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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
energies estimated for the infinite volume are as follows:

−ΔE∞ ¼

8
>>>>><

>>>>>:

47ð7Þðþ20
−11Þ MeV for 4He;

21.7ð1.2Þðþ13
−1.6Þ MeV for 3He;

14.5ð0.7Þðþ2.4
−0.8Þ MeV for 3S1;

8.5ð0.7Þðþ1.6
−0.5Þ MeV for 1S0:
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FIG. 16 (color online). Same as Fig. 15, but for the 1S0 NN
channel.
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FIG. 17 (color online). Same as Fig. 6, but for the 3S1 NN
channel. Open and closed symbols denote the quenched [5,7]
and full QCD [2,3,6,8] results, respectively. The results of
Refs. [2,3,5,6] and this paper are the ones in the infinite volume
limit.
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negative values, except for those of Ref. [8] with large
errors. The earlier calculations [7,8] did not investigate the
volume dependence of ΔEL. More recent studies [2,3,5,6]
examined the dependence and estimated the infinite volume
value through extrapolations [3,5,6] or checked that there
is no significant volume dependence of ΔEL [2]. All the
recent results suggest that the ground states in both
channels are bound states. One exception is Ref. [6] where
the conclusion is not clear due to large errors.
While lattice results are mutually qualitatively consistent,

they differ from experiment in more than one aspects. For the
3S1 channel, the binding energy −ΔE∞ found in the lattice

calculations [2,3,5,6] is a factor 5 to 10 times larger than the
experimental value. Furthermore, we observe no tendency in
the binding energy to approach the experimental value, at
least over the pion mass range mπ ¼ 0.3–0.51 GeV. For the
1S0 channel, the bound state found in the lattice calculations
is absent in experiment. Furthermore, similarly to the 3S1
channel, the binding energy is almost flat in m2

π in the
interval mπ ¼ 0.30–0.51 GeV. It is not clear whether the
bound state observed in the lattice calculation becomes
unbound toward the physical mπ .

IV. CONCLUSION AND DISCUSSION

We have extended our previous nuclei calculation in
2þ 1 flavor QCD at mπ ¼ 0.51 GeV [3] to the lighter
quark mass corresponding to mπ ¼ 0.30 GeV and
mN ¼ 1.05 GeV. In order to suppress an exponential
increase of statistical errors at smaller mπ, we have carried
out a much larger number of measurements by a factor 12
and 5 for the case of the spatial extent of 4.3 fm (483) and
5.8 fm (643), respectively, compared to those for the mπ ¼
0.51 GeV case with the same volumes. We have found that
in all channels we have studied, 4He, 3He, and two-nucleon
3S1 and 1S0, the ground state is a bound state by investigating
the volume dependence of energy shift ΔEL. The binding
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(Some) tools to extrapolate and/or check consistency of lattice QCD results:
pionless EFT: extrapolate in the number of nucleons [large Mπ]  Barnea, Kirscher, van Kolck, …  

Low-Energy Theorems (LETs) for the NN system: extrapolate in energy at fixed Mπ 

chiral EFT: extrapolate in Mπ (and the number of nucleons) [small Mπ] 
Beane, Savage, EE, Glöckle, Meißner, Gegelia, Soto, Chen, …

Baru, EE, Filin, Gegelia



 Low-energy theorems!
for nucleon-nucleon scattering
Long-range interactions govern the low-energy behavior of the amplitude and 
imply correlations between coefficients in the ERE which may be regarded as 
Low Energy Theorems

Im (Tlab)

Re (Tlab)

inelasticityunitarity cut

280 MeV-10 MeV

1π-cut2π-cut

-39 MeV-77 MeV

3π-cut

For a reconstruction of the amplitude based on dispersion relations + unitarity constraints see: 
Gasparyan, Lutz, EE, EPJA49 (13) 115;  Albalodejo, Oller, PRC84 (11) 054009
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Generalization to the modified ERE by „subtracting“ effects due to the long-range force
van Haeringen, Kok PRA 26 (1982) 1218

Jost function for Jost solution for 

Per construction,       reduces to     for            and is a real meromorphic function for 



Example: proton-proton scattering

where                             ,                ,                            ,

Coulomb phase shift Sommerfeld factor Digamma function
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where                             ,                ,                            ,

Coulomb phase shift Sommerfeld factor Digamma function
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MERE and low-energy theorems
Long-range forces impose correlations between the ER coefficients (low-energy theorems)
Cohen, Hansen ’99; Steele, Furnstahl ‘00

The emergence of the LETs can be understood in the framework of MERE:

meromorphic  for can be computed if the !
long-range force is known

− approximate              by first 1,2,3,…  terms in the Taylor expansion in !
− calculate all “light” quantities!
− reconstruct           and predict all coefficients in the ERE
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where

and (all in fm-1)

 Toy model: Low-energy theorems
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.

Wave αexp
0 rexp0 vexp2 vexp3 vexp4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave αLO
0 rLO

0 vLO
2 vLO

3 vLO
4

s 5.532/mL {2.420, 2.539}/mL {−0.0071, 0.3388}/m3
L {0.4777, 0.8026}/m5

L {−1.043,−0.954}/m7
L

p −16.22/m3
L {0.06905, 0.07673}mL {1.011, 1.055}/mL {−0.3012,−0.1333}/m3

L {0.565, 0.791}/m5
L

d −13.98/m5
L {1.069, 1.069}m3

L {0.7487, 0.7514}mL {0.9707, 0.9880}/mL {−0.21,−0.16}/m3
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Wave αNLO
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0 vNLO
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4
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L {−1.084,−1.063}/m7
L

p −16.22/m3
L 0.06952mL {1.014, 1.014}/mL {−0.2947,−0.2917}/m3
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FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.
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FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.
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FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.
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FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.

Wave αexp
0 rexp0 vexp2 vexp3 vexp4

s 5.532/mL 2.465/mL 0.1174/m3
L 0.5518(3)/m5

L −1.078(1)/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL −0.2938/m3

L 0.569(3)/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL 0.9718(16)/mL −0.20(3)/m3
L

Wave αLO
0 rLO

0 vLO
2 vLO

3 vLO
4

s 5.532/mL {2.420, 2.539}/mL {−0.0071, 0.3388}/m3
L {0.4777, 0.8026}/m5

L {−1.043,−0.954}/m7
L

p −16.22/m3
L {0.06905, 0.07673}mL {1.011, 1.055}/mL {−0.3012,−0.1333}/m3

L {0.565, 0.791}/m5
L

d −13.98/m5
L {1.069, 1.069}m3

L {0.7487, 0.7514}mL {0.9707, 0.9880}/mL {−0.21,−0.16}/m3
L

Wave αNLO
0 rNLO

0 vNLO
2 vNLO

3 vNLO
4

s 5.532/mL 2.465/mL {0.1160, 0.1203}/m3
L {0.5432, 0.5678}/m5

L {−1.084,−1.063}/m7
L

p −16.22/m3
L 0.06952mL {1.014, 1.014}/mL {−0.2947,−0.2917}/m3

L {0.565, 0.575}/m5
L

d −13.98/m5
L 1.069m3

L {0.7490, 0.7490}mL {0.9722, 0.9724}/mL {−0.21,−0.20}/m3
L

Wave αNNLO
0 rNNLO

0 vNNLO
2 vNNLO

3 vNNLO
4

s 5.532/mL 2.465/mL 0.1174/m3
L {0.5512, 0.5516}/m5

L {−1.079,−1.077}/m7
L

p −16.22/m3
L 0.06952mL 1.014/mL {−0.2938,−0.2937}/m3

L {0.568, 0.568}/m5
L

d −13.98/m5
L 1.069m3

L 0.7490mL {0.9722, 0.9722}/mL {−0.21,−0.21}/m3
L

0 0.5 1 1.5 2 2.5 3
r  [fm]

0

100

200

300

V
  [

M
eV

]

VL
VS
V

0 0.2 0.4 0.6 0.8 1
r  [fm]

-150

-100

-50

0

50

100

V
L  [

M
eV

]

VL
(0)

VL
(2)

VL
(4)

VL
(6)

VL

FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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TABLE II: Usual effective range parameters for the two-potential toy model of Eq. (33) and its corresponding “chiral” expansion
in units of the inverse light mass scale. The ERE coefficients for the two-potential toy model are treated as the “experimental”
data we want to reproduce with the “chiral” effective theory of Sect. (??). The effective parameters are computed at the finite
cut-off raddi rc = 0.5/mL, which we take as representative of the main features we expect to see in the “chiral” expansion. The
error in the effective theory parameters are calculated from the naive estimations of Eq. (42). We only show the effective ERE
parameters with four significant digits at most, less if the “experimental” parameter cannot be determined with this accuracy.
However, as can be appreciated, the error in certain cases does not happen until the fith digit or beyond.
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FIG. 1: Left panel: the long-range, short-range and full toy model potential in Eq. (33) versus the distance between the
nucleons. Right panel: “chiral expansion” of the long-range part of the potential as explained in the text.

the potential generates an S-wave bound state at B ≃ 2.23MeV which mimics the deuteron. The resulting potential
is depicted in Fig. 1 and possesses a long-range attraction and the repulsive core at short distances. These features
as well as the magnitude of the potential at intermediate and long distances are in a qualitative agreement with the
realistic case of nucleon-nucleon interaction.

We further emphasize that the nucleons in our toy world are spinless and we do not distinguish between the isospin
quantum numbers.

As already pointed out before, the important feature of the model is that its long-range part admits an expansion
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 LETs for NN S-waves: Implementation
We implement the LETs by calculating NN amplitude at LO within the renormalizable approach
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C0

The Kadyshevsky equation is solved numerically for a given Λ. The constant C0 is expressed 
in terms of the scattering length a (renormalization) and the limit Λ → ∞ is taken. 

phase shifts, binding energy & all other coefficients in the ERE are predicted !
as functions of the scattering length [LETs]
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with the ones of Ref. [9] and argue that their determination by means of the e↵ective range approximation is not
self-consistent.

Our paper is organized as follows. In section II, we discuss in detail our formalism, explain the meaning of the LETs
and discuss their generalization of the LETs to unphysical values of the pion mass. Implications of the LETs for the
recent lattice-QCD results at M⇡ ⇠ 450 MeV are considered in section III. Finally, our main findings are summarized
in section IV.

II. LOW-ENERGY THEOREMS FOR NN SCATTERING

A. The formalism

The concept of the low-energy theorems for NN scattering and their generalization to unphysical pion masses have
been discussed in Ref. [23], see also Refs. [24–29] for related earlier studies. In this section we formulate the main idea
of the LETs from a somewhat di↵erent perspective as compared to Ref. [23], where a quantum mechanical framework
of the modified e↵ective range expansion [31] was employed.

We assume that the NN interaction is characterized by two distinct scales ML and MS , ML ⌧ MS , so that the
potential can be written as

V = VL + VS , (2.1)

with the interaction ranges of the order of rL ⇠ M

�1
L and rS ⇠ M

�1
S , respectively. The analytic structure of the

scattering amplitude near threshold is governed by the long-range interactions. Taking into account the discontinuity
across the left-hand cut from the long-range potential VL, the energy dependence of the scattering amplitude can be
predicted in a model independent way up to the energies corresponding to the branch point of a more distant left-hand
cut associated with the potential VS . This prediction can be regarded as a low-energy theorem. Alternatively, one
can view the LETs as correlations between the parameters in the e↵ective-range expansion of the inverse scattering
amplitude induced by long-range interactions. Notice that the inverse scattering amplitude may possess poles in the
near-threshold region, whose appearance does not a↵ect the validity range of the LETs if the scattering amplitude is
kept unexpanded.

The longest-range part of the NN force is due to the one-pion exchange potential (OPEP). Thus, the LET for NN
scattering are expected to be governed by the left-hand cut generated by the OPEP. The OPEP is, however, singular
at the origin and requires regularization and renormalization. Therefore, instead of using the quantum mechanical
approach, we formulate the LET within the modified Weinberg approach of chiral EFT [17, 23, 32, 33]. Since the
correlations between the ERE parameters are inherently long-range phenomena, the results after renormalization and
removing the ultraviolet cuto↵ should be model and regularization-scheme independent.

To be specific, we calculate the scattering amplitude T by solving the Lippmann-Schwinger-type integral equation
introduced originally by Kadyshevsky [34] which, for the case of the fully o↵-shell kinematics, has the form

T (~p, ~p

0
, k ) = V (~p , ~p

0) +

Z
d

3
q V

�
~p, ~q

�
G(k, q) T

�
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0
, k

�
, (2.2)

where G(k, q) is the free Green function
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2
N

2(2 ⇡)3
1
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2 + m

2
N
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. (2.3)

Further, ~p (~p 0) is the incoming (outgoing) three-momentum of the nucleon in the cms and Ek =
q

~

k

2 + m

2
N with mN

denoting the nucleon mass and ~

k being the corresponding (on-mass-shell) three-momentum. The S-wave potential at
LO consists of the OPEP and two derivative-less contact interactions

VLO = � g

2
A

4F

2
⇡

~�1 · ~q ~�2 · ~q
~q

2 + M

2
⇡

⌧ 1 · ⌧ 2 + C0 , (2.4)
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Kadyshevsky equation:

where the Green’s function is given by

Notice: for the purpose of the LETs, the non-relativistic approach with a finite cutoff would!
            also do the job…



 Leading-order LETs for NN S-waves

perturbative inclusion of pions (KSW approach) fail

EE, Gasparyan, Gegelia, Krebs, EPJA 51 (2015) 71

1S0 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

NLO KSW from Ref. [23] fit fit −3.3 18 −108

LO Weinberg fit 1.50 −1.9 8.6(8) −37(10)

Nijmegen PWA −23.7 2.67 −0.5 4.0 −20

Table 1
Predictions for the coefficients in the effective range expansion of the 1S0 phase shifts (low-
energy theorems) with perturbative and non-perturbative treatment of the OPE potential in
comparison with the values from the Nijmegen PWA (extracted using the Nijm II potential
[41,42]).

is also observed in LO KSW and (nonrelativistic) Weinberg approach and is well-
known to be largely cured by the inclusion of the subleading contact interaction.
In all other channels, the deviations between the theory and Nijmegen PWA are
consistent with the expected corrections from higher-order terms in the expansion
of the potential and also indicate that these corrections can be taken into account
perturbatively.

In addition to the predicted energy dependence of the phase shifts, the proper in-
clusion of the pion-exchange physics can be tested in theoretical predictions for the
coefficients in the effective range expansion

p2l+1 cot δl(p) = −
1

a
+

1

2
rp2 + v2p

4 + v3p
6 + v4p

8 + . . . , (23)

where a, r and vi denote the scattering length, effective range and shape parameters,
respectively, and l is the orbital angular momentum. The energy dependence of
the two-particle scattering amplitude near threshold is driven by the long-range
tail of the interaction which imposes correlations between the coefficients in the
effective range expansion [23]. These correlations are determined by the long-range
interaction and may be regarded as low-energy theorems (LETs). In tables 1 and
2, the LETs in the KSW and Weinberg approaches are confronted with the results
of the Nijmegen PWA for the 1S0 and 3S1 partial waves, respectively. Since in the
KSW approach the LO S-wave amplitude does not involve effects due to OPE,
one needs to go to at least NLO in order to test the LETs in this framework. The
analytic expressions for the S-wave shape parameters at NLO in the KSW scheme
can be found in Ref. [23]. Clearly, the modified version of the KSW approach
discussed in section 3 yields the same results for vi modulo terms of order 1/m
and higher. The LETs are known to be strongly violated in the KSW approach [23],
see tables 1 and 2. The non-perturbative treatment of the OPE potential leads to
an improved description of the LETs in the 1S0 channel. It is, however, still rather
poor at LO which should not come as a surprise given that the long-range part
of the OPE potential generates only a small contribution to the 1S0 phase shift.
One may, therefore, expect that the LETs are strongly affected by the two-pion
exchange contributions in this partial wave. In the 3S1 channel, in contrast, the
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3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

NLO KSW from Ref. [23] fit fit −0.95 4.6 −25

LO Weinberg fit 1.60 −0.05 0.8(1) −4(1)

Nijmegen PWA 5.42 1.75 0.04 0.67 −4.0

Table 2
Predictions for the coefficients in the effective range expansion of the 3S1 phase shifts (low-
energy theorems) with perturbative and non-perturbative treatment of the OPE potential in
comparison with the values from the Nijmegen PWA [43].

LETs are well reproduced at LO in the Weinberg approach. The discrepancy for
v2 in the 3S1 channel should not be taken too seriously given the very small value
of this coefficient. We further emphasize that the errors quoted for v3,4 refer to
the estimated uncertainty of our numerical extraction of these parameters from the
phase shifts.

5 Summary and conclusions

In this paper we applied the manifestly Lorentz-invariant form of the effective La-
grangian to the problem of nucleon-nucleon scattering without relying on the non-
relativistic expansion. The LO contribution to the scattering amplitude in the result-
ing modifiedWeinberg approach can be obtained by solving the LS-type of integral
equation (8) with the kernel given by the OPE potential and derivative-less contact
interactions. Contrary to its nonrelativistic counterpart, this equation is renormal-
izable, i.e. all UV divergences generated by its iterations can be absorbed by redef-
inition of the two LO contact interactions. The explicit appearance of the nucleon
mass in the propagators, however, makes it necessary to perform additional, finite
subtractions in order to restore the proper scaling of the renormalized contributions
in accordance with the power counting. Such additional subtractions only affect the
values of the LECs accompanying the LO contact interactions. Consequently, the
LO equation is renormalizable and consistent in the EFT sense.

In the case of perturbative pions, the new approach is shown to reproduce the
well-known results of the NR KSW framework modulo terms of a higher order in
the 1/m-expansion. When pions are treated non-perturbatively as suggested in the
Weinberg scheme, the formulation we propose, being renormalizable, offers the ap-
pealing possibility to remove the UV cutoff in the way compatible with the princi-
ples of EFT. We have analyzed two-nucleon scattering at LO in the modified Wein-
berg approach. We found that the integral equation does not possess a unique solu-
tion in the 3P0 partial wave similarly to the Skornyakov–Ter-Martirosyan equation
for spin-doublet nucleon-deuteron scattering. One possible way to fix the solution
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1S0 channel: limited predictive power of the LETs due to the weakness of the OPEP;!
                     taking into account the range correction (NLO) leads to improvement

3S1 channel: LETs work as advertised (strong tensor part of the OPEP)



 
6

-3

-2

-1

0

1

2

0 0.5 1

1/(aM�)

1S0

-3

-2

-1

0

1

2

0 0.5 1

1/(aM�)

3S1
rM�

v2M3
�

v3M5
�

v4M7
�

1

FIG. 1: Correlations between the inverse scattering length a�1, e↵ective range r and the first three shape parameters v2, v3
and v4 induced by the one-pion exchange interaction in the 1S0 (left panel) and 3S1 (right panel) channels. Solid rectangles,
dimonds and circles (open triangles) correspond to the values of r, v2 and v4 (v3) extracted from the Nijmegen partial wave
analysis [47, 48].
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to the lattice data including the experimental values and the shaded bands correspond to the 67% confidence levels of the
extrapolations.
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Even in the 3S1 channel, the accuracy is insufficient when using effective range as input: 

Next-to-leading-order LETs for NN S-waves
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Even in the 3S1 channel, the accuracy is insufficient when using effective range as input: 

Next-to-leading-order LETs for NN S-waves

→ go to NLO LETs by including the (modified) effective range correction modeled via                                                                          5

TABLE I: Low-energy theorems for the neutron-proton 3S1 partial wave. At NLO, the short-range interaction is modeled via
resonance saturation in terms of a heavy pseudoscalar meson exchange as described in the text.

a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

LO LET 5.42? 1.60 �0.05 0.82 �5.0

NLO LET 5.42? 1.75? 0.06 0.70 �4.0

Nijmegen PWA [] 5.42 1.75 0.04 0.67 �4.0

?Fit parameter.

The Jost function fL
l (k) is defined according to fL

l (k) ⌘ fL
l (k, r)

��
r=0

with fL
l (k, r) being the Jost solution of the

Schrödinger equation corresponding to the potential VL, i.e. the particular solution that fulfills

lim
r!1

e�ikrfl(k, r) = 1 . (2.5)

Further, �Ll (k) denotes to the phase shift associated with the potential VL and the the quantity ML
l (k) can be

computed from fL
l (k, r) as follows:

ML
l (k) =

✓
� ik

2

◆l 1

l!
lim
r!0


d2l+1

dr2l+1
rl
fl(k, r)

fl(k)

�
. (2.6)

I denote here with the superscript “L” all quantities that can be computed solely from the long-range part of the
potential. The modified e↵ective range function FM

l (k2) defined in this way does not contain the left-hand singularity
associated with the long-range potential and reduces, per construction, to the ordinary e↵ective range function Fl(k2)
for VL = 0. It is a real meromorphic function in a much larger region given by r�1

s as compared to Fl(k2).1 If the
long-range interaction is due to a Coulomb potential, VL(r) = ↵/r, the Jost solution and, consequently, the function
ML

l (k) can be calculated analytically. For example, for l = 0 and the repulsive Coulomb potential, the MERE takes
the following well-known form:
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Here,  (z) ⌘ �0(z)/�(z) denotes the digamma function. For more details on the analytic properties of the scattering
amplitude and related topics I refer the reader to the review article [46].

After these preparations, we are now in the position to discuss the implications of the long-range interaction on the
energy dependence of the phase shift. It is natural to assume that the coe�cients in the ERE and MERE (except for
the scattering length) are driven by the scales ml and ms associated with the lowest left-hand singularities, see [47] for
a related discussion. The knowledge of the long-range interaction VL allows to compute the quantities fL

l (k), ML
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and �Ll (k) entering the right-hand side of Eq. (2.4) and thus to express �l(k) and the ordinary e↵ective range function
Fl(k2) in terms of the modified one, FM

l (k2). The MERE for FM
l (k2) then yields an expansion of the subthreshold

parameters entering Eq. (2.3) in powers of ml/ms. In particular, using the first few terms in the MERE as input
allows to make predictions for all coe�cients in the ERE. The appearance of the correlations between the subthreshold
parameters in the above-mentioned sense which I will refer to as low-energy theorems (LETs) is the only signature of
the long-range interaction at low energy (in the two-nucleon system). The LETs allow to test whether the long-range
interactions are incorporated properly in nuclear chiral EFT and thus provide an important consistency check.
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Note that the existence of ML

l (k) implies certain constraints on the small-r behavior of VL(r).
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TABLE I: Low-energy theorems for the neutron-proton 3S1 partial wave. At NLO, the short-range interaction is modeled via
resonance saturation in terms of a heavy pseudoscalar meson exchange as described in the text.

a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

LO LET 5.42? 1.60 �0.05 0.82 �5.0

NLO LET 5.42? 1.75? 0.06 0.70 �4.0

Nijmegen PWA [] 5.42 1.75 0.04 0.67 �4.0

?Fit parameter.
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For the 1S0 channel see: EE, Gasparyan, Gegelia, Krebs, EPJA 51 (2015) 71



 LETs at unphysical pion mass
Im (Tlab)

Re (Tlab)

inelasticityunitarity cut

280 MeV-10 MeV

1π-cut2π-cut

-39 MeV-77 MeV

3π-cut



 LETs at unphysical pion mass
Im (Tlab)

Re (Tlab)

inelasticityunitarity cut

280 MeV-10 MeV

1π-cut2π-cut

-39 MeV-77 MeV

3π-cut

When going to unphysical pion masses, the main change in the left-hand singularities is 
due to threshold shifts (explicit Mπ-dependence)



 LETs at unphysical pion mass
Im (Tlab)

Re (Tlab)

inelasticityunitarity cut

280 MeV-10 MeV

1π-cut2π-cut

-39 MeV-77 MeV

3π-cut

When going to unphysical pion masses, the main change in the left-hand singularities is 
due to threshold shifts (explicit Mπ-dependence)

6

-3

-2

-1

0

1

2

0 0.5 1

1/(aM�)

1S0

-3

-2

-1

0

1

2

0 0.5 1

1/(aM�)

3S1
rM�

v2M3
�

v3M5
�

v4M7
�

1
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For NLO LETs, we need to know Mπ-dependence of the subleading 
short-range term (a higher-order effect in EFT)
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FIG. 3: Correlations between the inverse scattering length a�1, e↵ective range r and the first three shape parameters v2, v3 and
v4 in the 3S1 partial wave induced by the one-pion exchange interaction. Solid lines show the predictions of the LO LETs while
light-shaded bands depict the results of NLO LETs and reflect the estimated uncertainty due to unknown M⇡-dependence of
the subleading short-range interaction as explained in the text.

TABLE II: Available experimental and infinite-volume lattice QCD data for nucleon-nucleon scattering parameters and bound
state energies in the 1S0 and 3S1 channels at various values of the pion mass.

M⇡ = 138 MeV M⇡ = 300 MeV [41] M⇡ = 390 MeV [35] M⇡ = 510 MeV [37] M⇡ = 805 MeV [39]

The 3S1 channel

Bd [MeV] 2.224 14.5(0.7)(+2.4
�0.7) 11(05)(12) 11.5(1.1)(0.6) 19.5(3.6)(3.1)(0.2)

a [fm] 5.42 not given not given not given 1.82(+0.14
�0.13)(

+0.17
�0.12)

r [fm] 1.75 not given not given not given 0.906(+0.068
�0.075)(

+0.068
�0.084)

The 1S0 channel

Bd [MeV] – 8.5(0.7)(+2.2
�0.4) 7.1(5.2)(7.3) 7.4(1.3)(0.6) 15.9(2.7)(2.7)(0.2)

a [fm] �23.7 not given not given not given 2.33(+0.19
�0.17)(

+0.27
�0.20)

r [fm] 2.67 not given not given not given 1.130(+0.071
�0.077)(

+0.059
�0.063)

?Fit parameter.

good convergence and accuracy of the LETs for low values of Mπ (below 200 MeV)
sizable uncertainty at pion masses above 400 MeV (even at NLO) 

LETs at nonphysical pion masses (at NLO, δβ = 0.5)



 Intermediate summary

LETs = manifestations of the longest-range interaction due to 1π-exchange in!
            the (energy dependence of the) NN scattering amplitude
Good/fair predictive power in the 3S1-3D1 / 1S0 channels
Work at any Mπ (provided the OPEP is the longest-range interaction) 
Matching to lattice: Need a single amount of information to fix the short-range 
physics at a given Mπ in order to reconstruct T(k)

LETs vs chiral EFT: Similar in spirit but not quite the same…

The take-away message so far:

Not a χ-extrapolation in the usual sense: given an observable X(Mπ), can predict 
Y(Mπ), Z(Mπ),…. No assumptions are made about C0 = f(Mπ)!

Νo reliance on the Mπ-expansion; infinite Mπ-limit well-defined; Mπ-dependence 
of mN, gA, Fπ taken directly from lattice QCD
Accuracy & applicability range limited by the second-lowest non-analyticity in the 
amplitude (2π-exchange, heavy-meson exchange, Δ, …)



 Application 1: !
testing the conjectured linear extrapolation 
for          :
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FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.
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FIG. 4: Chiral extrapolation of the e↵ective range in the 3S1 partial wave suggested in Ref. [39]. Solid square and filled triangle
refer to the experimental value and he lattice-QCD result of that work, respectively.
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FIG. 5: NLO LET predictions for the pion mass dependence of the deuteron binding energy, the ratio �d/M⇡, the ratio a/r
and the first three shape parameters in the 3S1 partial wave assuming the linear M⇡-dependence of the e↵ective range as shown
in Fig. 4. Dark-shaded bands show our estimation of the uncertainty of the NLO LETs due to unknown M⇡-dependence of the
subleading short-range interaction, light-shaded bands depict the uncertainty in the linear extrapolation of the e↵ective range
used as input as shown in Fig. 4.

Predicted chiral extrapolations based on the LETs + linear Mπ-dependence of Mπr

→ results seem to be internally consistent!

δβ=0.5
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We can also try an extrapo-
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 LETs for the 3S1 partial wave
Predicted chiral extrapolations based on the LETs + linear Mπ2-dependence of Mπr
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→ seems to be inconsistent with the trend in Bd…

δβ=0.5



 Application 2: !
NPLQCD at Mπ ~ 450 MeV meets LETs

magnified by their close proximity to a singularity in the
kinematic functions cd00. Even subject to these issues, a zero
in the phase shift is visible near k! ∼mπ ∼ 450 MeV,
indicative of an attractive interaction with a repulsive core.
It is interesting to compare this phase shift, at a pion mass
of mπ ∼ 450 MeV, with that of nature, illustrated by the
dashed curve in Fig. 18. The phase shift resulting from a
partial-wave analysis of experimental data is consistent,
within uncertainties, with the phase shift calculated atmπ ∼
450 MeV over a large range of momenta. The zeros of the
phase shift occur at different momenta, but they are nearby.
Without results at smaller k!, a precise extraction of the
scattering parameters, such as the scattering length and
effective range, is not feasible, and additional calculations
are required in order to accomplish this. However, the

determination of the binding energy and the two continuum
states that lie below the threshold of the t-channel cut (set
by the pion mass, k! ¼ mπ=2) can be used to perform an
approximate determination of the inverse scattering length
and effective range. A linear fit was performed,
k!cotδ ¼ −1=aþ 1

2 rk
!2, as shown in Fig. 19. The range

of linear fits straddle k!cotδ ¼ 0 at k! ¼ 0, and as such
allows both að

3S1Þ ¼ &∞, and it is useful to consider the
constraints on 1=að

3S1Þ rather than að
3S1Þ. The correlated

constraints on 1=að
3S1Þ and rð

3S1Þ are shown in Fig. 19. The
inverse scattering length and effective range determined
from the fit region in Fig. 19 are

ðmπað
3S1ÞÞ−1 ¼ −0.04þð0.07Þð0.08Þ

−ð0.10Þð0.17Þ ;

mπrð
3S1Þ ¼ 7.8þð2.2Þð3.5Þ

−ð1.5Þð1.7Þ

ðað3S1ÞÞ−1 ¼ −0.09þð0.15Þð0.19Þ
−ð0.23Þð0.39Þ fm−1;

rð
3S1Þ ¼ 3.4þð1.0Þð1.5Þ

−ð0.7Þð0.8Þ fm: ð17Þ

Further calculations in larger volumes (and hence at smaller
k!2) will be required to refine these extractions. There is a
potential self-consistency issue raised by the size of the
effective range that is within the uncertainties that are
reported. Lüscher’s method is valid only for the interaction
ranges R ≪ L=2, otherwise the exponentially small cor-
rections due to deformation of the interhadron forces
become large. Assuming the range of the interaction is
of similar size to the effective range (as expected for
“natural” interactions), this requirement is not met and
deviations from the assumed linear fitting function should
be entertained. Higher precision analyses will be required
to investigate this further.

TABLE VII. Scattering information in the 3S1 − 3D1 coupled
channels. Center dots indicate that the uncertainty extends across
a singularity of the Lüscher function, or that it is associated with
the bound state. The uncertainties in these quantities are highly
correlated, as can be seen from Fig. 18.

Ensemble
jPtotj
(l.u.) k!=mπ k!cotδ1α=mπ δ1α (degrees)

All 0 i0.294þð17Þð27Þ
−ð18Þð24Þ −0.294

þð17Þð27Þ
−ð18Þð24Þ '''

243×64 0 0.9754þð44Þð98Þ
−ð45Þð99Þ ''' 3.1(1.7)(3.7)

323×96 0 0.702þð10Þð23Þ
−ð10Þð24Þ 2.3þð1.0Þð5.7Þ

−ð0.55Þð0.89Þ 17(5)(11)

323×96 0 1.065þð07Þð16Þ
−ð08Þð17Þ −5.4þð1.4Þð2.1Þ

−ð2.9Þð29.5Þ −11.1ð3.8Þð8.5Þ

323×96 1 0.270þð26Þð29Þ
−ð40Þð51Þ þ0.35þð24Þð15Þ

−ð59Þð20Þ þ38
þð13Þð23Þ
−ð11Þð16Þ

483×96 0 0.426(03)(12) 0.45þð67Þð34Þ
−ð26Þð08Þ 44

þð21Þð07Þ
−ð21Þð08Þ

483×96 0 0.662(08)(29) 0.35þð0.14Þð3.0Þ
−ð0.09Þð0.21Þ 26

þð07Þð25Þ
−ð07Þð22Þ

FIG. 18 (color online). Scattering in the 3S1 − 3D1 coupled channels. The left panel shows k!cotδ1α=mπ as a function of k!2=m2
π , while

the right panel shows the phase shift as a function of momentum in MeV, assuming that δ1β and the D-wave and higher partial-wave
phase shifts vanish. The thick (thin) region of each result corresponds to the statistical uncertainty (statistical and systematic
uncertainties combined in quadrature). The black circle in the right panel corresponds to the known result from Levinson’s theorem,
while the dashed-gray curve corresponds to the phase shift extracted from the Nijmegen partial-wave analysis of experimental data [61].
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quark masses. Comparison of LQCD calculations at
unphysical masses allows this previously unavailable “dial”
to be turned in the dual expansion that defines chiral
NNEFTs. Second, the full decomposition of the chiral NN
forces, and thereby precise predictions for nuclear observ-
ables, requires knowledge of the mass dependence dis-
cussed above and it is essential that such calculations be
performed to maximize the predictive power of NNEFTs.
Third, the current calculations enable an exploration of the
convergence of NNEFTs with pions included as explicit
degrees of freedom at relatively large pion masses.
The quality and kinematic coverage of scattering results

that have been presented is not yet sufficient to perform a
comprehensive analysis of NNEFT matching to LQCD.
Instead, we present a simplified discussion of the two
channels to highlight some of the important features and
questions that will need to be addressed in order to
accomplish a reliable determination of the chiral nuclear
forces from LQCD. Related discussions in the context of
pionless EFTs for multinucleon systems can be found in

Refs. [72,73] and implicitly in the presentation of the
effective range expansion above.

A. KSW analysis of the 1S0 channel

The KSW power counting [68–70] provides a rigorous
framework with which to perturbatively expand the two
nucleon scattering amplitude in the 1S0 channel in the
two small-expansion parameters, nominally p=ΛNN and
mπ=ΛNN . Here ΛNN ¼ 8πf2π=g2AMN is the natural scale of
validity of the NNEFT. At the physical point
ΛNN ∼ 289 MeV, while at a pion mass of 450 MeV it is
ΛNN ∼ 350 MeV. These scales should be compared with
the start of the t-channel cut from the next lightest meson,
mρ=2 ∼ 385 MeV at the physical point, and mρ=2 ∼
443 MeV at a pion mass of 450 MeV. This power counting
treats the zero-derivative two nucleon operator nonpertu-
batively, and was developed in order to correctly define a
theory that is finite and renormalization group invariant at
each order in the expansion. An analysis of nucleon-
nucleon (NN) interactions at the physical point has been
carried out to next-to-next-to-leading order (NNLO) in the
KSW expansion [68,69,74–76], and we have performed
the analogous analysis of the present LQCD results. The
leading order (LO), next-to-leading order (NLO) and
NNLO amplitudes in the 1S0 channel can be found in
Refs. [68,69,74,75], along with the relevant expansion of
the phase shift. At LO, there is only one fit parameter,
constrained by the location of the dineutron pole. At NLO,
there are nominally two additional fit parameters, but
requiring that the dineutron pole remains unchanged
reduces the number to one, ξ1, while the other, ξ2, can
be directly related to ξ1. Finally, at NNLO there are three
more parameters, but only one parameter, ξ4, is indepen-
dent for similar reasons as at NLO. Therefore, there are
only three fit parameters for a complete analysis at NNLO.

TABLE X. Scattering information in the 1S0 channel. The
uncertainties are highly correlated, as can be seen from Fig. 27.

Ensemble jPtotj
(l.u.)

k"=mπ k"cotδð
1S0Þ=mπ δð

1S0Þ (degrees)

All 0 i0.274þð19Þð26Þ
−ð20Þð44Þ−0.274

þð19Þð26Þ
−ð20Þð44Þ & & &

243 × 64 0 0.954þð08Þð18Þ
−ð08Þð19Þ 5.0þð2.0Þð10.0Þ

−ð1.1Þð1.8Þ 10.8þð3.0Þð6.5Þ
−ð3.0Þð6.7Þ

323 × 96 0 0.691þð09Þð16Þ
−ð09Þð16Þ 1.7þð0.5Þð1.1Þ

−ð0.3Þð0.5Þ 22.0þð4.2Þð7.0Þ
−ð4.2Þð7.2Þ

323 × 96 0 1.079þð05Þð10Þ
−ð05Þð10Þ −3.3þð0.4Þð0.7Þ

−ð0.6Þð1.5Þ −18.3ð2.6Þð5.2Þ

323 × 96 1 0.220þð28Þð32Þ
−ð32Þð42Þ 0.13þð10Þð14Þ

−ð08Þð08Þ 60
þð14Þð20Þ
−ð12Þð14Þ

483 × 96 0 0.453(11)(29) 0.89þð39Þð3.7Þ
−ð23Þð44Þ 27

þð07Þð18Þ
−ð07Þð20Þ

FIG. 27 (color online). Scattering in the 1S0 channel. The left panel shows k"cotδð
1S0Þ=mπ as a function of k"2=m2

π , while the right
panel shows the phase shift as a function of momentum in MeV. The thick (thin) region of each result corresponds to the statistical
uncertainty (statistical and systematic uncertainties combined in quadrature). The black circle in the right panel corresponds to the
known bound-state result from Levinson’s theorem, while the dashed-gray curve corresponds to the phase shift extracted from the
Nijmegen partial-wave analysis of experimental data [61].
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FIG. 5: (Color online) Neutron-proton phase shifts in the 3S1 channel (left panel) and the mixing angle ✏̄1 (right panel) at
M⇡ ⇠ 450 MeV based on the LETs at LO and NLO in comparison with the results obtained in Ref. [9] using the EFT
formulation of Ref. [10], labelled as BBSvK, at LO (light-shaded band between blue dashed lines) and NLO (light-shaded band
between pink dotted lines). The results for the 3S1 phase shift correspond to the Blatt-Biedenharn parametrization of the
S-matrix [42] while the mixing parameter is shown for the Stapp parameterization to allow for the comparison with the results
of Ref. [9]. For remaining notation see Fig. 3.

its allowed M⇡ dependence at unphysical pion masses is used to estimate the theoretical uncertainty as explained in
Sec. II B. This procedure ensures that both the LO and NLO LET results depend on a single unknown parameter.
We further emphasize that the low-energy behavior of the mixing angle found in Ref. [9] and shown in the right panel
of Fig. 5 seems to be at variance with the expected threshold behavior for this quantity, ✏̄1 ⇠ k

3. EE: correct?

Irregardless of these di↵erences, the two approaches yield similar numerical results for the 3
S1 phase shift and the

mixing angle ✏̄1 in the considered range of momenta. The values of the scattering length and e↵ective range extracted
in Ref. [9] from the lattice data using the framework of Ref. [10] read

a

(3S1)
BBSvK,LO = 1.94(09)(17) fm, r

(3S1)
BBSvK,LO = 0.674(17)(29) fm,

a

(3S1)
BBSvK,NLO = 2.72(22)(27) fm, r

(3S1)
BBSvK,NLO = 1.43(12)(13) fm, (3.24)

where the uncertainties in the first and second brackets correspond to the statistical and systematic uncertainties of
the lattice results. As already pointed out, the LO values are in agreement with our LO predictions given in Eq. (3.19),
while the deviations at NLO and, in particular, the large value of the e↵ective range are presumably caused by an
attempt to reproduce the lattice-QCD result for the 3

S1 phase shift at k ' 0.2 GeV within the BBSvK approach.

B. The 1S0 channel

We now turn to the spin-singlet channel. In Fig. 6, we confront the phase shifts extracted based on the LETs with
the lattice-QCD results for the 1

S0 partial wave. Here we apply the same procedure as in the 3
S1 channel and use

the NPLQCD result for the dineutron binding energy, [9]

Bnn = 12.5
�
+3.2
�4.9

�
MeV , (3.25)

as input to fix the short-range interaction at LO. The NLO short-range interaction is again taken into account by
means of resonance saturation, see Eq. (2.13), with the strength � being determined by the e↵ective range at the
physical point. The allowed M⇡-dependence of � is specified by Eq. (2.14), and the blue bands in Fig. 6 correspond
to the choose �� = 0.5. Notice that the shift in the predictions when going from LO to NLO is now much larger
than in the spin-triple channel which is in line with the lower predictive power of the LETs in the 1

S0 partial wave.
Consequently, we feel that a variation of the strength � with �� = 0.5 does not provide a realistic estimation of the
theoretical uncertainty at NLO in this channel. To have a more conservative estimation, we will allow for a larger
M⇡-dependence in this channel and set �� = 1 as visualized by the blue dotted lines in Fig. 6.

8

of the pion mass reported in Ref. [9] are

�
M⇡a

(3S1)
��1

= �0.04
�
+0.07
�0.10

��
+0.08
�0.17

�
, M⇡r

(3S1) = 7.8
�
+2.2
�1.5

��
+3.5
�1.7

�
, (3.17)

where the uncertainties in the first and second brackets are statistical and systematic, respectively.

In Fig. 3, we confront the lattice-QCD phase shifts of Ref. [9] with the predictions of the LETs at LO and NLO.
We use the NPLQCD result for the deuteron binding energy given in Eq. (3.15) as input to adjust the leading-order
contact term C0. This is su�cient to predict the phase shift at LO. As explained in the previous section, there are no
additional parameters at NLO. As shown in the left panel of Fig. 3, the change in the phase shifts when going from
at LO to NLO is reasonably small which confirms a good convergence of the LETs in this channel. The expected
accuracy of the NLO prediction can be roughly estimated by the width of the blue band generated by the variation
of the parameter � as described above and appears to be consistent with the shift from LO to NLO. Notice that the
LO (orange) band reflects the uncertainty in the NPLQCD prediction of the binding energy and does not include
the theoretical uncertainty of the LETs. As required by the Levinson theorem for the case of a bound deuteron, the
phase shifts generated by the LETs go through 180� at the origin. Comparing the NPLQCD results for phase shifts
and the e↵ective range function in the 3

S1 channel with those based on the LETs as visualized in Fig. 3, we end up
with the following conclusions:

• First, as shown in the right panel of Fig. 3, only positive values of the scattering length appear to be consistent
with the NPLQCD result for the deuteron binding energy quoted in Eq. (3.15) as opposed to the negative central

value for a

(3S1) reported in that paper. Our results for the inverse scattering length extracted from Bd by means
of the LETs disagree with the NPLQCD ones given in Eq. (3.17) as can be inferred from the right panel of
Fig. 3.

• While the lattice phase shifts at higher momenta are in a reasonable agreement with the ones predicted by
the LETs, their low-momentum behavior is incompatible (within the quoted errors) with that predicted by the
LETs as demonstrated in both panels in Fig. 3. In particular, the phase shift calculated on the lattice at the
lowest considered momentum of k ' 122 MeV, � = 38

�
+13
�11

��
+23
�16

�
degrees, is a factor of three smaller than the

corresponding value of � = 111(±5) degrees extracted from the LETs.

• An extrapolation of the lattice data to zero momenta in the left panel of Fig. 3 seems to indicate that the phase
shift goes to zero. This would, however, contradict the existence of a bound state in this partial wave as a
consequence of the Levinson theorem (or require shifting �3S1 by 180 degrees in the entire plotted energy range
which would be inconsistent with the LETs).

One may raise a question whether the observed inconsistencies between the lattice-QCD results for phase shifts and
the LETs predictions could originate from underestimating the quark mass dependence of the NLO contact interaction
by constraining the function �(M⇡) as described in the previous section. To clarify this issue, we have increased the
allowed variation of � by a factor of two, i.e. we set �� = 1 instead of �� = 0.5. This corresponds to the allowed
variation of the strength of the short-range term at M⇡ = 500 MeV by ±100% as compared to its value at the physical
point. The resulting predictions for the phase shifts and the e↵ective range function are shown by the hatched blue
light-shaded bands in Fig. 3. With the resulting uncertainty nearly covering the shift from our LO to NLO results,
we expect such an error estimation to be too conservative. Still, none of our conclusions appear to be a↵ected by
employing this very conservative uncertainty estimation.

We are now in the position to extract the scattering length and the e↵ective range from the deuteron binding energy
calculated by the NPLQCD collaboration using the framework of the LETs. Such an extraction is possible because
the e↵ective range function does not possess poles at low momenta and, therefore, can be Taylor expanded around the
origin5. In Fig. 4, we plot the deuteron binding energy and the e↵ective range as functions of the inverse scattering
length in units of the pion mass predicted by the LETs at LO (shown by the lines) and NLO (shown by the bands).
Specifically, the red band between two solid lines represents the NLO LET calculation for the e↵ective range as a
function of the inverse scattering length. Similarly, the magenta band between two dashed lines shows the deuteron

5
The e↵ective range function does have a pole at k ' 500 MeV where the phase shift crosses zero but these momenta are already beyond

the region of the validity of the ERE expansion.
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the e↵ective range function does not possess poles at low momenta and, therefore, can be Taylor expanded around the
origin5. In Fig. 4, we plot the deuteron binding energy and the e↵ective range as functions of the inverse scattering
length in units of the pion mass predicted by the LETs at LO (shown by the lines) and NLO (shown by the bands).
Specifically, the red band between two solid lines represents the NLO LET calculation for the e↵ective range as a
function of the inverse scattering length. Similarly, the magenta band between two dashed lines shows the deuteron

5
The e↵ective range function does have a pole at k ' 500 MeV where the phase shift crosses zero but these momenta are already beyond

the region of the validity of the ERE expansion.

7

FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' � 1

a

(3S1)
+

1

2
r

(3S1)
k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
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FIG. 6: (Color online) Two-nucleon phase shifts (left panel) and the e↵ective-range function (right panel) in the 1S0 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] in comparison with the predictions based on the LETs at LO and NLO using
the NPLQCD result for the dineutron binding energy Bnn as input. For notation see Fig. 3.

As shown in Fig. 6, we arrive at similar conclusions as in the case of the spin-triplet channel. While our NLO
LET predictions for k > 300 MeV are in a very good agreement with the phase shifts calculated by the NPLQCD
collaboration, there is a clear discrepancy for the two lowest values of the momentum k. In particular, for the lowest
momentum k ⇠ 100 MeV the phase shift from the NLO LETs is roughly a factor of two larger than that from the
lattice-QCD analysis. Similarly to the 3

S1 channel, the predictions of the LETs based on the dineutron binding energy
are only compatible with positive values of the scattering length, see the right panel of Fig. 6. Specifically, we obtain

�
M⇡a

(1S0)
LET, LO

��1

= 0.244
�
+0.026
�0.051

�
, M⇡r

(1S0)
LET, LO = 0.90

�
+0.14
�0.06

�
,

�
M⇡a

(1S0)
LET, NLO

��1

= 0.175
�
+0.013
�0.028

��
+0.024
�0.008

�
, M⇡r

(1S0)
LET, NLO = 2.86

�
+0.27
�0.12

��
+0.27
�0.74

�
, (3.26)

which correspond to the following values in units of fm

a

(1S0)
LET, LO = 1.797

�
+0.479
�0.171

�
fm, r

(1S0)
LET, LO = 0.40

�
+0.06
�0.03

�
fm ,

a

(1S0)
LET, NLO = 2.501

�
+0.481
�0.174

��
+0.123
�0.304

�
fm, r

(1S0)
LET, NLO = 1.25

�
+0.12
�0.05

��
+0.12
�0.32

�
fm. (3.27)

Here, the errors at LO and in the first brackets at NLO correspond to the uncertainty in the dineutron binding energy
while the ones in the second brackets at NLO reflect the unknown M⇡-dependence of � subject to the constraint
�� = 1. These results are in conflict with the NPLQCD determination based on the e↵ective range expansion, namely
[9]:

�
M⇡a

(1S0)
��1

= 0.021
�
+0.028
�0.036

��
+0.032
�0.063

�
, M⇡r

(1S0) = 6.7
�
+1.0
�0.8

��
+2.0
�1.3

�
. (3.28)

Again, we believe that the analysis performed by the NPLQCD collaboration and based on the e↵ective range
approximation is not self-consistent. All arguments given in the previous section apply to the 1

S0 channel too, even
though our conclusions in this case are somewhat less stringent due to the lower accuracy of the LETs. To further
elaborate on this point and to provide an assessment of the robustness of our conclusions, we have re-done the
calculations by using the lattice phase shifts instead of the dineutron binding energy as input. Specifically, we vary
the scattering length, which is now used as input for the LETs at NLO, in the range consistent with the lattice-QCD
phase shifts at the two lowest energies. The resulting phase shifts, corresponding to the the inverse scattering length
are in the range of

�
M⇡a

(1S0)
��1

= �0.01 ± 0.06 (3.29)

are shown in the left panel of Fig. 7. Here, we set �� = 0, and the width of the band reflects the uncertainty of
the lattice-QCD phase shifts used as input. Notice that while the NPLQCD value of the inverse scattering length
given in Eq. (3.28) is indeed consistent with the range of values in Eq. (3.29), the obtained solutions correspond
to the bound (virtual) state binding energy of Bnn < 0.5 MeV (Bvirtual

nn < 0.6 MeV) which is in conflict with the

12

FIG. 6: (Color online) Two-nucleon phase shifts (left panel) and the e↵ective-range function (right panel) in the 1S0 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] in comparison with the predictions based on the LETs at LO and NLO using
the NPLQCD result for the dineutron binding energy Bnn as input. For notation see Fig. 3.
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approximation is not self-consistent. All arguments given in the previous section apply to the 1

S0 channel too, even
though our conclusions in this case are somewhat less stringent due to the lower accuracy of the LETs. To further
elaborate on this point and to provide an assessment of the robustness of our conclusions, we have re-done the
calculations by using the lattice phase shifts instead of the dineutron binding energy as input. Specifically, we vary
the scattering length, which is now used as input for the LETs at NLO, in the range consistent with the lattice-QCD
phase shifts at the two lowest energies. The resulting phase shifts, corresponding to the the inverse scattering length
are in the range of

�
M⇡a

(1S0)
��1

= �0.01 ± 0.06 (3.29)

are shown in the left panel of Fig. 7. Here, we set �� = 0, and the width of the band reflects the uncertainty of
the lattice-QCD phase shifts used as input. Notice that while the NPLQCD value of the inverse scattering length
given in Eq. (3.28) is indeed consistent with the range of values in Eq. (3.29), the obtained solutions correspond
to the bound (virtual) state binding energy of Bnn < 0.5 MeV (Bvirtual

nn < 0.6 MeV) which is in conflict with the

Baru, EE, Filin, to appear

1S0 3S1

from: Orginos, Parreno, Savage, Beane, Chang, Detmold, Phys. Rev. D92 (2015) 114512
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FIG. 4: (Color online) Correlations between the inverse scattering length a�1, e↵ective range r and the binding energy in the
3S1 partial wave induced by the one-pion exchange potential. The red solid and dashed purple lines show the predictions of the

LO LETs for M⇡r
(3S1) and Bd. The light-shaded bands between the red solid and dashed purple lines visualize the predictions

of the NLO LETs for M⇡r
(3S1) and Bd, respectively, and reflect the theoretical uncertainty estimated via the variation of � with

�� = 0.5 as described in the text. The horizontal dotted lines specify the range of values for Bd consistent with the lattice-QCD
results of Ref. [9] for this observable. The solid dark-red circle (blue rectangle) shows the LO (NLO) LET predictions for
the e↵ective range. The open black circle gives the result for the inverse scattering length and e↵ective range reported by
the NPLQCD collaboration [9] while the grey area around it shows the estimated uncertainty from that paper. All results
correspond to the Blatt-Biedenharn parametrization of the S-matrix [42].

binding energy versus the inverse scattering length at NLO. Further, the two horizontal dotted lines separate the region
of the binding energies consistent with the NPLQCD result of Ref. [9], Eq. (3.15), for the binding energy. Projecting
this area onto the x-axis, as shown by the vertical lines, one obtains the corresponding values of the scattering length
and the e↵ective range from the LETs. In particular, we find

�
M⇡a

(3S1)
LET,LO

��1
= 0.229

�
+0.019
�0.018

�
, M⇡r

(3S1)
LET,LO = 1.62

�
+0.06
�0.06

�
,

�
M⇡a

(3S1)
LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.007
�0.004

�
, M⇡r

(3S1)
LET,NLO = 2.44

�
+0.08
�0.08

��
+0.12
�0.17

�
(3.18)

which correspond to the following values in units of fm

a

(3S1)
LET,LO = 1.915

�
+0.159
�0.147

�
fm, r

(3S1)
LET,LO = 0.71

�
+0.02
�0.03

�
fm ,

a

(3S1)
LET,NLO = 2.234

�
+0.156
�0.144

��
+0.052
�0.072

�
fm, r

(3S1)
LET,NLO = 1.07

�
+0.03
�0.03

��
+0.05
�0.08

�
fm. (3.19)

Here, the errors in the first brackets reflect the uncertainty in the value of the deuteron binding energy in Eq. (3.15)
used as input. For the NLO results, we also give in the second brackets an estimation of the theoretical uncertainty
corresponding to the choice of �� = 0.5. Clearly, the above values are at variance with those extracted by the
NPLQCD collaboration and given in Eq. (3.17). In particular, our value for the e↵ective range is about a factor of 3
smaller than the one found in Ref. [9]. Interestingly, the NLO LET prediction for the e↵ective range is in excellent

agreement with the assumed linear in M⇡ behavior of the quantity M⇡r

(3S1) conjectured in Ref. [18], see the right
panel of Fig. 1. For the sake of completeness, we also give the NLO LET results based on a more conservative
uncertainty estimation resulting by employing a weaker constraint on the allowed M⇡-dependence of the subleading
contact interaction corresponding to the choice of �� = 1:

�
M⇡a

(3S1)
LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.018
�0.008

�
, M⇡r

(3S1)
LET,NLO = 2.44

�
+0.08
�0.08

��
+0.21
�0.47

�
(3.20)
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FIG. 3: (Color online) Neutron-proton phase shift (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated by the NPLQCD collaboration at M⇡ ⇠ 450 MeV [15] in comparison with the results predicted by the LETs
when using the lattice-QCD result for the binding energy as input. The phase shift corresponds to the Blatt-Biedenharn
parametrization of the S-matrix [41]. Filled black regions correspond to the lattice-QCD calculations. Orange bands show the
results from the LO LETs, where the uncertainty is entirely given by the uncertainty in Bd quoted in Eq. (3.15). Dark blue
bands correspond to the NLO LET result and take into account both the uncertainty in Bd as well as the variation of the
subleading short range term � as explained in the text. The band between two dashed blue lines in the right panel corresponds
to our NLO calculation with the increased variation of the subleading short-range term, see the text for more details. [AF:
Black dotted line added.] [AF: dashed line is now corresponding to �� = 1.0]

M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [6, 13–15, 17].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [15]. The calculations were performed for nf = 2+1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [3–5] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [15] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [15] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' � 1

a

(3S1)
+

1

2
r

(3S1)
k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bants in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
of the pion mass quoted in Ref. [15] are

�
M⇡a

(3S1)
��1

= �0.04
�
+0.07
�0.10

��
+0.08
�0.17

�
, M⇡r

(3S1) = 7.8
�
+2.2
�1.5

��
+3.5
�1.7

�
, (3.17)
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FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' � 1

a

(3S1)
+

1

2
r

(3S1)
k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units

A more conservative uncertainty estimation (δβ = 1) does not help…

NPLQCD meets LETs: The 3S1 channel
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FIG. 4: (Color online) Correlations between the inverse scattering length a�1, e↵ective range r and the binding energy in the
3S1 partial wave induced by the one-pion exchange potential. The red solid and dashed purple lines show the predictions of the

LO LETs for M⇡r
(3S1) and Bd. The light-shaded bands between the red solid and dashed purple lines visualize the predictions

of the NLO LETs for M⇡r
(3S1) and Bd, respectively, and reflect the theoretical uncertainty estimated via the variation of � with

�� = 0.5 as described in the text. The horizontal dotted lines specify the range of values for Bd consistent with the lattice-QCD
results of Ref. [9] for this observable. The solid dark-red circle (blue rectangle) shows the LO (NLO) LET predictions for
the e↵ective range. The open black circle gives the result for the inverse scattering length and e↵ective range reported by
the NPLQCD collaboration [9] while the grey area around it shows the estimated uncertainty from that paper. All results
correspond to the Blatt-Biedenharn parametrization of the S-matrix [42].

binding energy versus the inverse scattering length at NLO. Further, the two horizontal dotted lines separate the region
of the binding energies consistent with the NPLQCD result of Ref. [9], Eq. (3.15), for the binding energy. Projecting
this area onto the x-axis, as shown by the vertical lines, one obtains the corresponding values of the scattering length
and the e↵ective range from the LETs. In particular, we find

�
M⇡a

(3S1)
LET,LO

��1
= 0.229

�
+0.019
�0.018

�
, M⇡r

(3S1)
LET,LO = 1.62

�
+0.06
�0.06

�
,

�
M⇡a

(3S1)
LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.007
�0.004

�
, M⇡r

(3S1)
LET,NLO = 2.44

�
+0.08
�0.08

��
+0.12
�0.17

�
(3.18)

which correspond to the following values in units of fm

a

(3S1)
LET,LO = 1.915

�
+0.159
�0.147

�
fm, r

(3S1)
LET,LO = 0.71

�
+0.02
�0.03

�
fm ,

a

(3S1)
LET,NLO = 2.234

�
+0.156
�0.144

��
+0.052
�0.072

�
fm, r

(3S1)
LET,NLO = 1.07

�
+0.03
�0.03

��
+0.05
�0.08

�
fm. (3.19)

Here, the errors in the first brackets reflect the uncertainty in the value of the deuteron binding energy in Eq. (3.15)
used as input. For the NLO results, we also give in the second brackets an estimation of the theoretical uncertainty
corresponding to the choice of �� = 0.5. Clearly, the above values are at variance with those extracted by the
NPLQCD collaboration and given in Eq. (3.17). In particular, our value for the e↵ective range is about a factor of 3
smaller than the one found in Ref. [9]. Interestingly, the NLO LET prediction for the e↵ective range is in excellent

agreement with the assumed linear in M⇡ behavior of the quantity M⇡r

(3S1) conjectured in Ref. [18], see the right
panel of Fig. 1. For the sake of completeness, we also give the NLO LET results based on a more conservative
uncertainty estimation resulting by employing a weaker constraint on the allowed M⇡-dependence of the subleading
contact interaction corresponding to the choice of �� = 1:

�
M⇡a

(3S1)
LET,NLO

��1
= 0.196

�
+0.014
�0.013

��
+0.018
�0.008

�
, M⇡r

(3S1)
LET,NLO = 2.44

�
+0.08
�0.08

��
+0.21
�0.47

�
(3.20)

Consequently, different results for the scattering length and effective range: 
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FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' � 1

a

(3S1)
+

1

2
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k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
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FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,
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1

2
r

(3S1)
k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
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FIG. 3: (Color online) Neutron-proton phase shifts (left panel) and the e↵ective-range function (right panel) in the 3S1 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] (filled black regions) in comparison with the predictions based on the LETs
at LO (orange light-shaded bands) and NLO (blue dark-shaded and hatched blue light-shaded bands) using the NPLQCD
result for the deuteron binding energy Bd as input. The uncertainty at LO shown by the orange bands is entirely given by the
uncertainty of Bd in Eq. (3.15). The NLO dark-shaded (hatched light-shaded) bands correspond to the uncertainty in Bd and
the theoretical uncertainty of the LETs estimated via the variation of � with �� = 0.5 (�� = 1.0) combined in quadrature. The
grey light- and dark-shaded bands in the right panel depict the fit results of the lattice points of Ref. [9] based on the e↵ective
range approximation. The energy of the bound (virtual) states corresponds to the intersection points of the e↵ective-range

function k cot �(
3S1) and the function ±

p
�(k/M⇡)2, shown by the dotted line in the right panel, in the lower (upper) half-plane.

The phase shift corresponds to the Blatt-Biedenharn parametrization of the S-matrix [42].

that paper that the e↵ective range, expressed in units of the pion mass, may be approximated by a linear function of
M⇡. While the LETs are certainly beyond their range of applicability at such heavy pion masses, this conjecture was
tested using the LETs in our previous work [23], where the resulting M⇡-dependence of the deuteron binding energy
was indeed found to be in good agreement with the general trend of lattice data [7–9, 18, 20].

Recently, new results for NN scattering in the 3
S1 and 1

S0 channels have been reported by the NPLQCD collaboration
at M⇡ ⇠ 450 MeV [9]. The calculations were performed for nf = 2 + 1 flavors of light quarks at three lattice volumes
of L = 2.8 fm, L = 3.7 fm, and L = 5.6 fm using the lattice spacing of b = 0.12 fm. In analogy to their previous
work, the scattering phase shifts for the 3

S1 and 1
S0 partial waves were extracted for several values of the cms NN

momenta using the extended Lüscher approach [39–41] as shown by the black filled regions in Fig. 3 for the case of the
3
S1 channel. In addition to the phase shifts, the binding energies of the deuteron and the dineutron were extracted.

Thus, it is interesting to test whether these results fulfill the LETs introduced above.

A. The 3S1 channel

The deuteron binding energy calculated in Ref. [9] at M⇡ ' 450 MeV at three lattice volumes and extrapolated to
the infinite volume is

Bd = 14.4
�
+3.2
�2.6

�
MeV, (3.15)

where the errors include statistical and systematic uncertainties as well as the extrapolation uncertainty combined in
quadrature. Further, the first two coe�cients in the ERE, namely the scattering length and the e↵ective range, were
determined in Ref. [9] by fitting the e↵ective range approximation of the e↵ective range function,

k cot(�3S1
) ' � 1

a

(3S1)
+

1

2
r

(3S1)
k

2
, (3.16)

to the two lowest-energy scattering data points and the deuteron binding energy, see the grey bands in the right panel
of Fig. 3. Notice that all three lattice data correspond to nucleon momenta below the branch point |k| = M⇡/2 of the
left-hand cut from the OPEP. The resulting values for the inverse scattering length and the e↵ective range in units
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Moreover, the second, deeper bound state is (normally) to be viewed as an artifact 
of the effective range approximation:
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— NPLQCD solution:
— physical pion mass:
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FIG. 6: (Color online) Two-nucleon phase shifts (left panel) and the e↵ective-range function (right panel) in the 1S0 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] in comparison with the predictions based on the LETs at LO and NLO using
the NPLQCD result for the dineutron binding energy Bnn as input. For notation see Fig. 3.

As shown in Fig. 6, we arrive at similar conclusions as in the case of the spin-triplet channel. While our NLO
LET predictions for k > 300 MeV are in a very good agreement with the phase shifts calculated by the NPLQCD
collaboration, there is a clear discrepancy for the two lowest values of the momentum k. In particular, for the lowest
momentum k ⇠ 100 MeV the phase shift from the NLO LETs is roughly a factor of two larger than that from the
lattice-QCD analysis. Similarly to the 3

S1 channel, the predictions of the LETs based on the dineutron binding energy
are only compatible with positive values of the scattering length, see the right panel of Fig. 6. Specifically, we obtain

�
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�
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which correspond to the following values in units of fm

a
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Here, the errors at LO and in the first brackets at NLO correspond to the uncertainty in the dineutron binding energy
while the ones in the second brackets at NLO reflect the unknown M⇡-dependence of � subject to the constraint
�� = 1. These results are in conflict with the NPLQCD determination based on the e↵ective range expansion, namely
[9]:

�
M⇡a
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��1

= 0.021
�
+0.028
�0.036
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�0.063

�
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�
. (3.28)

Again, we believe that the analysis performed by the NPLQCD collaboration and based on the e↵ective range
approximation is not self-consistent. All arguments given in the previous section apply to the 1

S0 channel too, even
though our conclusions in this case are somewhat less stringent due to the lower accuracy of the LETs. To further
elaborate on this point and to provide an assessment of the robustness of our conclusions, we have re-done the
calculations by using the lattice phase shifts instead of the dineutron binding energy as input. Specifically, we vary
the scattering length, which is now used as input for the LETs at NLO, in the range consistent with the lattice-QCD
phase shifts at the two lowest energies. The resulting phase shifts, corresponding to the the inverse scattering length
are in the range of

�
M⇡a

(1S0)
��1

= �0.01 ± 0.06 (3.29)

are shown in the left panel of Fig. 7. Here, we set �� = 0, and the width of the band reflects the uncertainty of
the lattice-QCD phase shifts used as input. Notice that while the NPLQCD value of the inverse scattering length
given in Eq. (3.28) is indeed consistent with the range of values in Eq. (3.29), the obtained solutions correspond
to the bound (virtual) state binding energy of Bnn < 0.5 MeV (Bvirtual

nn < 0.6 MeV) which is in conflict with the

NPLQCD meets LETs: The 1S0 channel

Similar (but somewhat less stringent) conclusions as in the 3S1 partial wave 
Again, the large effective range puts in question the applicability of the 
effective range approximation at energies of the lattice data

NPLQCD:

NLO LETs:

The NPLQCD „dineutron“ seems to be an artifact; shallow bound/virtual state…
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FIG. 7: (Color online) Two-nucleon phase shifts (left panel) and the e↵ective-range function (right panel) in the 1S0 channel
calculated on the lattice at M⇡ ⇠ 450 MeV [9] in comparison with the predictions based on the LETs at NLO (blue shaded
bands) using the scattering length in Eq. (3.29) as input. For remaining notation see Fig. 3.

lattice-QCD prediction. The apparent bound state corresponding to the leftmost intersection point of the gray bands
with �p�(k/M⇡)2 in the right panel of Fig. 6 is an artifact of the e↵ective range approximation.

Finally, it is interesting to compare our results for the scattering length and e↵ective range with the values obtained
in Ref. [9] within the KSW approach [43, 44] to chiral EFT, namely

a

(1S0)
KSW,NLO = 2.62(07)(16) fm, r

(1S0)
KSW,NLO = 1.320(18)(38) fm,

a

(1S0)
KSW,NNLO = 2.99(07)(15) fm, r

(1S0)
KSW,NNLO = 1.611(42)(83) fm. (3.30)

Notice that the e↵ective range vanishes at LO in the KSW approach, and the number of independent parameters fitted
to lattice data is equal to one, two and three at LO, NLO and next-to-next-to-leading order (NNLO), respectively.
Our NLO LET results are in excellent agreement with the NLO KSW values and also nearly consistent with the
NNLO KSW results.

IV. SUMMARY

In this paper, we have employed the low-energy theorems for NN scattering, which have been generalized in Ref. [23]
to the case of unphysical pion masses, to analyze the recent lattice-QCD results at M⇡ ' 450 MeV reported by the
NPLQCD collaboration [9]. The pertinent results of our work can be summarized as follows.

• We have used the LETs along with the lattice-QCD results for the deuteron and dineutron binding energies in
order to extract the energy behavior of the NN phase shifts in the 3

S1 and 1
S0 partial waves and the mixing

angle ✏1 at M⇡ ' 450 MeV. Our LO and NLO calculations suggest a good (fair) convergence of our theoretical
approach in the spin-triplet (spin-singlet) channel. In both channels, the resulting phase shifts are in a good
agreement with the lattice-QCD results of Ref. [9] for momenta of k > 300 MeV, but are inconsistent with the
lattice-QCD predictions at lower energies.

• We have used the LETs to extract the values of the scattering length and e↵ective range in the 3
S1 and 1

S0

partial waves from the bound state energies obtained on the lattice. The extracted value of M⇡r

3S1 is in
excellent agreement with the linear in M⇡ behavior of this quantity conjectured in Ref. [18]. On the other hand,
our results are in a strong disagreement with the values obtained by the NPLQCD collaboration from fits to
the lattice-QCD data based on the e↵ective range approximation. We have argued that the very large values
for the e↵ective range found in Ref. [9] make the e↵ective range approximation invalid in the energy region
corresponding to the lattice data.

NPLQCD meets LETs: The 1S0 channel

When using the lattice phase shifts at two lowest energies as input, we cannot 
accommodate for                              . We find:
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 Summary and conclusions

The newest NPLQCD results at Mπ ~ 450 MeV for the 1S0 / 3S1 phase shifts at the 
two lowest energies are incompatible with their Bnn / Bd energies (within errors). !
Underestimated systematics for the extraction of phase shifts?

LETs allow to reconstruct the NN scattering amplitude at fixed Mπ using a single 
observable (e.g. binding energy) as input 

The linear in Mπ dependence of Mπ r(3S1) conjectured by the NPLQCD collaboration 
based on their Mπ ~ 800 MeV results is consistent with the common trend for Bd

extrapolations of lattice-QCD results in energy, !
self-consistency checks

The NPLQCD determination of the scattering lengths and effective ranges based 
on the effective range approximation is not self-consistent…

LETs: a useful addition to the lattice QCD toolbox! 


