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In the Autumn of 2003  Joaquín Drut walked into my office asking whether 
he can work with me. I suggested we try together QMC for cold atoms. 
 
All I knew about QMC at the time was that: 
•  many people do it and that they used random numbers to calculate 

infinite dimensional integrals 
 
•  there was a very challenging problem still largely unsolved in theoretical 

physics   
                      The properties of the unitary Fermi gas! 
                            The Bertsch MBX Challenge 
 
•  As I did not know better we started with the grand canonical QMC 

(hard), instead of  T=0 microcanonical QMC (much easier)    
 
•  Soon Piotr Magierski joined us, and later others. 



Besides pure theoretical curiosity, cold atom 
physics is related to neutron stars physics!   

Gezerlis and Carlson, 
Phys. Rev. C 77, 032801(R) (2008) 



Dilute Fermion Matter 
The ground state energy is given by such a function: 

   
Egs = f (N ,V ,,m,a,r0 )

Taking the scattering length to infinity and the range   
of the interaction to zero, we are left with: 
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Egs =
3
5
ε F N ×ξ         Δ=ε F ×ς

ξ = 0.372(5),             ζ = 0.45(5)
Now these results are a bit unexpected. 
ü  The energy looks almost like that of a non-interacting system! 
(there are no other dimensional parameters in the problem) 
ü  The system has a huge pairing gap! 
ü  This system is a very strongly interacting one, since  
the elementary cross section is huge! 

What George Bertsch essentially asked in 1999 is:                                                                
 
              What is the value of ξ ?!  Is it positive? 
 
But he wished to know the properties of the system as well:  
                                            The system turned out to be superfluid ! 



Zweirlein et al. Nature 435, 1047 (2005) 



The initial Bertsch’s Many Body challenge has evolved over time 
and became the problem of Fermions in the Unitary Regime. 
(part of the BCS-BEC crossover problem) 

The system is very dilute, but strongly interacting! 

  n |a|3 ≫ 1   n r0
3 ≪ 

1 
r0  ≪    n-1/3   ≈  λF /2     ≪ |a| 

r0  -  range of interaction a - scattering length  

n - number density 

In cold old gases one can control  
the strength of the interaction at will! 
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             a<0 
no 2-body bound state 
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shallow 2-body bound state 

BCS Superfluid  

     

 
Normal atomic (plus a few molecules) phase  
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Molecular BEC and 
Atomic+Molecular 
Superfluids 

Phases of a two species dilute Fermi system in the BCS-BEC crossover 

weak interaction 
between fermions 

weak interaction 
between dimers 

Strong interaction 
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  Grand Canonical Path-Integral Monte Carlo  

Trotter expansion  

No approximations so far, except for the fact that the interaction is not well defined! 

Finite Temperatures 
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Running coupling constant g defined by the lattice constant  

Recast the propagator at each time slice and put the system on a 3D-spatial 
lattice, in a cubic box of side L=Nsl, with periodic boundary conditions 

σ-fields fluctuate both in space and imaginary time 

Discrete Hubbard-Stratonovich transformation 
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Momentum space 

   

ε
F
,  Δ,  T    

2π 2

2ml 2

δε > 22π 2

mL2
  

ε
F
,  Δ    

22π 2

mL2

ξ
coh
 L = N

s
l

δp > 2π
L



2π/L 

n(k) 

k 

kmax=π/l 

l - lattice spacing 

L – box size  

How to choose the lattice spacing and the box size? 
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Tr ĤÛ({σ})⎡⎣ ⎤⎦
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No sign problem! 

All traces can be expressed through these single-particle density matrices 

One-body evolution 
operator in imaginary time 
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PRL 96, 090404 (2006), PRA 78, 023625 (2008) 





Critical temperature for superfluid to normal transition 

Bulgac, Drut, and Magierski, Phys. Rev. A 78, 023625 (2008)  

Amherst-ETH:                Burovski et al. Phys. Rev. Lett. 101, 090402 (2008) 
Hard and soft bosons:    Pilati et al. PRL 100, 140405 (2008) 
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Matsubara propagator, spectral function and linear response 



Singular value decomposition and maximum entropy method  
reconstruction of the spectral function   



Chen et al, Low Temp. Phys. 32, 406 (2006) 

G. Wlazlowski, et al., Phys. Rev. Lett. 110, 090401 (2013) 
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Using photoemission spectroscopy to probe  a strongly interacting Fermi gas 
Stewart, Gaebler, and Jin, Nature, 454,  744 (2008) 

   
E(N )+ hν = E(N −1)+ Ek +

2k 2

2m
+φ





Slide from a talk given by G. Wlazlowski 
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Elliott, Joseph, and Thomas 
Phys. Rev. Lett. 113, 020406 (2014) 

Joseph, Elliott, and Thomas, 
Phys. Rev. Lett. 115, 020406 (2015)  

 η =α!n



Shear viscosity at and near unitarity 



High temperature kinetic theory 
 
Bluhm and Schäfer, Phys. Rev. A 90, 063615 (2014) 
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Spin susceptibility 
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Now back to realistic Nuclear  Physics 



Somebody else’s slidee 



Entem and Machleidt parameterization of the NN and NNN 
interaction with Λ=414 MeV/c 
 
-  NN phase shifts up to lab energies 200 MeV with χ2/DOF = 1.44 

-  Binding energy and lifetime of 3H 

-   Empirical nuclear matter saturation point and critical point of 
liquid-gas phase transition 

see Corragio et al, Phys. Rev. C 75, 024311 (2007)  
                                Phys. Rev. C 87, 014322 (2013) 
      Machleidt and Entem, Phys. Rep. 503, 1 (2011) 



 

Microcanonical QMC at T=0
Δτ = 0.1 MeV−1   and about 300 imaginary time steps

Δx=π!
Λ

= 1.5 fm and Λ = 414 MeV/c

Nx = Ny = Nz = 10,  12, 14, 16
Npart = 38 − 340  neutrons
(previous "record" in nuclear physics ≈  100 neutrons)

ψ O ψ cont ≈ ψ O ψ
   ψ 0 O ψ 0

cont

ψ 0 O ψ 0
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- Gezerlis, Tews, Epelbaum, Gandolfi, Hebeler, Nogga, and Schwenk, 
Phys. Rev. Lett. 111, 032501 (2013) 
  AFQMC/GFMC with two-body NN–interaction LO+NLO+N2LO 
 
- Roggero, Mukherjee, and Pederiva,  
Phys. Rev. Lett. 112, 221103 (2014) 
  CIMC with two-body NN–interaction LO+NLO+N2LO 
 
- Gezerlis and Carlson, 
Phys. Rev. C 77, 032801(R) (2008) 
 GFMC with s-wave part of AV18 NN–interaction 



NN (up to N3LO) and NNN (N2LO), Wlazłowski et al, PRL 113, 182503 (2014)  
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Preliminary! Effective mass m*/m ≈ 1(0.1)  

Energy/nucleon, chemical potential,  
and self-energy (preliminary). 

“Bertsch” parameter 





A) T = 0.06 εF, B) T = 0.08 εF, C) T = 0.1 εF, D) T = 0.12 εF   
 Wlazlowski and Magierski, PRC 83, 012801 (2011),  
                                                Int. J. Mod. Phys. E20, 569 (2011) 
 
Tc = 0.09 εF,     Δ = 0.25 εF,    Δ/Tc= 2.8 
 

Neutron matter at finite temperatures 



Seki and Abe, J. Phys. Conf. Proc. 321, 012037 (2011), PRC 79, 054002 and 054003 (2009) 

A)  T = 0.06 TF, B) T = 0.08 TF, C) T = 0.1 TF, D) T = 0.12 TF  - Tc = 0.09 TF 
Wlazlowski and Magierski, PRC 83, 012801 (2011), Int. J. Mod. Phys. E18, 919 (2010) 



What LQCD can do for low energy nuclear physics? 
 
In order to move from phenomenology to a truly microscopic theory one needs to: 
 
•  Determine the nn-interaction with a pc≈ 400-500 MeV/c. 
•  Determine the np-interaction with a pc≈ 400-500 MeV/c. 
 Even though nn- and pn-interactions can be extracted from phase shifts, they have to be 
reproduced by LQCD for us to have confidence in 3-nucleon interactions. 
•  Determine the 3n-interaction with a pc≈ 400-500 MeV/c. 
•  Determine the 2n1p-interaction with a pc≈ 400-500 MeV/c. 
•  Estimate the importance of four-nucleon interactions with a pc≈ 400-500 MeV/c, and that 

includes 4n, 3n1p, 2n2p, and hope that they are not important. Otherwise we will have to 
include them too. 

 
Binding energies of nuclei should be predicted hopefully with an accuracy better than  
1 MeV per nucleus  (which is better than 0.1% for heavy nuclei, where the binding energy is 
about 1.6 GeV) and radii with an accuracy of at least 0.05 fm (thus about 1% for heavy 
nuclei)!  
 
Only then LQCD interactions are going to replace the phenomenological ones! If solid 
information about these interactions are provided we can try to establish if the correct 
properties of finite nuclei, especially those of  medium and heavy nuclei, of the neutron 
matter, and the saturation properties of the nuclear matter can be obtained, and 
subsequently move and compute other nuclear observables. 
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