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Universality

Consider particles interacting through 2-body potential with range R.
Classically, the particles ‘feel’ each other only within the potential range.
But, in the case of resonant interaction, the wave function can have much
larger extent.
At low energies, the 2-body physics is completely govern by the
scattering length, a.

lim
k→0

k cot δ(k) = −1
a
+

1
2

reffk2

From Sakurai’s book

When |a| � R the potential details has no influence: Universality.
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Universality

Generally, a ≈ reff ≈ R.
Universal systems are fine-tuned to get a� reff, R.
Corrections to universal theory are of order of reff/a and R/a.
For a > 0, we have universal dimer with energy E = −h̄2/ma2.
4He Atoms: a ≈ 170.9a0, (a0 = the Bohr radius), is much larger than its
van der Waals radius, rvdW ≈ 9.5a0.
Nucleus: as ≈ −23.4 fm, at ≈ 5.42 fm, R = h̄/mπc ≈ 1.4 fm.
Deuteron binding energy, 2.22 MeV, is close to h̄/mat

2 ≈ 1.4 MeV.
Ultracold atoms near a Feshbach resonance,

a(B) = abg

(
1 +

∆
B− B0

)

S. Inouye et al., Nature 392, 151 (1998)
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Efimov Physics

The unitary limit: E2 = 0, a −→ ∞.
In 1970 V. Efimov found out that
if E2 = 0 the 3-body system will
have an infinite number of bound
states.
The 3-body spectrum is
En = E0e−2πn/s0 with
s0 = 1.00624.

F. Ferlaino and R. Grimm, Physics 3, 9 (2010)
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Efimov Physics in Ultracold Atoms

39K
M. Zaccanti et al.,
Nature Phys. 5, 586 (2009).

7Li
N. Gross, Z. Shotan, S.
Kokkelmans, and L.
Khaykovich,
Phys. Rev. Lett. 103, 163202
(2009).

7Li
S.E. Pollack, D. Dries, and
R.G. Hulet,
Science 326, 1683 (2009)

F. Ferlaino and R. Grimm, Physics 3, 9 (2010)
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4He Atoms

The system of 4He atoms is known to be a natural candidate for
universal physics, since a ≈ 170.9a0 � rvdW ≈ 9.5a0.
The 4He dimer is bound by 1.62 mK (h̄2/ma2 ≈ 1.48 mK).
E3 ≈ 131.84 mK, E∗3 ≈ 2.6502 mK, giving a ratio of E∗3/E3 ≈ 49.7.
Recently this excited state was observed experimentally.

Theory: E. Hiyama and M. Kamimura, Phys Rev A. 85, 062505 (2012);
Experiment: M. Kunitski et al., Science 348 551 (2015).
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Effective Field Theory (EFT)

Typically in physics we have an “underlying” theory, valid at a mass
scale Mhi, but we want to study processes at momenta Q ≈ Mlo � Mhi.
For example, nuclear structure involves energies that are much smaller
than the typical QCD mass scale, MQCD ≈ 1 GeV.
Effective Field Theory (EFT) is a framework to construct the interactions
systematically. The high-energy degrees of freedom are integrated out,
while the effective Lagrangian have the same symmetries as the
underlying theory.
The details of the underlying dynamics are contained in the interaction
strengths.
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Pionless EFT

The degrees of freedom in pionless EFT are the nucleons.
We have to include all terms conserving our theory symmetries, order
by order.
For nucleons, the Leading Order (LO) is,

VLO = a1 + a2σi · σj + a3τi · τj + a4(σi · σj)(τi · τj)

where due to symmetry, only 2 are independent, corresponding to the
two scattering lengths.
The Next to Leading Order (NLO) is,

VNLO = b1(k2 + q2) + b2(k2 + q2)σi · σj + b3(k2 + q2)τi · τj

+ b4(k2 + q2)(σi · σj)(τi · τj)

q = p′ − p, k = p + p′

here also only 2 parameters are independent, corresponding to the two
effective ranges.
p-wave enters at N3LO!
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Short-Range EFT for Bosonic system

For spinless bosons, most of the terms are dropped, and we have at LO,

VLO = a1.

At NLO,
VNLO = b1(k2 + q2).

Terms proportional to k · q are omitted due to time reversal symmetry.
The LO term is iterated at NLO.
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Stochastic Variational Method I

To solve the N-body Schrodinger equation, we use correlated Gaussian
basis,

ψ(η1, η2...ηA−1) = ∑
i

ciA exp(−ηTAiη)

η = Jacobi coordinates, Ai = matrix of (N− 1)× (N− 1) numbers.
Since a� Λ−1, we need large spread of basis functions.
Symmetrization gives factor of N! which limits the number of particles.
Works for any angular momentum, for bosons and fermions. Spin and
isospin can be introduced.

Y. Suzuki and K. Varga, ‘‘Stochastic Variational Approach to Quantum-Mechanical Few-Body
Problems”, Springer 1998.
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Stochastic Variational Method II

The matrix elements can be calculated analytically in most cases:

〈A|A′〉 =
(
(2π)N−1

det B

)3/2

; B = A + A′

〈A|Tint|A′〉 = 3〈A|A′〉Tr[AB−1A′Π]; Πij = (2µi)
−1δij

〈A|V2b|A′〉 = Λ2C(0)

2m
√

π
〈A|A′〉∑

i<j

(
1 + fijΛ2/2

)−3/2
; fij = ωT

ij B
−1ωij, rij = ωT

ij η

〈A|V3b|A′〉 = Λ2D(0)

16mπ2 〈A|A
′〉 ∑

i<j<k
∑
cyc

(
det(I + Λ2Fijk/2)

)−3/2
; Fijk = ΩT

ijkB−1Ωijk

Ωijk = (ωik ωjk)
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1 + fijΛ2/2

)−3/2
; fij = ωT

ij B
−1ωij, rij = ωT

ij η

〈A|V3b|A′〉 = Λ2D(0)

16mπ2 〈A|A
′〉 ∑

i<j<k
∑
cyc

(
det(I + Λ2Fijk/2)

)−3/2
; Fijk = ΩT

ijkB−1Ωijk

Ωijk = (ωik ωjk)
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Stochastic Variational Method II
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Stochastic Variational Method III

To find the best Ai, we use the Stochastic Variational Method (SVM):
We add basis function one by one, or try to replace an exist basis
function by a new one.
We choose randomly the matrix Ai element by element, trying to
minimize the energy.
According to the variational principle, an upper bound for the ground
(excited) state is achieved.
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Regularization I: non local potential

At LO, we have only contact interaction,

V(rij) = gδ(rij).

This interaction needs regularization and renormalization.
The bound state of two identical bosons (here h̄ = m = 1),

−∇2ψ(r) + gδ(r)ψ(r) = −B2ψ(r)

and in momentum space,

p2φ(p) + g
∫ d3p′

(2π)3 φ(p′) = −B2φ(p)

Therefore,
1
g
=
∫ d3p′

(2π)3
1

p′2 + B2

which diverges!
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Regularization I: non local potential

To regularize, we can smear the interaction over a range of 1/Λ,

δΛ(r)
Λ→∞−→ δ(r).

Doing so for the incoming and outcoming momenta we have,

1
g
=
∫ d3p′

(2π)3
exp(−2p′2/Λ2)

p′2 + B2

Which can be expand by powers of Q/Λ, (Q =
√

B2)

g =
8
√

2π3/2

Λ

(
1 +
√

π
Q
Λ

+ ...
)

.

With the price of non-local potential,

〈r|V|r′〉 = gδΛ(r)δΛ(r′)

R.F. Mohr et al., Ann. Phys. 321, 225 (2006).
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Regularization II: local potential

We can cut the momentum transfer q = p− p′, to get a local potential,

〈r|V|r′〉 = gδΛ(r)δ(r− r′)

but now the two-body equation is to be solved numerically.
The LEC is renormalized by fixing one observable, like the dimer
binding energy or the scattering length, to its physical value.
Using dimension less LEC,

VLO(r) =
4πh̄2

mΛ
C(0)(Λ)δΛ(r), C(0)(Λ) = 2.38

(
1 +

2.25
aΛ
− 4.68

(aΛ)2 + ...
)
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Next to Leading Order

At NLO, the LO term is iterated and 2-derivatives term is added:

VNLO(r) =
4πh̄2

mΛ
δΛ(r)

{
C(1)

0 (Λ) + C(1)
2 (Λ)

[←−∇ 2 +
−→∇ 2
]}

NLO term is to be taken in perturbative way.
For energies,

∆E = 〈ψLO|VNLO|ψLO〉

For scattering amplitude - distorted wave Born approximation,

∆fk = −
m
k2

∫
drψ2

LOVNLO

fk ≈
1

−a−1 − ik

(
1− 1
−a−1 − ik

[
1
2

reffk2 +
δa
a2

])
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Two-boson system

From TTY potential we have a = 189a0 and B2 = 1.31 mK.
LO is fitted to a = 189a0, NLO to reff = 14.2a0.

reff /a ≈ 8%; (reff /a)2 ≈ 0.5%

Fitting to powers of Q2/Λ, (BA = AQ2
A/2m) we extract

BLO
2 = 1.21 mK, BNLO

2 = 1.30 mK, BTTY
2 = 1.31 mK

Tang, Toennies & Yiu, PRL 74, 1546 (1995)
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Three-boson system

Trying to calculate the trimer binding energy we get the Thomas collapse:

B3 ∝
h̄Λ2

m

50 100 150 200 250 300 350

0

2000

4000

6000

L�Q2
B

3
�B

2

To stabilize the system, a 3-body counter term must be introduced at LO,

V3N
LO =

4πh̄2

mΛ4 D(0) ∑
i<j<k

∑
cyc

δΛ(rij)δΛ(rjk),

Λ∗ is a new momentum scale, D(0) = f (aΛ, Λ/Λ∗)
D(0) is fixed by another observable.
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Three-boson system

1 5 10 50 100
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L�L*

D
H0L

Λ3 = Λ2, local, smooth cutoff Λ3 � Λ2, non-local, sharp cutoff
P. F. Bedaque, H.W. Hammer, and U. van Kolck

Phys. Rev. Lett. 82 463 (1999).

Λ3 = Λ2, non-local, smooth cutoff
R.F. Mohr et al., Ann. Phys. 321, 225 (2006).
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Atom-dimer scattering

LO and NLO are fitted to B∗3 = 1.74B2.
The atom-dimer scattering length is calculated in a
trap, using

1√
2

Γ[(1− η)/4]
Γ[(3− η)/4]

=
aad/aho

1− aadradη/(4a2
ho)

aho =
√

h̄/(2µω) µ = 2m/3 η = 2(E3 − E2)/(h̄ω)

Suzuki et al., PRA 80, 033601 (2009); Stetcu et al., Ann. Phys. 325, 1644 (2010).
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Trimer ground state

LO

NLO
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Fitting to powers of Q3/Λ , B3(Λ) = B3∞(1 + α Q3
Λ + β

(
Q3
Λ

)2
+ γ

(
Q3
Λ

)3

B3∞/B∗3 α β γ

64.83 -0.78 – –

64.80 -0.78 -0.05 –

64.80 -0.80 0.36 -1.95
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Fitting to powers of Q3/Λ , B3(Λ) = B3∞(1 + α Q3
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(
Q3
Λ
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+ γ

(
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Λ
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we extract

BLO
3 /B∗3 = 64.8, BNLO

3 /B∗3 = 49.8, BTTY
3 /B∗3 = 55.4

Q3reff ≈ 0.6� Q2reff ≈ 0.08
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Four-boson system

Are more terms needed to stabilize heavier systems?

BLO
4 /B3 = 4.2(1), BTTY

4 /B3 = 4.43
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Tjon line

Another evidence is the Tjon line, the correlation between the binding
energies of the triton and the α-particle.

J.A. Tjon, Phys. Lett. B 56, 217 (1975).

L. Platter, H.-W. Hammer, U.-G. Meissner, Phys. Lett. B 607, 254 (2005).
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5- and 6- boson system

Are more terms needed to stabilize heavier systems?
For nucleons,

I. Stetcu, B.R. Barrett, and U. van Kolck, Phys. Lett. B 653 , 358 (2007).

A x x2 x3 Ref. [1]

4 9.63 10.22 9.94 9.88

5 17.51 19.08 18.40 18.05

6 24.37 27.46 24.98 26.28

[1] J. von Stecher, J. Phys. B: At. Mol. Opt. Phys. 43, 101002 (2010).Betzalel Bazak (IPNO) Pionless EFT for Few-Body Systems 26 / 30
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Generalized Tjon-lines

Correlation between B∗3 to B3, B4, B5, and B6:
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...Therefore, no 4, 5 or 6-body terms are needed at LO.
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Real Nuclei

At LO, the 2-body potential reads,

VLO = a1 + a2σi · σj + a3τi · τj + a4σi · σjτi · τj

using the fermionic symmetry,

VLO = CSP̂S + CTP̂T

where P̂α is projection operator on channel α

The 2-body LECs are fitted to the deuteron binding energy and the
singlet 1S0 np scattering length.
The 3-body LEC is fitted to the triton binding energy
No Coulumb interaction (should be NLO. See Koenig’s talk next week).
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α - 4He nuclei

5 10 15
22
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L Hfm-1L
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e
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eV
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B4(Λ) = B∞

[
1 + α

Q4

Λ
+ β

(
Q4

Λ

)2
+ γ

(
Q4

Λ

)3
+ ...

]

B∞ α β γ

28.16 -1.25 – –

28.66 -1.77 3.17 –

28.88 -2.12 8.07 -19.21
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Conclusion

A pionless EFT was constructed for few-body systems.
The 4He atomic system was studied, and our EFT fits nicely the known
results.
The convergence of pionless EFT for A = 4, 5 and 6 was studied.
Generalized Tjon-lines were introduced, showing that at LO no 4,5 or
6-body term is needed.
Similar results was shown for atomic nucleus.
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