.113	0.515	-0.993
$F_0^M \; [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

	LO	NLO	NNLO	"Exp"
$\begin{array}{c} r\\ v_2\\ v_3\\ v_4 \end{array}$	$2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5)$	$2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14)$	$2.432197161 \\ 0.112815751 \\ 0.51533(20) \\ -0.9925(11)$	$\begin{array}{r} 2.432197161 \\ 0.112815751 \\ 0.51529 \\ -0.9928 \end{array}$

$$V(r) = \underbrace{v_L e^{-M_L r} f(r)}_{V_L} + \underbrace{v_L e^{-M_L r} f(r)}_{V_L}$$

where $f(r) = \frac{(M_H r)^2}{1 + (M_H r)^2}$

and $M_L = 1.0$, $v_L = -0.875$,

ERE and MERE

	a	r	v_2	v_3	v_4
$F_0 \; [\mathrm{fm}^n]$	5.458	2.432	0.113	0.515	-0.993
$F_0^M \ [M_S^{-n}]$	1.710	-1.063	-0.434	-0.680	2.624

for an analytic example, see EE, Gegelia, EPJ A41 (2009) 341

	LO	NLO	NNLO	"Exp"
r v_2 v_3 v_4	$2.447(38) \\ 0.12(11) \\ 0.61(12) \\ -0.95(5)$	$\begin{array}{c} 2.432197161 \\ 0.1132(29) \\ 0.517(16) \\ -0.991(14) \end{array}$	$2.432197161 \\ 0.112815751 \\ 0.51533(20) \\ -0.9925(11)$	$2.432197161 \\ 0.112815751 \\ 0.51529 \\ -0.9928$

LETs for NN S-waves: Implementation

We implement the LETs by calculating NN amplitude at LO within the renormalizable approach EE, Gegelia, Phys. Lett. B716 (2012) 338, see Jambul's talk

Kadyshevsky equation:
$$T(\vec{p}, \vec{p}', k) = V(\vec{p}, \vec{p}') + \int d^3q V(\vec{p}, \vec{q}) G(k, q) T(\vec{q}, \vec{p}', k)$$

where the Green's function is given by $G(k,q) = \frac{m_N^2}{2(2\pi)^3} \frac{1}{\left(\vec{q}^{\,2} + m_N^2\right) \left(E_k - \sqrt{\vec{q}^{\,2} + m_N^2} + i\epsilon\right)}$

The Kadyshevsky equation is solved numerically for a given Λ . The constant C₀ is expressed in terms of the scattering length a (renormalization) and the limit $\Lambda \rightarrow \infty$ is taken.

phase shifts, binding energy & all other coefficients in the ERE are predicted as functions of the scattering length [LETs]

Notice: for the purpose of the LETs, the non-relativistic approach with a finite cutoff would also do the job...

Leading-order LETs for NN S-waves

${}^{1}S_{0}$ partial wave	<i>a</i> [fm]	<i>r</i> [fm]	$v_2 [\mathrm{fm}^3]$	$v_3 [\mathrm{fm}^5]$	$v_4 [\mathrm{fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-3.3	18	-108
LO Weinberg	fit	1.50	-1.9	8.6(8)	-37(10)
Nijmegen PWA	-23.7	2.67	-0.5	4.0	-20

${}^{3}S_{1}$ partial wave	<i>a</i> [fm]	<i>r</i> [fm]	$v_2 [\mathrm{fm}^3]$	$v_3 [\mathrm{fm}^5]$	$v_4 [\mathrm{fm}^7]$
NLO KSW Cohen, Hansen '99	fit	fit	-0.95	4.6	-25
LO Weinberg	fit	1.60	-0.05	0.8(1)	-4(1)
Nijmegen PWA	5.42	1.75	0.04	0.67	-4.0

- perturbative inclusion of pions (KSW approach) fail
- ¹S₀ channel: limited predictive power of the LETs due to the weakness of the OPEP; taking into account the range correction (NLO) leads to improvement EE, Gasparyan, Gegelia, Krebs, EPJA 51 (2015) 71
- ³S₁ channel: LETs work as advertised (strong tensor part of the OPEP)

Next-to-leading-order LETs for NN S-waves

Even in the ${}^{3}S_{1}$ channel, the accuracy is insufficient when using effective range as input: $r = 1.75 \text{ fm [input]} \longrightarrow a = 7.16 \text{ fm}, \quad B_{d} = 1.1 \text{ MeV [LET predictions]}$

Next-to-leading-order LETs for NN S-waves

Even in the ${}^{3}S_{1}$ channel, the accuracy is insufficient when using effective range as input: $r = 1.75 \text{ fm [input]} \longrightarrow a = 7.16 \text{ fm}, \quad B_{d} = 1.1 \text{ MeV [LET predictions]}$

→ go to NLO LETs by including the (modified) effective range correction modeled via

LETs at unphysical pion mass

LETs at unphysical pion mass

• When going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_{π} -dependence)

• When going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_{π} -dependence)

 When going to unphysical pion masses, the main change in the left-hand singularities is due to threshold shifts (explicit M_π-dependence)

 For NLO LETs, we need to know M_π-dependence of the subleading short-range term (a higher-order effect in EFT)

$$V_{
m NLO}=eta \, rac{ec \sigma_1 \cdot ec q \; ec \sigma_2 \cdot ec q}{ec q^{\,2}+M^2}$$

We allow β to vary: $\delta\beta(M_{\pi}=500 \text{ MeV}) = \pm 50\% (\pm 100\%)$

NLO LETs for the ³S₁ partial wave

LETs at nonphysical pion masses (at NLO, $\delta\beta = 0.5$)

• good convergence and accuracy of the LETs for low values of M_{π} (below 200 MeV)

• sizable uncertainty at pion masses above 400 MeV (even at NLO)

Intermediate summary

The take-away message so far:

- LETs = manifestations of the longest-range interaction due to 1π -exchange in the (energy dependence of the) NN scattering amplitude
- Good/fair predictive power in the ${}^{3}S_{1}$ - ${}^{3}D_{1}$ / ${}^{1}S_{0}$ channels
- Work at any M_{π} (provided the OPEP is the longest-range interaction)
- Matching to lattice: Need a single amount of information to fix the short-range physics at a given M_{π} in order to reconstruct T(k)

LETs vs chiral EFT: Similar in spirit but not quite the same...

- Not a χ-extrapolation in the usual sense: given an observable X(M_π), can predict Y(M_π), Z(M_π),.... No assumptions are made about C₀ = f(M_π)!
- No reliance on the M_π-expansion; infinite M_π-limit well-defined; M_π-dependence of m_N, g_A, F_π taken directly from lattice QCD
- Accuracy & applicability range limited by the second-lowest non-analyticity in the amplitude (2π-exchange, heavy-meson exchange, Δ, ...)

Application 1: testing the conjectured linear extrapolation for $M_{\pi}r$: $M_{\pi}r = A + BM_{\pi}$

Baru, EE, Filin, Gegelia, Phys. Rev. C92 (2015) 014001

• fix C_0 at a given value of M_{π} from the condition

 $r(C_0,\ M_\pi) = r_{
m extrapol}(M_\pi)$

make predictions for

 $a(M_{\pi}),\,B_d(M_{\pi}),\,v_2(M_{\pi}),\,v_3(M_{\pi}),\,v_4(M_{\pi})$

LETs for the ³S₁ partial wave

 $m_{\pi} v_4$

Predicted chiral extrapolations based on the LETs + linear M_{π} -dependence of $M_{\pi}r$

→ results seem to be internally consistent!

LETs for the ³S₁ partial wave

We can also try an extrapolation of $M_{\pi}r$ which is linear in M_{π}^2

$$M_{\pi}r_{
m extrapol} = A + BM_{\pi}^2$$

with

```
A = 1.149^{+0.009+0.011}_{-0.009-0.009}
```

```
B=3.95^{+0.45}_{-0.49}_{-0.55}~{\rm GeV^{-2}}
```

ans see what comes out for the binding energy and the ERE coefficients

LETs for the ³S₁ partial wave

Predicted chiral extrapolations based on the LETs + linear M_{π}^2 -dependence of $M_{\pi}r$

 \rightarrow seems to be inconsistent with the trend in B_d...

Application 2: NPLQCD at $M_{\pi} \sim 450$ MeV meets LETs

Baru, EE, Filin, to appear

from: Orginos, Parreno, Savage, Beane, Chang, Detmold, Phys. Rev. D92 (2015) 114512

Once the scattering length is fixed, all other quantities (e.g. phase shifts) are predicted in a parameter-free way

- Reasonably good convergence of the LETs
- Lattice phase shifts at two lowest energies seem to be inconsistent with Bd

- Reasonably good convergence of the LETs
- Lattice phase shifts at two lowest energies seem to be inconsistent with Bd
- A more conservative uncertainty estimation ($\delta\beta = 1$) does not help...

• Consequently, different results for the scattering length and effective range:

NPLQCD: $(M_{\pi}a^{(^{3}S_{1})})^{-1} = -0.04 \binom{+0.07}{-0.10} \binom{+0.08}{-0.17}, \qquad M_{\pi}r^{(^{3}S_{1})} = 7.8 \binom{+2.2}{-1.5} \binom{+3.5}{-1.7}$ statistics systematics $(M_{\pi}a^{(^{3}S_{1})})^{-1} = 0.196 \binom{+0.014}{-0.013} \binom{+0.018}{-0.008}, \qquad M_{\pi}r^{(^{3}S_{1})} = 2.44 \binom{+0.08}{-0.08} \binom{+0.21}{-0.47}$ error in B_d uncertainty of the LETs ($\delta\beta$ =1)

(If true), the very large effective range,

 $r^{(^3S_1)}\sim 8M_\pi^{-1}$

would suggest:

- either the interaction range (much) longer than that of $V_{1\pi}$
- or the appearance of a pole in $k \cot \delta$ near threshold

(If true), the very large effective range,

 $r^{(^3S_1)}\sim 8M_\pi^{-1}$

would suggest:

- either the interaction range (much) longer than that of $V_{1\pi}$
- or the appearance of a pole in $k \cot \delta$ near threshold

In both cases, there is no reason to expect (k/M_{π}) the approximation $k \cot \delta \simeq -\frac{1}{a} + \frac{1}{2}rk^2$ to be valid for $|k| \gtrsim 2/r \sim M_{\pi}/4$.

(If true), the very large effective range,

 $r^{(^3S_1)} \sim 8 M_\pi^{-1}$

would suggest:

- either the interaction range (much) longer than that of $V_{1\pi}$
- or the appearance of a pole in $k \cot \delta$ near threshold

In both cases, there is no reason to expect ${}^{(k/M_{\pi})}$ the approximation $k \cot \delta \simeq -\frac{1}{a} + \frac{1}{2}rk^2$ to be valid for $|k| \gtrsim 2/r \sim M_{\pi}/4$.

Moreover, the second, deeper bound state is (normally) to be viewed as an artifact of the effective range approximation:

$$-rac{1}{a}+rac{1}{2}rk^2=0 \quad \longrightarrow \quad k_{1,2}=rac{i}{r}\Big(1\pm\sqrt{1-rac{2r}{a}}\Big) \quad \underset{|r/a|\,\ll\,1}{\longrightarrow} \quad \left\{egin{array}{c} k_1\simeqrac{i}{a}ig(1+rac{r}{2a}ig) \ k_2\simeq iig(rac{2}{r}-rac{1}{a}ig) \end{array}
ight.$$

- physical pion mass: $k_1 \simeq 45i$ MeV (deuteron), $k_2 \simeq 200i$ MeV (artifact)

- NPLQCD solution: $k_1 \simeq -15i$ MeV (virtual state), $k_2 \simeq 135i$ MeV (deuteron)

- Similar (but somewhat less stringent) conclusions as in the ³S₁ partial wave
- Again, the large effective range puts in question the applicability of the effective range approximation at energies of the lattice data
- The NPLQCD "dineutron" seems to be an artifact; shallow bound/virtual state...

• When using the lattice phase shifts at two lowest energies as input, we cannot accommodate for $B_{nn} \simeq 12.5$ MeV. We find:

 $B_{nn} < 0.5 {
m ~MeV}, \qquad B_{nn}^{
m virtual} < 0.6 {
m ~MeV}$

Summary and conclusions

• LETs allow to reconstruct the NN scattering amplitude at fixed M_{π} using a single observable (e.g. binding energy) as input

extrapolations of lattice-QCD results in energy, self-consistency checks

- The linear in M_{π} dependence of M_{π} r^(3S1) conjectured by the NPLQCD collaboration based on their $M_{\pi} \sim 800$ MeV results is consistent with the common trend for B_d
- The newest NPLQCD results at M_π~ 450 MeV for the ¹S₀ / ³S₁ phase shifts at the two lowest energies are incompatible with their B_{nn} / B_d energies (within errors).
 Underestimated systematics for the extraction of phase shifts?
- The NPLQCD determination of the scattering lengths and effective ranges based on the effective range approximation is not self-consistent...

LETs: a useful addition to the lattice **QCD** toolbox!