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Motivation

• Critical slowing down	


• poor sampling of topology when a < 0.05 fm 	


• physical pion masses are costly	


• Generation of large physical volume lattices
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo — evolution
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Markov Chain Monte Carlo — equilibration

8

SU(3) pure Yang-Mills/ HB with overrelaxation
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Markov Chain Monte Carlo — critical slowing down
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Investigating the critical slowing down of QCD simulations Stefan Schaefer
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Figure 1: Examples of the Monte Carlo time history of the topological charge. The data shown in the left
plot is from a run on a 64⇥323 lattice at b = 5.3, mp ⇡ 360MeV. The central plot shows a 64⇥323 lattice
at b = 5.5, mp ⇡ 460MeV run, the right plot a 128⇥643 lattice at b = 5.7, mp ⇡ 480MeV.

Examples of the Monte Carlo time history for the three values of the coupling constant are
given in Fig. 1. At the coarsest lattice spacing a ⇡ 0.08fm, the run with roughly 5000 trajecto-
ries shows quite long correlations, but a quite decent sampling of all topological sectors. At the
intermediate lattice spacing a ⇡ 0.06fm, the auto-correlations get worse and for the finest lattice
spacing, even 1000 trajectories of length 0.5 do not manage to move the charge considerably. The
qualitative picture does not depend on the value of the sea quark mass. What matters most is the
value of the gauge coupling constant. However, due to the high cost of the dynamical simulations
our time histories are too short to make a definitive statement about the auto-correlation time of the
topological charge.

3. Pure gauge study

Since the sea quark mass seems to have little effect, we now study the problem in pure gauge
theory. We measure the auto-correlations of the topological charge and of Wilson loops in simu-
lations with the same DD-HMC algorithm as in the dynamical runs. As a comparison serve some
runs with the standard HMC algorithm, to check for effects of the block-decomposition, and with
hybrid over-relaxation (HOR) in order to see whether this is a particular problem of the molecular
dynamics based algorithms.

We use Wilson gauge action and start on a 244 lattice at b = 6.0 and match lattices at constant
physical volume using r0 as a scale. With r0 = 0.49fm, the lattices of size L/a = 16, 24, 32 and 48
have therefore a lattice spacing of about 0.14fm, 0.09fm, 0.07fm and 0.046fm, respectively [10].

With the DD-HMC algorithm and a fixed trajectory length of t = 4, we measure the auto-
correlation time of Q2 as a function of the lattice spacing. In the next section we discuss the
method used to determine tint and why we use Q2 and not Q. Here, and in all other plots, we
multiply the auto-correlation times by the fraction of active links. In pure gauge theory, also the
cost of a trajectory scales with this ratio. The result is shown on the left of Fig. 2. We observe a
steep rise towards the continuum limit, which is roughly compatible with tint µ a�5, but also the
exponential hypothesis of Ref. [1] can describe the data. Our precision and our range in a are not
enough to distinguish between the two scenarios.

The problem is not limited to molecular dynamics based algorithms only. On the right of
Fig. 2 we show data by M. Lüscher and F. Palombi using sweeps combined of heatbath and over-
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Figure 1: Examples of the Monte Carlo time history of the topological charge. The data shown in the left
plot is from a run on a 64⇥323 lattice at b = 5.3, mp ⇡ 360MeV. The central plot shows a 64⇥323 lattice
at b = 5.5, mp ⇡ 460MeV run, the right plot a 128⇥643 lattice at b = 5.7, mp ⇡ 480MeV.
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given in Fig. 1. At the coarsest lattice spacing a ⇡ 0.08fm, the run with roughly 5000 trajecto-
ries shows quite long correlations, but a quite decent sampling of all topological sectors. At the
intermediate lattice spacing a ⇡ 0.06fm, the auto-correlations get worse and for the finest lattice
spacing, even 1000 trajectories of length 0.5 do not manage to move the charge considerably. The
qualitative picture does not depend on the value of the sea quark mass. What matters most is the
value of the gauge coupling constant. However, due to the high cost of the dynamical simulations
our time histories are too short to make a definitive statement about the auto-correlation time of the
topological charge.

3. Pure gauge study

Since the sea quark mass seems to have little effect, we now study the problem in pure gauge
theory. We measure the auto-correlations of the topological charge and of Wilson loops in simu-
lations with the same DD-HMC algorithm as in the dynamical runs. As a comparison serve some
runs with the standard HMC algorithm, to check for effects of the block-decomposition, and with
hybrid over-relaxation (HOR) in order to see whether this is a particular problem of the molecular
dynamics based algorithms.

We use Wilson gauge action and start on a 244 lattice at b = 6.0 and match lattices at constant
physical volume using r0 as a scale. With r0 = 0.49fm, the lattices of size L/a = 16, 24, 32 and 48
have therefore a lattice spacing of about 0.14fm, 0.09fm, 0.07fm and 0.046fm, respectively [10].

With the DD-HMC algorithm and a fixed trajectory length of t = 4, we measure the auto-
correlation time of Q2 as a function of the lattice spacing. In the next section we discuss the
method used to determine tint and why we use Q2 and not Q. Here, and in all other plots, we
multiply the auto-correlation times by the fraction of active links. In pure gauge theory, also the
cost of a trajectory scales with this ratio. The result is shown on the left of Fig. 2. We observe a
steep rise towards the continuum limit, which is roughly compatible with tint µ a�5, but also the
exponential hypothesis of Ref. [1] can describe the data. Our precision and our range in a are not
enough to distinguish between the two scenarios.

The problem is not limited to molecular dynamics based algorithms only. On the right of
Fig. 2 we show data by M. Lüscher and F. Palombi using sweeps combined of heatbath and over-
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Markov Chain Monte Carlo — topological freezing

10

On a periodic lattice, topological charge fluctuations become 
exponentially suppressed in 1/a → Incorrect sampling

mπ ~ 360 - 480 MeV

S. Schaefer et al., PoS LAT2009 (2009) 032

⌧ ⌧
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Multiscale Monte Carlo methods

• Ultimate goal: an algorithm which allows for efficient updating of 
modes on multiple scales while retaining detailed balance	


• some progress for simple systems, but remains challenging for gauge 
theories (QCD in particular)	


• More modest goal of this work: realization of a multiscale 
thermalization algorithm; the strategy draws upon many ideas:	


• standard Monte Carlo techniques	


• multigrid concepts of restriction (coarse-graining) and prolongation 
(refinement)	


• real space renormalization

11
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A multiscale updating algorithm: Ising spin chain
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A multiscale updating algorithm: Ising spin chain
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A multiscale updating algorithm: Ising spin chain
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A multiscale updating algorithm: Ising spin chain

• Higher dimensions:	


• coarse graining induces increasingly complicated interactions	


• “integrating in” at coarse levels cannot be achieved with a single 
heat bath update	


• Gauge theories:	


• continuous variables associated with links	


• nonlocal actions due to fermion determinants

15

Generalization is nontrivial:
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Generalization to more complicated systems

• Generalization is achieved with approximations:	


• truncation of the coarse action; implies inexact RG matching	


• one-to-one refinement prescription based on interpolation, rather 
than exact prescription	


• Rethermalization is crucial in order to correct for the errors induced by 
such approximations	


• Effectiveness/use of approach depends on several factors	


• time scales associated with the conventional algorithm	


• refinement prescription	


• RG matching

16
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Time scales
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Time scales
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Time scales

19
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Time scales

20

	
 — more efficient use of computational resources	

	
 — greater statistical power due to fully decorrelated streams	

	
 — reduced critical slowing down; e.g., well sampled topology
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Interpolation of gauge fields (à la ’t Hooft)

21

set to unity by a gauge choice

undefined bond variables	

(set to unity)

[1] Coarse lattice variables are 
transferred to the fine latticeU
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Interpolation of gauge fields (à la ’t Hooft)
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set to unity by a gauge choice

undefined bond variables	

(set to unity)

[2] Interior links are obtained	

by first minimization of action	

defined on 2x2 plaquettes
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Interpolation of gauge fields (à la ’t Hooft)

23

[3] Minimization is repeated 
sequentially for interior cells
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Properties of the interpolation

24

	
 — Implementation is simple and efficient	

	
 — Can be performed locally	

	
 — Preserves long distance properties of coarse configuration	

	
 	
 — subset of even dimensional Wilson loops exactly	

	
 	
 — topological charge at sufficiently fine lattice spacing	

	
 	
 — discrete rotational invariance	

	
 — Breaks a subset of discrete translational symmetry	

	
 	
 — rapidly restored upon rethermalization
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Numerical studies (three color Yang-Mills theory)

• Two pairs of RG matched ensembles (plaquette action)	


• All ensembles correspond to a fixed physical volumes ~ 2.3 fm	


• Studied long-distance observables such as large Wilson loops and 
various quantities under “Wilson flow” (diffusion)	


• e.g., powers of the topological charge (Q, χ=Q2),  action density (E)

25

10

FIG. 4. Schematic description of prolongation: (a) coarse bond variables; (b) transfer of coarse bond variables to a fine lattice;
(c) interpolation performed on 2 ⇥ 2 plaquettes; (d) interpolation performed on 2 ⇥ 2 ⇥ 2 cubes; the procedure is continued
for the remaining stages (not shown). Black bond variables are set to unity, as allowed by gauge freedom, and dashed bond
variables are undefined at intermediate stages of the refinement; dark blue bond variables are transferred from the coarse lattice,
whereas the lighter blue bond variables are determined via the interpolation.

TABLE I. Decorrelated target ensembles of size N , generated using HB with 10 over-relaxation sweeps. Lattice spacing is set
set via the Sommer scale r0 = 0.5 fm, based on the works [21] (coarsest) and [22] (finer).

Lattice � a [fm] N t0/a
2

123 ⇥ 24 5.626 0.1995(20) fm 385 0.72966(69)
163 ⇥ 36 5.78 0.1423(5) fm 385 1.3858(15)
243 ⇥ 48 5.96 0.0999(4) fm 185 2.7891(45)
323 ⇥ 72 6.17 0.0710(3) fm 185 5.5007(83)

IV. SIMULATIONS

A. Target ensembles

In the remainder of this work we consider pure SU(3) gauge theory in D = 4 dimensions, and make use of four
decorrelated target ensembles of size N , generated in a standard way. Physical observables on these ensembles will
serve as benchmarks that the multiscale thermalization algorithm should reproduce. The ensembles are described
in Table I, and have lattice spacings ranging from approximately 0.07 - 0.2 fm, separated by multiples of

p
2. The

lattice spacings were determined from empirical formulas relating the Sommer scale in lattice units (r
0

/a) to the
coupling [21, 22], taking r

0

= 0.5 fm. The spatial extents of the lattices where chosen to be approximately 2.25� 2.40
fm; the temporal extents where chosen to be twice the spatial extents in order to minimize thermal e↵ects. Standard
boundary conditions, periodic in all directions, were used throughout. Ensembles were generated with the Cabibbo-
Marinari HB algorithm [23] combined with over-relaxation [24]. Each HB sweep was performed on a checkerboard
sweep schedule with N

hb

= 1 attempted updates to each SU(2) subgroup per bond variable via the method of
Creutz [25]. Each HB sweep was followed by N

ov

= 10 over-relaxation sweeps following the same checkerboard sweep
schedule. For all ensembles, 1500 HB sweeps were initially performed for thermalization starting from a weak field
configuration; subsequent configurations were saved after every 100 sweeps for future use.

B. Wilson flow

Wilson flow [26–28] was used to define a number of the observables studied in this work. The di↵usive nature of
the flow allows us to consider a series of observables, which probe di↵erent length scales at di↵erent flow times, t.
Wilson flow was applied to the target ensembles described in Table I using both a fixed step size algorithm [27], and
an adaptive step size algorithm [29]. The accuracy of the integration along the flow is controlled by the size of the
step in the former case and a tolerance level in the latter case (see [29] for an explicit definition of this tolerance).
The adaptive approach is more e�cient because the flow has a smoothing e↵ect on the fields. Consequently, the
forces that drive the flow become smaller with flow time, thus enabling the use of larger step sizes at later times. We
have established the validity of our implementation of the adaptive step Wilson flow by direct comparison with fixed
step size Wilson flow for the target ensembles in Table I. For the autocorrelation time and (re)thermalization studies
performed later in this work, the adaptive step size algorithm was used, due to its higher e�ciency.

For the target ensembles, Wilson flow measurements were performed using a fixed step size of 0.01; results for the
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Wilson flow

• Diffusion as a function of a fictitious fifth dimensional “flow time” t	


• Local observables measures on flowed configurations probe distance 
scales √8t	


• Can define a reference scale t0 via	


• t02 E(t0) = 0.3 corresponding to √8t0 ~ r0 ~ 0.5 fm	


• Smoothing properties of Wilson flow are useful for measuring 
topological charge (e.g., via gluonic definition)	


• short distance fluctuations removed	


• charge approaches near-integer values

26
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IMPORTANT NOTE!

28

t  :   “flow time” — smoothing of fields	

τ :   “Monte Carlo” — evolution

Neither of these correspond to physical time!
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Interpolation — topological charge density

29
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Interpolation — topological charge
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Thermalization and rethermalization — HMC

• Ensembles of size Ns=24	


• Thermalization times probed by long distance observables measured at 
various Wilson flow times: χ(t), E(t)	


• Thermalization considered for four ensembles:	


• disordered (hot)	


• ordered (cold)	


• restriction followed by prolongation of fine lattices (r-I)	


• prolongation of an RG  matched coarse ensemble, generated using a 
Wilson action (r-II)

31
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(Re)thermalization —  Wilson loops

• Long-distance observables rethermalize on time scales shorter than	


• thermalization time for hot/cold starts (standard approach)	


• decorrelation time for fine evolution

32
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(Re)thermalization — E(t0)
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E(t) fit results as a function of flow time t/t0
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Inclusion of fermions

• Multiple scales (e.g., t0, mp, mπ, …)	


• RG matching requires tuning of multiple coarse couplings (β, mf, …)	


• New challenges with interpolated configurations: spurious zero modes 
associated with the Dirac operator	


• initial HMC gauge evolution involves large fermion forces	


• numerical instabilities due to finite step size in evolution

35

Z =

Z
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Inclusion of fermions — Dirac spectrum

• Coarse (123x36) and fine (243x72) lattices	


• nonperturbatively matched actions using t0 and mπ	


• Heavy fermions, corresponding to mπ/mp ~ 0.85	


• Differences in Dirac spectrum presumably due to lattice artifacts
36
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Inclusion of fermions — Dirac spectrum

• Refinement via interpolation: C → R(0)	


• Quenched evolution of interpolated fields: R(0)→ R(1)→ R(2)→…	


• produces a gap in the Dirac spectrum, eliminates large initial forces	


• only impacts short distance features of ensemble if evolution is 
short
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(Re)thermalization — various observables
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Conclusion & Outlook

• Efficient multi-stream generation of uncorrelated gauge configurations	


• Significantly reduces the problem of critical slowing down	


• enables numerical simulations at ultra-fine lattice spacings 
(a<0.05fm) with well-sampled topological charge	


• more efficient simulations expected at physical pion masses	


• Alternatively, enables efficient numerical simulations at large volumes	


• Method is general:	


• successfully applied to Hybrid Monte Carlo simulations of pure Yang-
Mills theory and QCD2 with dynamical fermions	


• systems beyond QCD (e.g., quantum Monte Carlo?)
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Conclusion & Outlook

• Some remaining open issues:	


• efficient tuning methods for matching coarse and fine action	


• reliable methods for determining if ensemble is thermalized	


• removing inherited lattice artifacts in fine topological charge 
distribution	


• better understanding of spurious zero-modes	


• better methods for handling large initial fermion forces (e.g., 
evolution on multiple time scales)
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