Effective theory for lattice nuclei

(using Monte Carlo methods)

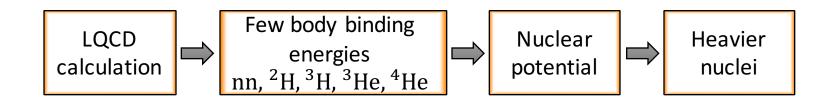
Lorenzo Contessi

(TIFPA, Università degli studi di Trento)

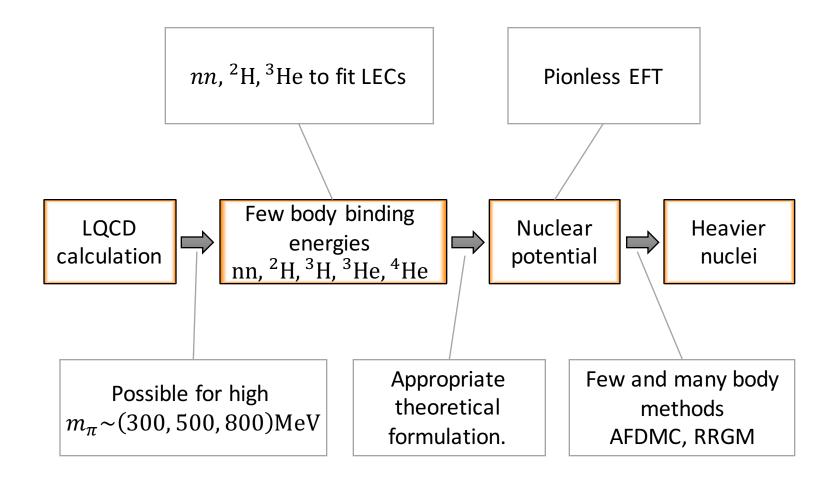
Overview:

- Motivations for pionless EFT and procedure
- Monte Carlo Method
- More about Effective Theories
- Some results
- Conclusions

Connect nuclear physics with QCD

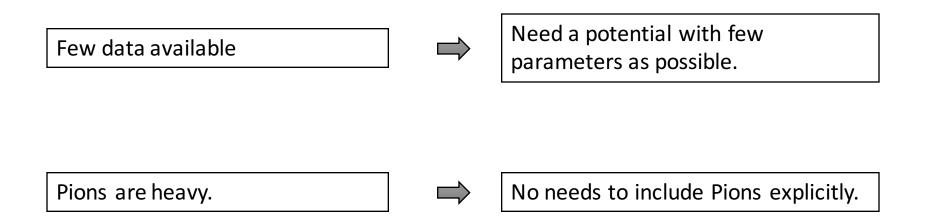


Connect nuclear physics with QCD



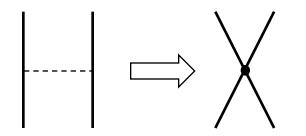
- We have a good phenomenological understanding of nuclear interaction for physical m_{π} .
- It is difficult to have a phenomenological description changing m_{π} .

- We have a good phenomenological understanding of nuclear interaction for physical m_{π} .
- It is difficult to have a phenomenological description changing m_{π} .



Pionless EFT:

- Controlled potential through power counting.
- Pionless EFT preserves relevant QCD symmetries.
- LO is simple and contains only 3 parameters.

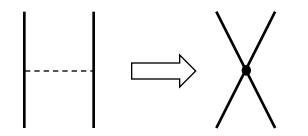


Plus:

- Pionless theory contains only contact interactions.
- Relatively well understand power counting.

Pionless EFT:

- Controlled potential through power counting.
- Pionless EFT preserves relevant QCD symmetries.
- LO is simple and contains only 3 parameters.



Plus:

- Pionless theory contains only contact interactions.
- Relatively well understand power counting.

Within Monte Carlo methods, integrals are computed using the central limit theorem:

$$S_N := \int f(\vec{r}) P(\vec{r}) d\vec{r} = \frac{1}{N} \sum_i^N f(\vec{r}_i)$$
$$S_{N \to \infty} = \frac{1}{\sqrt{2\pi\sigma_N^2}} e^{\frac{\left[S_N - \left(\int f(\vec{r}) P(\vec{r}) d\vec{r}\right)\right]^2}{2\sigma_N}} \qquad \sigma_N^2 \propto \frac{1}{N-1}$$

Within Monte Carlo methods, integrals are computed using the central limit theorem:

$$S_N := \int f(\vec{r}) P(\vec{r}) d\vec{r} = \frac{1}{N} \sum_{i}^{N} f(\vec{r}_i)$$
$$S_{N \to \infty} = \frac{1}{\sqrt{2\pi\sigma_N^2}} e^{\frac{\left[S_N - \left(\int f(\vec{r}) P(\vec{r}) d\vec{r}\right)\right]^2}{2\sigma_N}} \qquad \sigma_N^2 \propto \frac{1}{N-1}$$

Variational Monte Carlo:

$$E_{\psi} = \langle \psi | H | \psi \rangle = \int \psi^* H \psi = \int |\psi|^2 \frac{H \psi}{\psi}$$

Within Monte Carlo methods, integrals are computed using the central limit theorem:

λŢ

$$S_N := \int f(\vec{r}) P(\vec{r}) d\vec{r} = \frac{1}{N} \sum_{i}^{N} f(\vec{r}_i)$$
$$S_{N \to \infty} = \frac{1}{\sqrt{2\pi\sigma_N^2}} e^{\frac{\left[S_N - \left(\int f(\vec{r}) P(\vec{r}) d\vec{r}\right)\right]^2}{2\sigma_N}} \qquad \sigma_N^2 \propto \frac{1}{N-1}$$

Variational Monte Carlo:

$$E_{\psi} = \langle \psi | H | \psi \rangle = \int \psi^* H \psi = \int |\psi|^2 \frac{H \psi}{\psi}$$

Function to be computed
Probability distribution to sample.

Diffusion Monte Carlo:

$$E_{\phi_{gs}} = \frac{\langle \phi_{gs} | H | \psi_T \rangle}{\langle \phi_{gs} | \psi_T \rangle} = \frac{\int \phi_{gs}^* H \psi_T}{\int \phi_{gs}^* \psi_T} = \frac{\int (\phi_{gs}^* \psi_I) \frac{H \psi_T}{\psi_I}}{\int \phi_{gs}^* \psi_T}$$

Ground state is calculated evolving in the imaginary time:

$$|\phi_{gs}\rangle = e^{-(H - E_0)\tau} |\psi\rangle = \sum_{n=0}^{\infty} c_n \ e^{-(H - E_0)\tau} |\psi_n\rangle = c_0 |\phi_{gs}\rangle + \sum_{n=1}^{\infty} c_n \ e^{-(En - E_0)\tau} |\psi_n\rangle$$

$$e^{-(H-E_0)\tau}|\psi\rangle \cong \left(e^{-(H-E_0)\Delta\tau}\right)^N |\psi\rangle \cong \left(e^{\frac{\hbar}{2m}\Delta\tau\,\nabla^2} \; e^{-(V-E_0)\Delta\tau}\right)^N |\psi\rangle$$

INT: Nuclear Physics from Lattice QCD -Effective theory for lattice nuclei

13

Diffusion Monte Carlo:

Guide Wave function

$$E_{\phi_{gs}} = \frac{\langle \phi_{gs} | H | \psi_T \rangle}{\langle \phi_{gs} | \psi_T \rangle} = \frac{\int \phi_{gs}^* H \psi_T}{\int \phi_{gs}^* \psi_T} = \frac{\int (\phi_{gs}^* \psi_I) \frac{H \psi_T}{\psi_I}}{\int \phi_{gs}^* \psi_T}$$

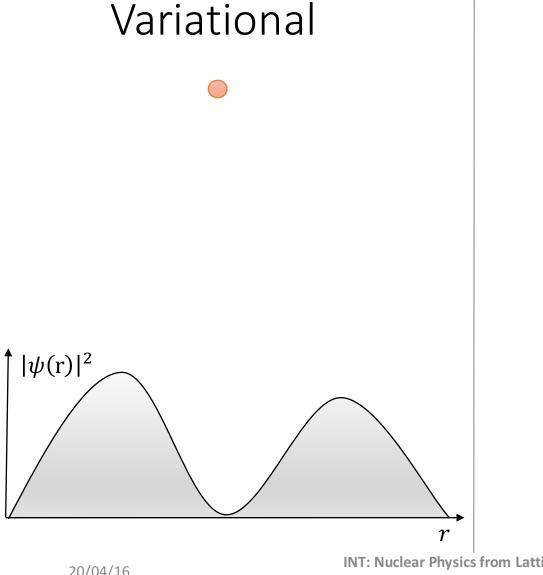
Ground state is calculated evolving in the imaginary time:

$$|\phi_{gs}\rangle = e^{-(H - E_0)\tau} |\psi\rangle = \sum_{n=0}^{\infty} c_n \ e^{-(H - E_0)\tau} |\psi_n\rangle = c_0 |\phi_{gs}\rangle + \sum_{n=1}^{\infty} c_n \ e^{-(En - E_0)\tau} |\psi_n\rangle$$

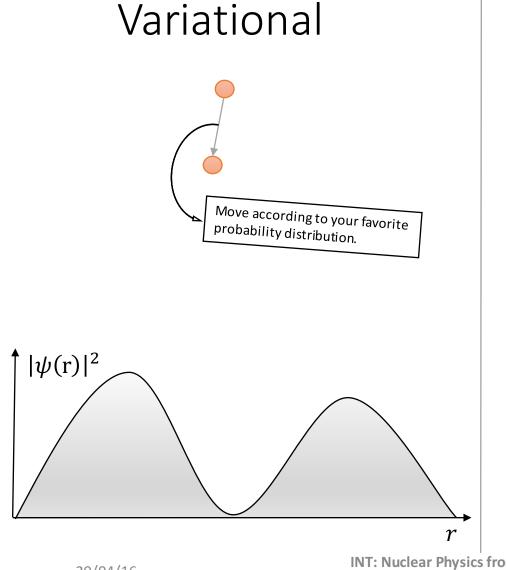
$$e^{-(H-E_0)\tau}|\psi\rangle \cong \left(e^{-(H-E_0)\Delta\tau}\right)^N |\psi\rangle \cong \left(e^{\frac{\hbar}{2m}\Delta\tau\,\nabla^2} e^{-(V-E_0)\Delta\tau}\right)^N |\psi\rangle$$

INT: Nuclear Physics from Lattice QCD -Effective theory for lattice nuclei

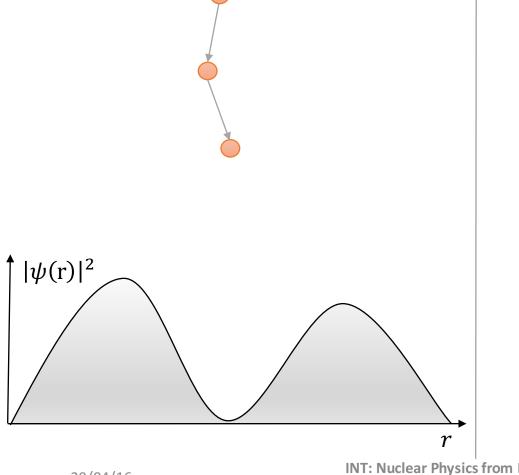
14



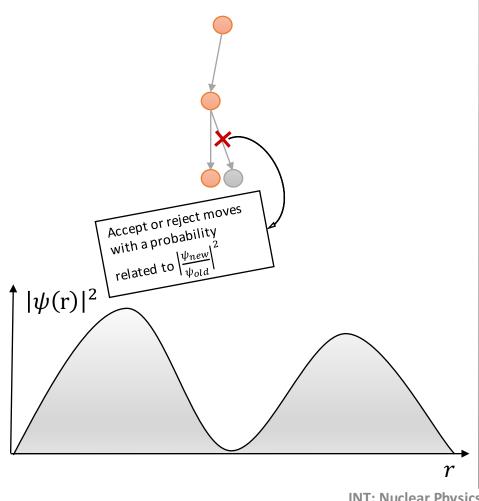
4



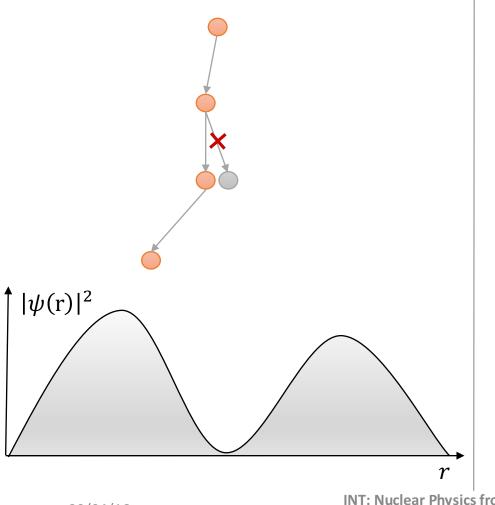
Variational



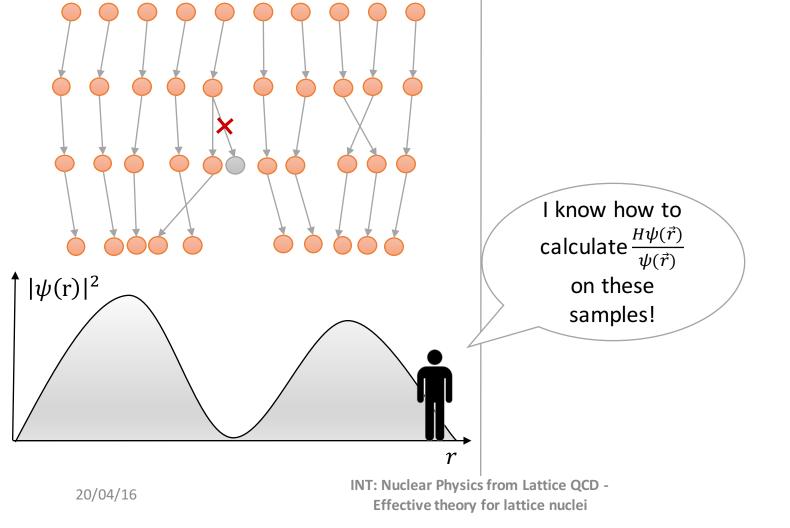
Variational

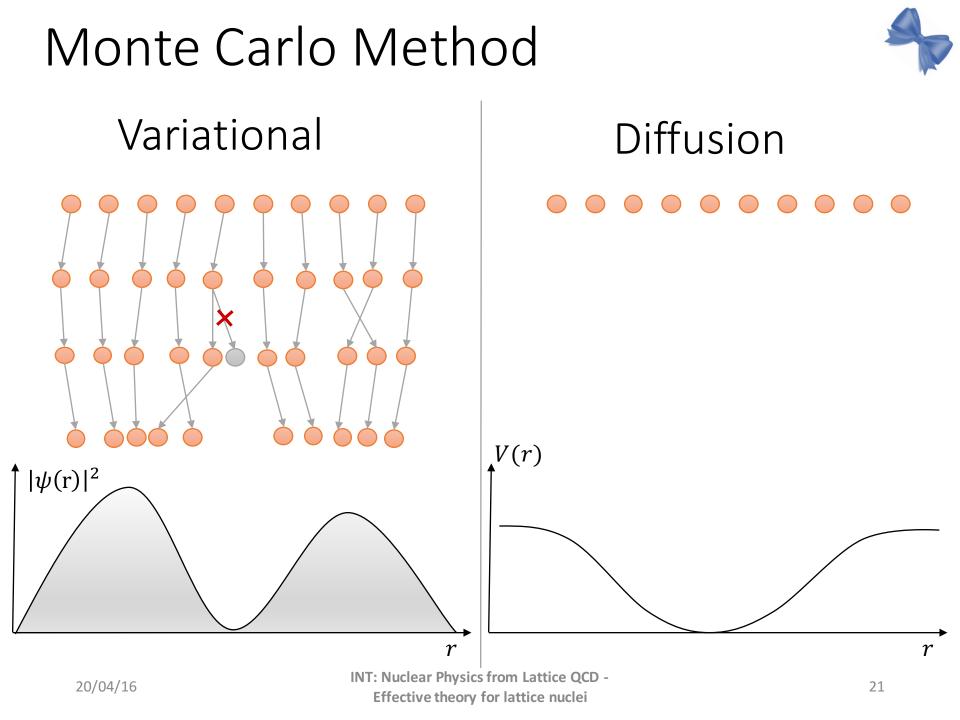


Variational

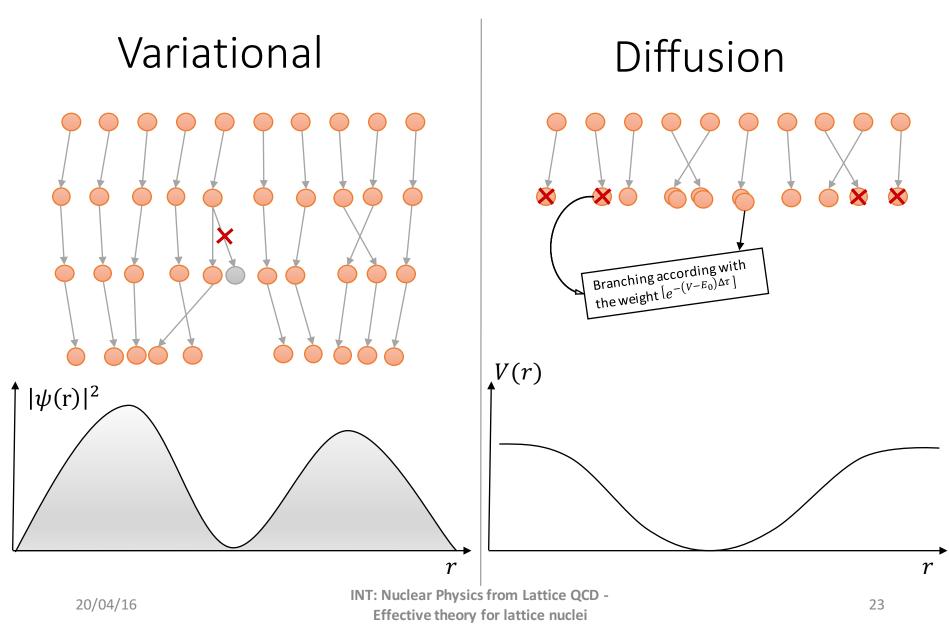


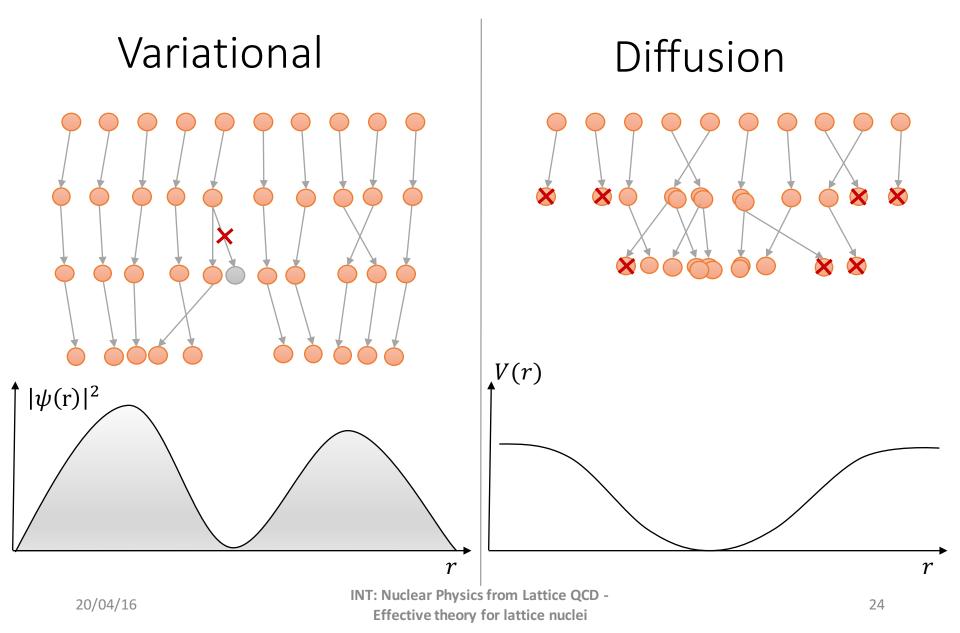
Variational

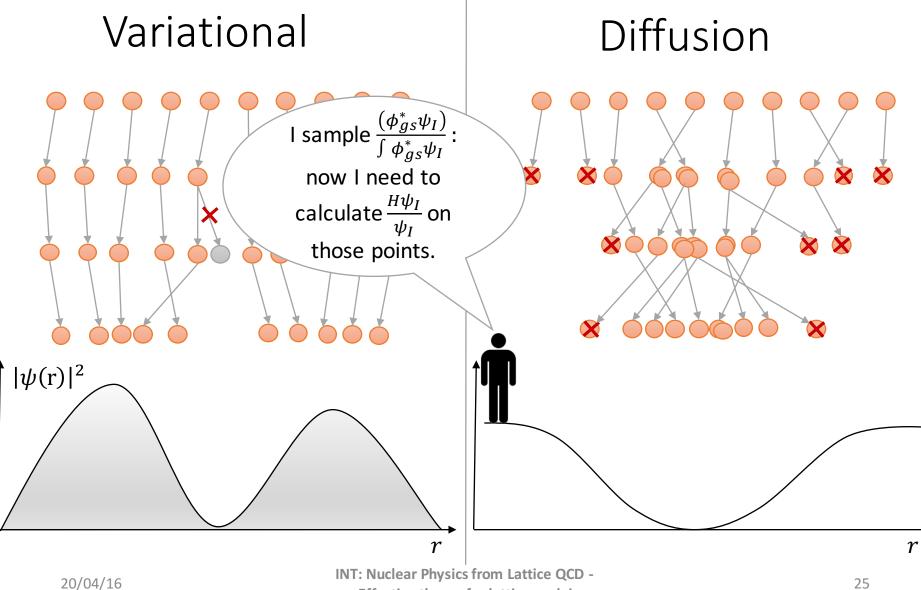












Effective theory for lattice nuclei

Sign problem:

 $(\phi_{gs}^*\psi_I)$ should be real and positive to be interpreted as a probability ...

Fix node:

Only moves with **the same phase** as the **Guide wave function** ψ_I are allowed.

This will **restrict the base** on which wave function is projected, introducing a systematic error in the method.

(The system is projected on the lowest energetic state with the same **nodal surface as** ψ_I .)

Sign problem:

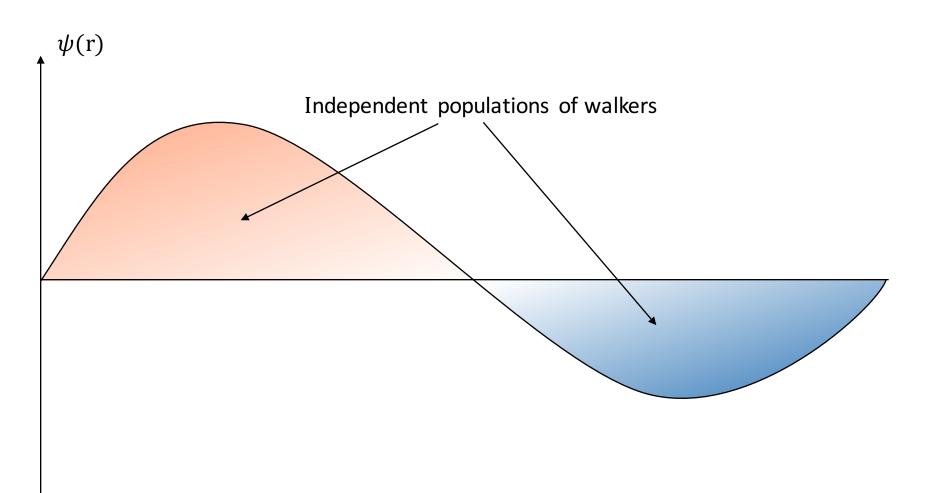
 $(\phi_{gs}^*\psi_I)$ should be real and positive to be interpreted as a probability ...

Fix node:

Only moves with **the same phase** as the **Guide wave function** ψ_I are allowed.

This will **restrict the base** on which wave function is projected, introducing a systematic error in the method. (The system is projected on the lowest energetic state with the same **nodal surface as** ψ_I .)

Fix node:



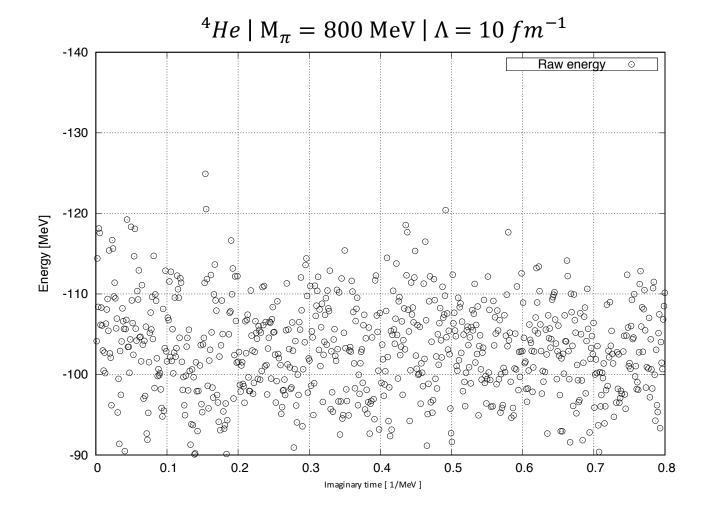
Guide wave function:

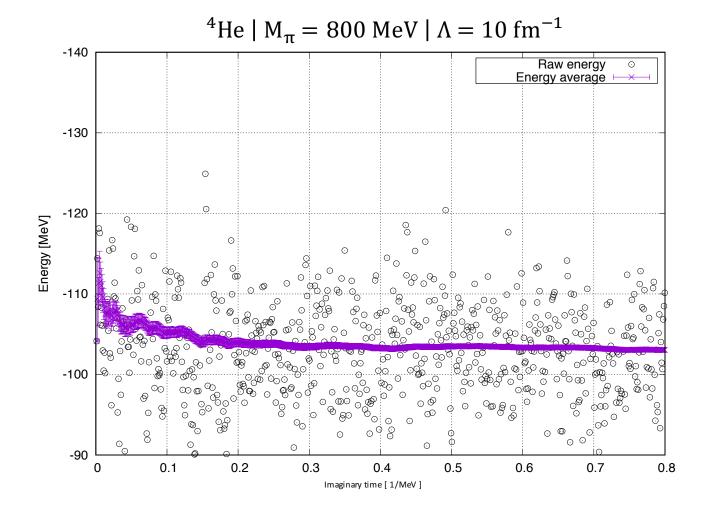
Linear combination of Slater determinants of single particle wave functions is used as Guide wave function.

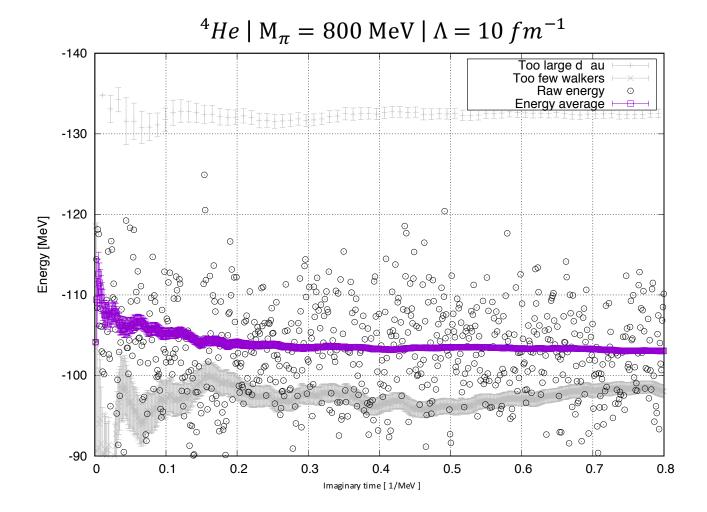
(Scale adjustments of single particle WF can change the many body nodal surface.)

Correlations between particles are introduced (they are called Jastrow functions).

- **2-body correlations** can be calculated solving the two-body Schrödinger equation channel by channel runtime.
- **3-body correlations** are present only if 3-body forces are present. They are harder to be calculated during the code execution and need to be parameterized.







Spin/Isospin:

Single particle spin base is not close with respect not-quadratic spin operators.

For 3 particles:

$$(\overrightarrow{\sigma_{2}}\cdot\overrightarrow{\sigma_{3}})\begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\downarrow\uparrow}\\a_{\uparrow\downarrow\downarrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\end{pmatrix} = \begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\2a_{\uparrow\uparrow\uparrow}-a_{\uparrow\uparrow\downarrow}\\2a_{\uparrow\uparrow\downarrow}-a_{\uparrow\downarrow\downarrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\\a_{\downarrow\downarrow\downarrow}\end{pmatrix} \neq \begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\downarrow\uparrow}\\a_{\downarrow\uparrow\downarrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\downarrow}\end{pmatrix}$$

1

n-body spinor \rightarrow 2^N components.

Spin/Isospin:

Using an Hubbard-Stratonovich transformation:

$$e^{-\frac{1}{2}\lambda O^2} = \frac{1}{\sqrt{2\pi}} \int dx \; e^{-\frac{x^2}{2} + \sqrt{-\lambda}x \; O}$$

A quadratic operator can be transformed in a linear one, at the price of an integral (per operator).

$$\overline{\sigma_{i}} \begin{pmatrix} \begin{pmatrix} \alpha_{1} \ \hat{p}_{1} \\ \beta_{1} \ \hat{p}_{1} \\ \gamma_{1} \ \hat{n}_{1} \\ \delta_{1} \ \hat{n}_{1} \end{pmatrix}_{1} \otimes \dots \otimes \begin{pmatrix} \alpha_{i} \ \hat{p}_{1} \\ \beta_{i} \ \hat{p}_{1} \\ \gamma_{i} \ \hat{n}_{1} \\ \delta_{i} \ \hat{n}_{1} \end{pmatrix}_{i} \otimes \dots \otimes \begin{pmatrix} \alpha_{A} \ \hat{p}_{1} \\ \beta_{A} \ \hat{p}_{1} \\ \gamma_{A} \ \hat{n}_{1} \\ \delta_{A} \ \hat{n}_{1} \end{pmatrix}_{A} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \alpha_{1} \ \hat{p}_{1} \\ \beta_{1} \ \hat{p}_{1} \\ \gamma_{1} \ \hat{n}_{1} \\ \delta_{1} \ \hat{n}_{1} \end{pmatrix}_{1} \otimes \dots \otimes \begin{pmatrix} \alpha_{i} \ \hat{p}_{1} \\ \beta_{i} \ \hat{p}_{1} \\ \gamma_{i} \ \hat{n}_{1} \\ \delta_{i} \ \hat{n}_{1} \end{pmatrix}_{i} \otimes \dots \otimes \begin{pmatrix} \alpha_{A} \ \hat{p}_{1} \\ \beta_{A} \ \hat{p}_{1} \\ \gamma_{A} \ \hat{n}_{1} \\ \delta_{A} \ \hat{n}_{1} \end{pmatrix}_{A} \end{pmatrix}$$

Pro: Smart way to estimate large integrals.

Errors decrease with the number of sample taken.

Diffusion procedure samples from the **ground state** of the interaction.

With **fix node** procedure, you can handle **fermion ground states.**

Auxiliary Field procedure wipes out many coordinates, allowing **many particle calculations**. Contra: X Intrinsic stochastic errors.

X To solve the sign problem only states with a particular nodal surface are available.

XAuxiliary integrals introduce new integrals.

Release nodes:

- The constraint on the phase is released.
- Each move weighted with the **absolute value of the guide wave function**.

✓ No systematics from nodal surfaces

X Errors increase exponentially during the calculation.

Pionless Effective Field Theory $|--| \Rightarrow \chi$

Regularization & Renormalization

 $\overrightarrow{r_{ii}} = \overrightarrow{r_i} - \overrightarrow{r_j}$

The high energy physics is encoded in the LECs.

But one has to **regularize** the potential introducing a cut-off:

$$C \cdot \delta(\overrightarrow{r_i} - \overrightarrow{r_j}) \quad \Box > \quad C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

And **renormalize** it, making the LECs cut-off dependent:

$$C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}} \quad \Longrightarrow \quad C(\Lambda) \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

Regularization & Renormalization

The high energy physics is encoded in the LECs.

But one has to **regularize** the potential introducing a cut-off:

$$C \cdot \delta(\vec{r_i} - \vec{r_j}) \implies C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

And **renormalize** it, making the LECs cut-off dependent:

$$C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}} \quad \Longrightarrow \quad C(\Lambda) \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

INT: Nuclear Physics from Lattice QCD -Effective theory for lattice nuclei $\overrightarrow{r_{ii}} = \overrightarrow{r_i} - \overrightarrow{r_j}$

Regularization & Renormalization

The high energy physics is encoded in the LECs.

But one has to **regularize** the potential introducing a cut-off:

$$C \cdot \delta(\vec{r_i} - \vec{r_j}) \implies C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

And **renormalize** it, making the LECs cut-off dependent:

$$C \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}} \quad \Longrightarrow \quad C(\Lambda) \frac{\Lambda^3}{8\pi^{3/2}} e^{\frac{-\Lambda^2 r_{ij}^2}{4}}$$

INT: Nuclear Physics from Lattice QCD -Effective theory for lattice nuclei $\overrightarrow{r_{ii}} = \overrightarrow{r_i} - \overrightarrow{r_j}$

About the cut-offs

Why push the cutoff high:

• Large enough cut-off $\Lambda \to$ the interaction contains all the relevant low energy physic.

Is difficult to say how large the cut-off should be:

- **Different regularizations** might show different convergence behavior.
- The range of validity of the theory is usually unknown and can depend from the system.

About the cut-offs

Why push the cutoff high:

• Large enough cut-off $\Lambda \to$ the interaction contains all the relevant low energy physic.

Is difficult to say how large the cut-off should be:

- **Different regularizations** might show different convergence behavior.
- The range of validity of the theory is usually unknown and can depend from the system.

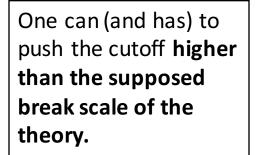
About the cut-offs

Why push the cutoff high:

• Large enough cut-off $\Lambda \to$ the interaction contains all the relevant low energy physic.

Is difficult to say how large the cut-off should be:

- **Different regularizations** might show different convergence behavior.
- The range of validity of the theory is usually unknown and can depend from the system.



For a sufficiently large cutoff, all the relevant physics is included.

Observables will be independent from the cutoff.

About the cut-off

Every order will have a residual cut off dependence that will be absorbed (in part) in the next order:

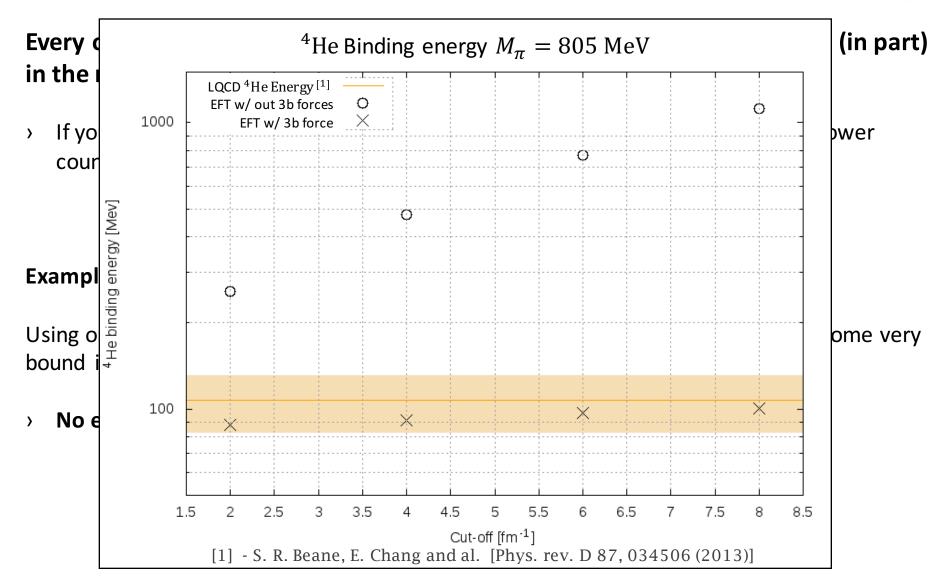
 If you see a cutoff dependence on observables you are missing something on power counting.

Example: 3-body forces in a contact theory at LO:

Using only a 2-body attractive contact potential, the 3 (and more) body system become very bound increasing the cut-off (not cut-off independence).

> No evidence of a 4-body interaction at leading order.

About the cut-off



About the cut-off

Every order will have a residual cut off dependence that will be absorbed (in part) in the next order:

 If you see a cutoff dependence on observables you are missing something on power counting.

Example: 3-body forces in a contact theory at LO:

Using only a 2-body attractive contact potential, the 3 (and more) body system become very bound increasing the cut-off (not cut-off independence).

> No evidence of a 4-body interaction at leading order.

You can use residual cut-off dependences to check the theory.

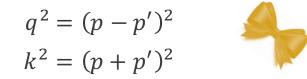
$$q^{2} = (p - p')^{2}$$

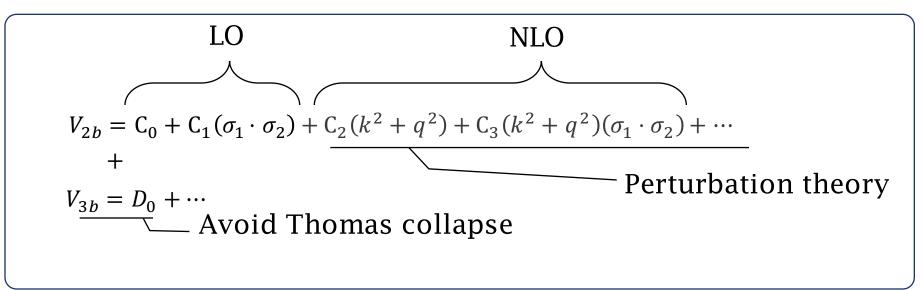
 $k^{2} = (p + p')^{2}$

$$\begin{split} V_{2b} &= \mathrm{C}_{0} + \mathrm{C}_{1}(\sigma_{1} \cdot \sigma_{2}) + \mathrm{C}_{2}(k^{2} + q^{2}) + \mathrm{C}_{3}(k^{2} + q^{2})(\sigma_{1} \cdot \sigma_{2}) + \cdots \\ &+ \\ V_{3b} &= D_{0} + \cdots \end{split}$$

After **regularization** in the coordinate space:

$$V^{LO} = \sum_{i < j} \left[C_0^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} + C_1^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} \left(\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \right) \right] + D_0^{\Lambda} \sum_{(i < j) \neq k} \left[e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{ik}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{jk}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{jk}|^2 + |r_{ik}|^2 \right)} \right]$$

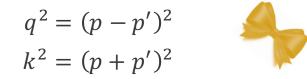


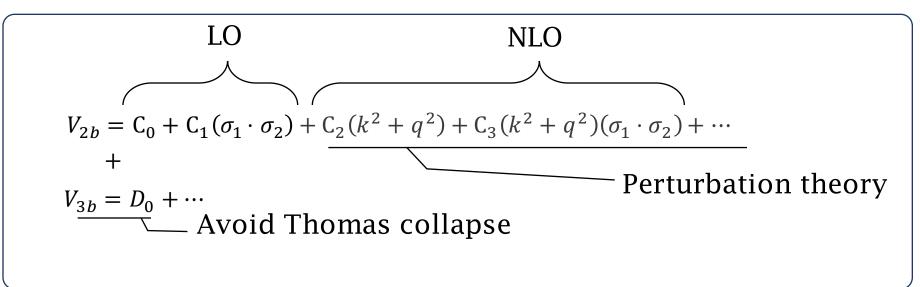


After **regularization** in the coordinate space:

$$V^{LO} = \sum_{i < j} \left[C_0^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} + C_1^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} \left(\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \right) \right] + D_0^{\Lambda} \sum_{(i < j) \neq k} \left[e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{ik}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{jk}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{jk}|^2 + |r_{ik}|^2 \right)} \right]$$

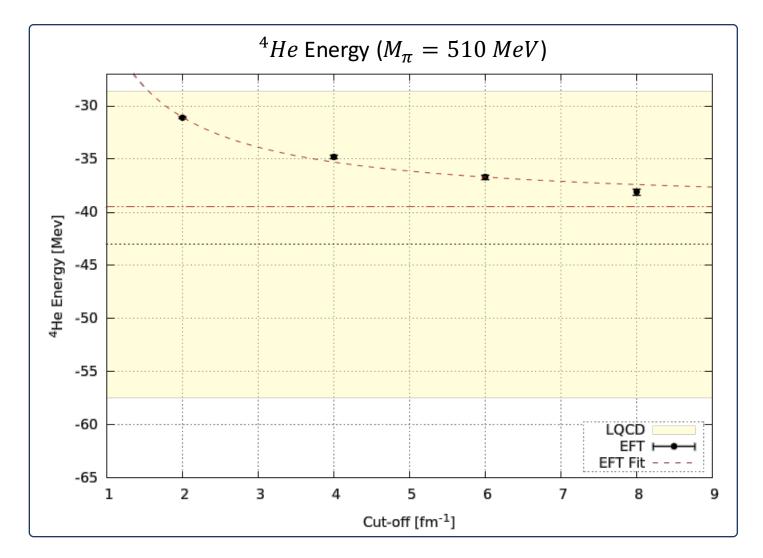
20/04/16

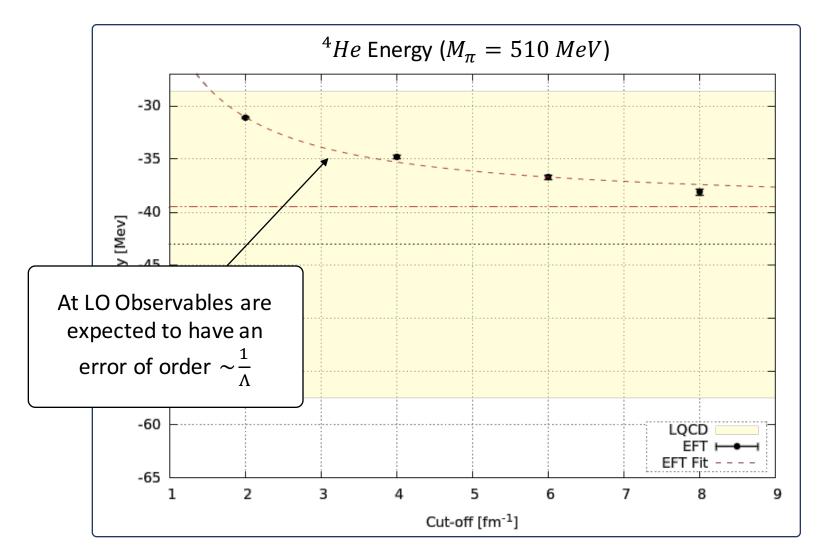




After **regularization** in the coordinate space:

$$V^{LO} = \sum_{i < j} \left[C_0^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} + C_1^{\Lambda} e^{-\frac{1}{2} |r_{ij}|^2 \Lambda^2} \left(\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \right) \right] + D_0^{\Lambda} \sum_{(i < j) \neq k} \left[e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{ik}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{ij}|^2 + |r_{jk}|^2 \right)} + e^{-\frac{\Lambda^2}{2} \left(|r_{jk}|^2 + |r_{ik}|^2 \right)} \right]$$







LQCD few-body data

Nucleus	Nature	$m_{\pi} = 510 MeV [1]$	$m_{\pi}=805~MeV~[2]$
N (mass)	939.6	1320.0	1634.0
P (mass)	938.3	1320.0	1634.0
n-p	2.224	11.5(1.3)	19.5(4.8)
n-n		7.4(1.4)	15.9(3.8)
³ H	8.482	20.3(4.5)	53.9(10.7)
³ He	7.718	20.3(4.5)	53.9(10.7)
⁴ He	28.296	43.0(14.4)	107.0(24.2)

[1] - Takeshi Yamazaki, Ken-ichi Ishikawa and al.
[2] - S. R. Beane, E. Chang and al.
[Phys. rev. D 86, 074514 (2012)]
[Phys. rev. D 87, 034506 (2013)]

LQCD few-body data

Nucleus	Nature	$m_{\pi} = 510 { m MeV} [1]$	$m_{\pi}=805~{ m MeV}~[2]$	
N (mass)	939.6	1320.0	1634.0	
P (mass)	938.3	1320.0	1634.0	
n-p	2.224	11.5(1.3)	19.5(4.8)	
n-n		7.4(1.4)	15.9(3.8)	2b LECs
³ H	8.482	20.3(4.5)	53.9(10.7)	3b LEC
³ He	7.718	20.3(4.5)	53.9(10.7)	
⁴ He	28.296	43.0(14.4)	107.0(24.2)	Benchmark
	1	1		

[1] - Takeshi Yamazaki, Ken-ichi Ishikawa and al.[Phys. rev. D 86, 074514 (2012)][2] - S. R. Beane, E. Chang and al.[Phys. rev. D 87, 034506 (2013)]

α

$m_{\pi} = 140 \; MeV$		$m_{\pi} = 510 \; MeV$		$m_{\pi} = 805 \; MeV$	
Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹]	⁴ He Energy [MeV]
2	-23.3(1)	2	-31.1(1)	2	-87.9(2)
4	-23.4(2)	4	-34.8(2)	4	-91.3(3)
6	-24.8(3)	6	-36.7(2)	6	-96.4(4)
8	-26.0(3)	8	-38.1(3)	8	-101.3(5)
∞	-28.3(5)	∞	-38.8(1.0)	∞	-114(15)
Exp	-28.296	LQCD	-43(14)	LQCD	-107(24)

- Results has been checked using Monte Carlo and diagonalization methods.

- Extrapolation done using $f(x) = a + \frac{b}{\Lambda} + \frac{c}{\Lambda^2}$ excluding $\Lambda = 2$ fm⁻¹.

- All the shown errors are statistical errors from Monte Carlo method and extrapolation errors.
- Physical m_{π} LECs have been fitted using B(d), a(p n) and B(³H)

¹⁶0

$m_{\pi} = 140 \; MeV$	$m_{\pi} = 510$	MeV	m_{π}	= 805 /	MeV
	Λ ¹⁶ Ο [fm ⁻¹] Energy [MeV]	4α treshold [MeV]	Λ [fm ⁻¹]	¹⁶ 0 Energy [MeV]	4α treshold [MeV]
2 -97(1) -93.2(1)	2 -114.6(2)	-124.4(3)	2	-347(1)	-351(1)
4 -58(1) -94.0(8)	4 -113.8(2)	-139.1(7)	4	-335(1)	-365(1)
6 -50(1) -100(1)	6 -109.7(1)	-147(1)	6	-326(1)	-385(2)
8 -52(1) -104(2)	8 -105.7(5)	-153(1)	8	-315(1)	-405(2)

- All the shown errors are statistical errors from Monte Carlo method.

Preliminary

Calculation issues.

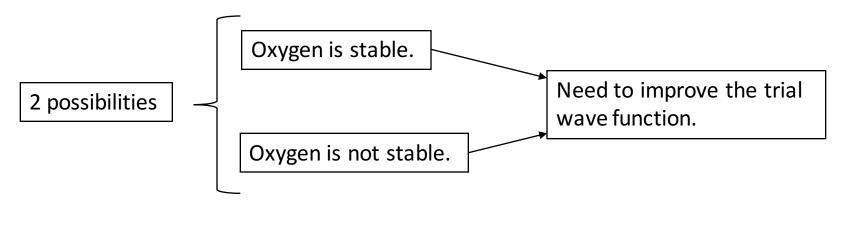
- **Oxygen is not bound** with respect of 4α system.
- DMC can find only ground states.
- The Oxygen energy is far from the threshold.
- We are not getting the correct ground state (4α is more bound than our 16 O).
- The error is probably due to the **Fixed phase** approximation that force the nucleus to be in wrong ground state.

Calculation issues.

- **Oxygen is not bound** with respect of 4α system.
- DMC can find only ground states.
- The Oxygen energy is far from the threshold.
- We are not getting the correct ground state (4 α is more bound than our ¹⁶0).
- The error is probably due to the **Fixed phase** approximation that force the nucleus to be in wrong ground state.

Calculation issues.

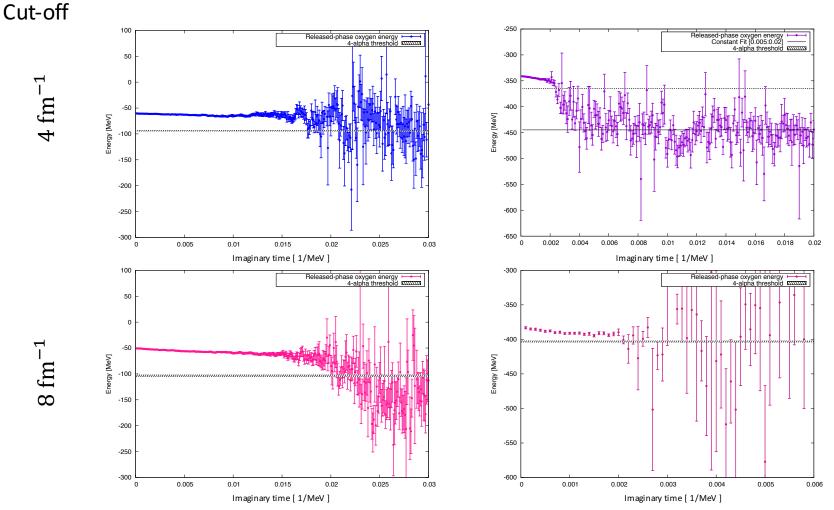
- **Oxygen is not bound** with respect of 4α system.
- DMC can find only ground states.
- The Oxygen energy is far from the threshold.
- We are not getting the correct ground state (4α is more bound than our ¹⁶0).
- The error is probably due to the **Fixed phase** approximation that force the nucleus to be in wrong ground state.



Release nodes

 M_{π} 140 MeV

800 MeV



Conclusions:

- ⁴He seems to **converge** in the cut-off, and **agrees with LQCD result**.
- Oxygen seems to be unstable with respect 4α for $m_{\pi} = 140,510$ and 805 MeV.
- Release node can recover 4α state for $m_{\pi} = 140 \text{ MeV}$.
- Evidence for a bound state for $m_{\pi} = 805$ MeV and $\Lambda = 4$ fm⁻¹

What's next:

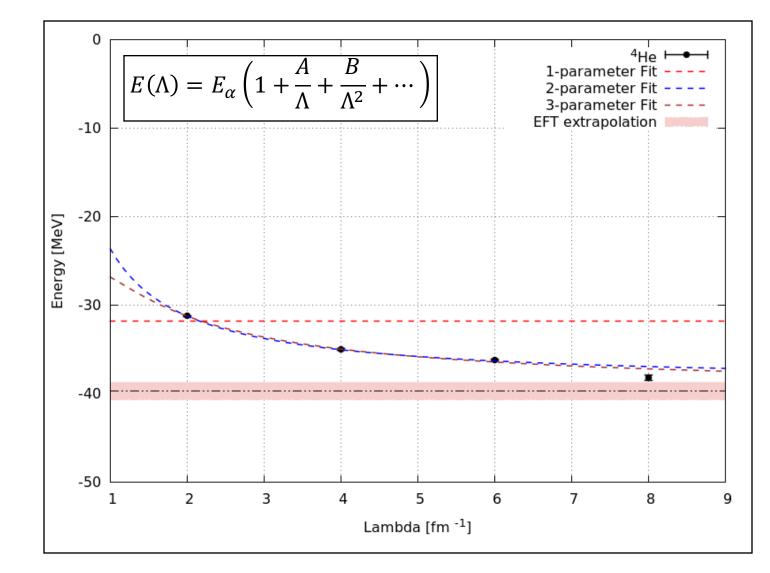
- Accumulate more statistics for $m_{\pi} = 805$ MeV and $\Lambda = 8$ fm⁻¹.
- Look ¹⁶O at **different Cut-offs** for $m_{\pi} = 805$ MeV.
- Next to leading order.

Other interesting things:

- Look at intermediate nuclei.
- Probe $\alpha \alpha$ interaction.

Thanks for your attention

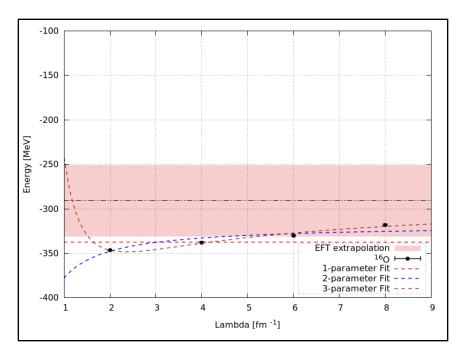
Convergences of data $m_{\pi} = 500 \ MeV$

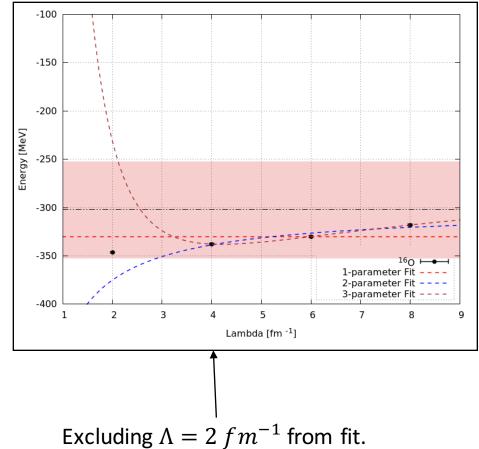


 ^{4}He energy

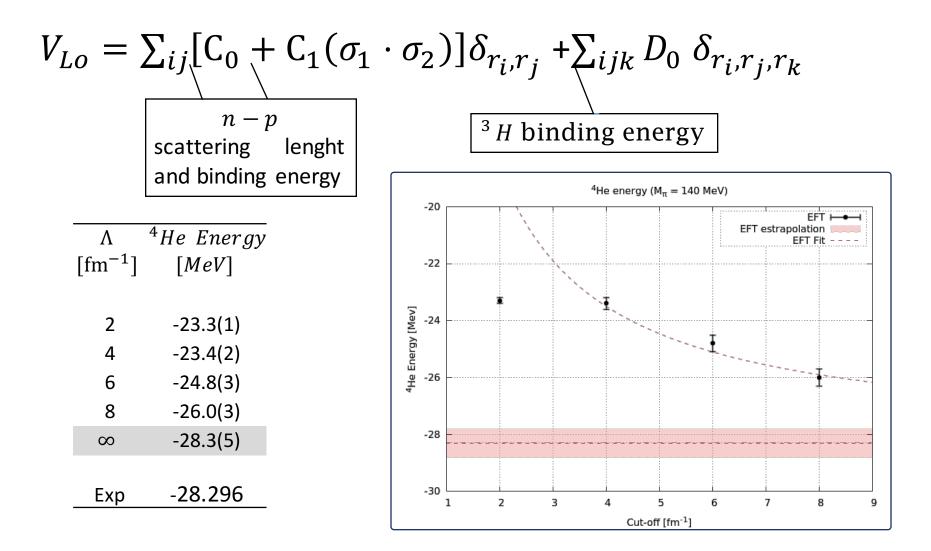
Convergences of data $m_{\pi} = 800 \ MeV$

¹⁶*O* energy





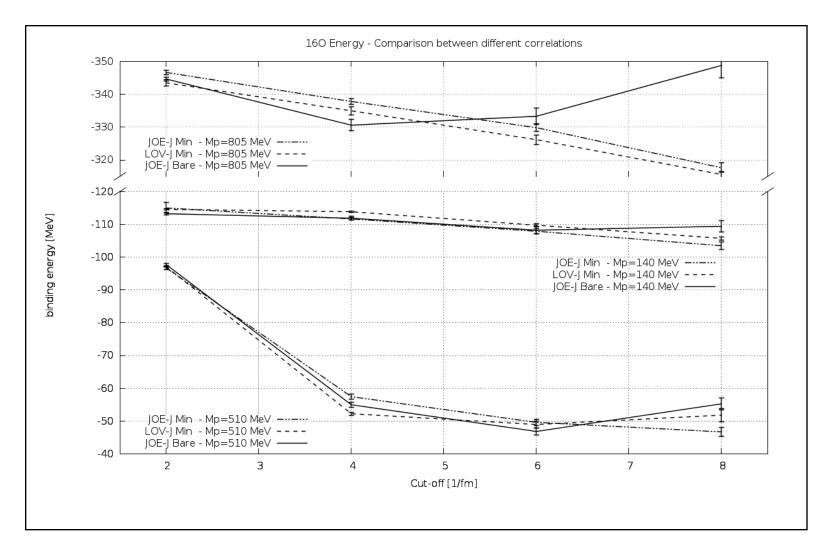
Convergences of data at physical m_{π}



INT: Nuclear Physics from Lattice QCD -

Effective theory for lattice nuclei

Different correlations in AFDMC



⁴⁰Ca

$m_{\pi} = 510 \; MeV$			
Λ [fm ⁻¹]	⁴⁰ Ca Energy [MeV]	10α treshold [MeV]	
2	-279.1(9)	-311(1)	
4	-260(2)	-348(2)	
6	-243(4)	-367(2)	
8	-186(5)	-381(3)	
∞	-	-388(1)	
LQCD			