Baryon Interactions from Lattice QCD with physical masses

Takumi Doi (Nishina Center, RIKEN)

for HAL QCD Collaboration

2016/04/25

INT Workshop "Nuclear Physics from Lattice QCD"

Hadrons to Atomic nuclei from Lattice QCD (HAL QCD Collaboration)

- S. Aoki, D. Kawai, T. Miyamato (YITP)
- T. Doi, T.Hatsuda, (RIKEN)
- F. Etminan (Univ. of Birjand)
- S. Gongyo (Univ. of Tours)
- Y. Ikeda, N. Ishii, K. Murano (RCNP)
- T. Inoue (Nihon Univ.)
- T. Iritani (Stony Brook Univ.)
- H. Nemura, K. Sasaki (Univ. of Tsukuba)

The journey from Quarks to Universe

<u>The journey from unphysical</u> <u>to physical quark masses</u>

Outline

- Introduction
- (Theoretical framework)
- Challenges at physical quark masses
- Results at physical quark masses
- Summary / Prospects

[HAL QCD method]

• Nambu-Bethe-Salpeter (NBS) wave function

 $\psi(\vec{r}) = \langle 0 | N(\vec{r})N(\vec{0}) | N(\vec{k})N(-\vec{k}); in \rangle$

 $(\nabla^2 + k^2)\psi(\vec{r}) = 0, \quad r > R$

- phase shift at asymptotic region

$$\psi(r) \simeq A \frac{\sin(kr - l\pi/2 + \delta(k))}{kr}$$

Extended to multi-particle systems

M.Luscher, NPB354(1991)531 C.-J.Lin et al., NPB619(2001)467 N.Ishizuka, PoS LAT2009 (2009) 119 CP-PACS Coll., PRD71(2005)094504

S. Aoki et al., PRD88(2013)014036

Consider the wave function at "interacting region"

$$(\nabla^2 + k^2)\psi(\mathbf{r}) = m \int d\mathbf{r'} U(\mathbf{r}, \mathbf{r'})\psi(\mathbf{r'}), \quad \mathbf{r} < R$$

- U(r,r'): faithful to the phase shift by construction
 - U(r,r'): E-independent, while non-local in general
 - Non-locality \rightarrow derivative expansion

HAL QCD method

Lat Nuclear Force **NBS** wave func. Lattice QCD 100 600 1.2 500 NN wave function $\phi(r)$ 1.0 50 V_C(r) [MeV] 400 0.8 φ(x,y,z=0;¹S_c) 300 1.5 c 0.6 200 1.0 0.4 0.5 -50 100 0.0 0.5 1.0 1.5 2.0 0.2 v[fm] 0 0.0 1.0 1.5 0.0 0.5 2.0 0.5 1.0 1.5 2.0 0.0 r [fm] r [fm] $\left(k^2/m_N - H_0\right)\psi(\vec{r}) = \int d\vec{r}' U(\vec{r},\vec{r}')\psi(\vec{r}')$ $\langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in\rangle$ $\psi_{NBS}(\vec{r})$ = $e^{i\delta_l(k)}\sin(kr-l\pi/2+\delta_l(k))/(kr)$ \simeq *E-indep* (& non-local) Potential: (at asymptotic region) Faithful to phase shifts Analog to ... **Phase shifts Phen.** Potential Scattering Exp. 300 ${}^{1}S_{0}$ ¹S₀ channel virtual state 60 200 mid-range attraction V_c (r) [MeV] 0 40 short-range repulsive 2π, 3π, ... π 20 core repulsion (σ, ρ, ω, ...) 0 Bonn Reid93 -100 **AV18**

-20 0

100

200

 T_{lab} [MeV]

300

400

r [fm]

2

0

0.5

1

1.5

2.5

Various Theoretical methods

(Comparison between 2 LQCD methods → T. Iritani's talk)

8

Outline

- Introduction
- (Theoretical framework)
- Challenges at physical quark masses
 - Signal/Noise Issue
 - Coupled Channel Systems
 - Computational Challenge
- Results at physical quark masses
- Summary / Prospects

[← T. Iritani's talk]

Signal/Noise issue w/ ~continuum on Lat

Challenge in Luscher's method : ground state saturation

- \rightarrow "Signal" from (elastic) excited states
- G.S. saturation
 → Elastic states saturation [Exponential Improvement]

N.Ishii et al. PLB712(2012)437

Coupled Channel systems

(beyond inelastic threshold)

- Essential in many interesting physics
 - Hyperon Forces (e.g., H-dibaryon ($\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$))
 - Exotic mesons, Resonances, etc. (e.g., Zc(3900))

Computational Challenge

Enormous comput. cost for multi-baryon correlators

- Wick contraction (permutations)
 - $\sim [(\frac{3}{2}A)!]^2$ (A: mass number)
- color/spinor contractions

 $\sim 6^A \cdot 4^A ~~{\rm or}~~ 6^A \cdot 2^A$

- Unified Contraction Algorithm (UCA) TD, M.Endres, CPC184(2013)117

- A novel method which unifies two contractions

 $\Pi^{2N} \simeq \langle qqqqqq(t)\bar{q}(\xi_1')\bar{q}(\xi_2')\bar{q}(\xi_3')\bar{q}(\xi_3')\bar{q}(\xi_5')\bar{q}(\xi_6')(t_0)\rangle \times \operatorname{Coeff}^{2N}(\xi_1',\cdots,\xi_6')$

12

Permuted Sum

Drastic Speedup

 $\times 192$ for ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}$, $\times 20736$ for ${}^{4}\mathrm{He}$, $\times 10^{11}$ for ${}^{8}\mathrm{Be}$ (x add'l. speedup)

See also subsequent works: Detmold et al., PRD87(2013)114512 Gunther et al., PRD87(2013)094513

Sum over color/spinor unified list

Outline

Introduction

- (Theoretical framework)
- Challenges at physical quark masses
 - Signal/Noise Issue → Time-dependent HAL method
 - Coupled Channel Systems → Coupled channel HAL potential
- Results at physical quark masses
- Summary / Prospects

Simulations w/ ~ physical masses

Simulation Setup

• Nf = 2+1 clover fermion + Iwasaki gauge action

- APE-Stout smearing (α =0.1, n_{stout}=6)
- Non-perturbatively O(a)-improved
- 1/a ~= 2.3 GeV (a ~= 0.085 fm)
- Volume: 96⁴ ~= (8 fm)⁴
- m(pi) ~= 145 MeV, m(K) ~= 525 MeV
- #traj ~= 2000 generated
 - DDHMC (ud) + UVPHMC (s) w/ preconditioning

deviation from the Exp.: $\delta m_{\pi} \sim +5\%$, $\delta m_{K} \sim +2\%$.

Simulation Setup

Measurements

- ud, s mass = sea mass (unitary point)
- Wall source
 - Coulomb gauge fixing after smearing
 - Spacial PBC & Temporal DBC w/ forward/backward average
- #stat = 200 configs x 4 rotation x 20-72 src in this talk
 - #stat → x1.3-4 in FY2015 (& add'l x2 in FY2016)
 - (Relativistic term omitted in this preliminary analyses)

Code development

- Efficient implementation of UCA
- Many channels w/ L³ dof in NBS
- Block solver for multiple RHS
- K-computer @ 2048 node (x 8core/node)
 - ~25% efficiency (~65 TFlops sustained)

Strategy for phys point BB-forces calc

- Focus on the most important forces:
 - Central/tensor forces for all NN/YN/YY in P=(+) (S, D-waves)

• Hyperon forces provide precious "predictions"

$\Omega\Omega$ system (S= -6)

¹S₀ : Pauli allowed channel, candidate for exotic bound state

Model varies from bound state to repulsive interactions

HAL study @ m(pi)=0.7GeV: nearly bound (Unitary Region)

M. Yamada et al., PTEP2015, 071B01

See also S. Aoki's talk

c.f. Luscher's method @ m(pi)=0.39GeV: weak repulsion a = -0.16(22)fm M. Buchoff et al, PRD85(2012)094511

$\Omega\Omega$ system in ¹S₀

Potential

[S. Gongyo / K. Sasaki]

[S. Gongyo / K. Sasaki]

 $\Xi\Xi$ system (S=-4)

• ${}^{1}S_{0} \sim 27$ -plet $\Leftrightarrow NN({}^{1}S_{0}) + SU(3)$ breaking

Phen. model (Nijmegen) : possibly bound EFT (Haidenbauer et al. '14) : unbound favored

³S₁-³D₁ ~ 10-plet
 ⇔ unique w/ hyperon DoF
 ⇔ Σ⁻ in neutron star

(t-dependence will be checked again w/ larger #stat)

(2-gauss + 2-OBEP fit) (200conf x 4rot x 44src)

→ <u>HIC experiments ?</u>

<u>S= -3 systems</u>

- <u>ΞΣ (I=3/2)</u>
 - ${}^{1}S_{0} \sim 27$ -plet $\Leftrightarrow NN({}^{1}S_{0}) + SU(3)$ breaking

•
$${}^{3}S_{1} - {}^{3}D_{1} \sim 10^{*}$$
-plet
 $\Leftrightarrow NN({}^{3}S_{1} - {}^{3}D_{1}) + SU(3)$ breaking

- $\Xi \Lambda \Xi \Sigma$ (I=1/2) : coupled channel
 - ¹S₀ ~ 27-plet & 8s-plet
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10$ -plet & 8a-plet

<u>ΞΣ(I=3/2, spin triplet)</u>

<u>H-dibaryon channel (S= -2)</u> (${}^{1}S_{0}$, $\Lambda\Lambda$ -N Ξ - $\Sigma\Sigma$, Coupled Channel)

R. Jaffe (1977), "Perhaps a Stable Dihyperon"

NAGARA-event (2001) $\Xi^{-} + {}^{12}C \rightarrow {}_{\Lambda\Lambda}{}^{6}He + {}^{4}He + t$

- AA weak attraction
- No deeply bound H-dibaryon

H-dibaryon @ Nf=3, heavy masses [T. Inoue]

c.f. B.E. = 74.6(3.3)(3.4) MeV @ m_{π} =0.8GeV by NPL ('12)

H-dibaryon @ Nf=2+1, heavy masses [к. Sasaki]

$\Lambda\Lambda$ and $N\Xi$ phase shifts

Argand diagram for Strangeness S=-2 1Sn(I=0) channel

• $m\pi = 700 \text{ MeV}$: bound state • $m\pi = 570 \text{ MeV}$: resonance near $\Lambda\Lambda$ threshold • $m\pi = 410 \text{ MeV}$: resonance near NE threshold.

H-dibaryon is unlikely bound state

<u>H-dibaryon @ Nf=2+1, m_π=145 MeV</u>

[K. Sasaki]

$\Lambda\Lambda$, NE (effective) 2x2 coupled channel analysis

ΣΣ channel ←→ couples strongly to flavor octet channel
 ←→ noisy because they are quark-Pauli forbidden

→ Improve the S/N by considering only $\Lambda\Lambda$, NE dof at low energies

$\Lambda\Lambda$, NE (effective) 2x2 coupled channel analysis

<u>NE-interactions (S= -2)</u>

 Ξ^- could appear in the core of Neutron Star e.g., J. Schaffner-Bielich, NPA804(2008)309

KISO-event (2014)

- $\Xi^- + {}^{14}\mathrm{N} \rightarrow {}_{\Lambda}{}^{10}\mathrm{Be} + {}_{\Lambda}{}^{5}\mathrm{He}$
- First observation of Ξ-nuclei
- B.E. = 4.38(25) MeV (or 1.11(25) MeV)

<u>NΞ-Potentials</u>

[K. Sasaki]

<u>S= -1 systems</u>

 \leftarrow strangeness nuclear physics (Λ -hypernuclei @ J-PARC)

 Λ should (?) appear in the core of Neutron Star

 \leftarrow Huge impact on EoS of high dense matter

- $\Lambda N \Sigma N$ (I=1/2) : coupled channel
 - ¹S₀ ~ 27-plet & 8s-plet
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10^{*}$ -plet & 8a-plet
- <u>ΣN (I=3/2)</u>
 - ${}^{1}S_{0} \sim 27$ -plet $\Leftrightarrow NN({}^{1}S_{0}) + SU(3)$ breaking
 - ${}^{3}S_{1} {}^{3}D_{1} \sim 10$ -plet

<u>NN system (S = 0)</u>

NN-Potentials (tensor)

t = 8-10 : -2-4% sys error

15

t-t0

10

20

900

<u>Summary</u>

- The 1st LQCD for Baryon Interactions at ~ phys. point
 - m(pi) ~= 145 MeV, L ~= 8fm, 1/a ~= 2.3GeV
 - Central & Tensor forces calculated for all NN/YN/YY in P=(+) channel
 - Key formula / algorithm
 - t-dep HAL QCD method
 - Coupled channel formalism
 - Unified contraction algorithm (UCA)
 - Various exciting results
 - $\Omega\Omega({}^{1}S_{0})$: a new exotic dibaryon state
 - $\Xi\Xi$ (¹S₀) : most likely an unbound state
 - H-dibaryon : indication of a resonance
 - NN : tensor force is clearly visible
- Prospects
 - #stat will be ~ x3 x8 from today's figs
 - New techniques to improve S/N are under R&D
 - [Exascale-Era] LS-forces, P=(-) channel, 3-baryon forces, etc., & EoS

<u>Nf=2+1, m π =0.51 GeV</u>

<u>Nf=2, mπ=0.76-1.1 GeV</u>

Short-range repulsive 3NF

T.D. et al. (HAL Coll.) PTP127(2012)723 + t-dep method updates etc.

Kernel: ~50% efficiency achieved !

©RIKEN

Backup Slides

Reliability Test of LQCD methods

High-stat study for BB-system (@m(pi)=0.5GeV)

T. Iritani et al. (HAL Coll.)

Benchmark w/ two LQCD setup (wall & smeared src)

Physical outputs should NOT depend on these setup

Understand the origin of "fake plateaux"

Decompose NBS correlator to each eigenstates

<u>Understand the origin of "fake plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

<u>Understand the origin of "fake plateaux"</u>

We are now ready to "predict" the behavior of m(eff) of ΔE at any "t"

Extreme care is necessary for the results from the Luscher's method To obtain a "real plateau", t/a >100 (t>10fm) is necessary