Pionless EFT for Few-Body Systems

Betzalel Bazak

Physique Theorique Institut de Physique Nucleaire d'Orsay

Nuclear Physics from Lattice QCD Insitute for Nuclear Theory

April 7, 2016

Seattle

S. R. Beane *et al.*(NPLQCD Collaboration), Phys. Rev. D **87**, 034506 (2013)

N. Barnea *et al.*, Phys. Rev. Lett. **114**, 052501 (2015);

J. Kirscher *et al.*, Phys. Rev. C **92**, 054002 (2015)

- Consider particles interacting through 2-body potential with range *R*.
-
-

$$
\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2} r_{\text{eff}} k^2
$$

Betzalel Bazak (IPNO) [Pionless EFT for Few-Body Systems](#page-0-0) 4 / 30

- Consider particles interacting through 2-body potential with range *R*. Classically, the particles 'feel' each other only within the potential range. \bullet
-
-

$$
\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2} r_{\text{eff}} k^2
$$

Betzalel Bazak (IPNO) [Pionless EFT for Few-Body Systems](#page-0-0) 4 / 30

- Consider particles interacting through 2-body potential with range *R*.
- Classically, the particles 'feel' each other only within the potential range. \bullet
- But, in the case of resonant interaction, the wave function can have much \bullet larger extent.
-

$$
\lim_{k \to 0} k \cot \delta(k) = -\frac{1}{a} + \frac{1}{2} r_{\text{eff}} k^2
$$

Betzalel Bazak (IPNO) [Pionless EFT for Few-Body Systems](#page-0-0) 4 / 30

- Consider particles interacting through 2-body potential with range *R*.
- Classically, the particles 'feel' each other only within the potential range. \bullet
- But, in the case of resonant interaction, the wave function can have much \bullet larger extent.
- At low energies, the 2-body physics is completely govern by the scattering length, *a*.

- Consider particles interacting through 2-body potential with range *R*.
- Classically, the particles 'feel' each other only within the potential range. \bullet
- But, in the case of resonant interaction, the wave function can have much larger extent.
- At low energies, the 2-body physics is completely govern by the scattering length, *a*.

• Generally, $a \approx r_{\text{eff}} \approx R$.

Universal systems are fine-tuned to get $a \gg r_{\rm eff}$, R.

- Corrections to universal theory are of order of *r*eff/*a* and *R*/*a*.
- For *a* > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
-
-
-

$$
a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)
$$

• Generally, $a \approx r_{\text{eff}} \approx R$.

Universal systems are fine-tuned to get $a \gg r_{\rm eff}$, R.

- Corrections to universal theory are of order of *r*eff/*a* and *R*/*a*.
- For *a* > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- \bullet ⁴He Atoms: *a* \approx 170.9*a*₀, (*a*₀ = the Bohr radius), is much larger than its van der Waals radius, $r_{vdW} \approx 9.5a_0$.
-
-

$$
a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)
$$

• Generally, $a \approx r_{\text{eff}} \approx R$.

Universal systems are fine-tuned to get $a \gg r_{\rm eff}$, R.

- Corrections to universal theory are of order of *r*eff/*a* and *R*/*a*.
- For *a* > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- \bullet ⁴He Atoms: *a* \approx 170.9*a*₀, (*a*₀ = the Bohr radius), is much larger than its van der Waals radius, $r_{\text{vdW}} \approx 9.5a_0$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_\pi c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar/ma_t^2 \approx 1.4$ MeV.

$$
a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)
$$

• Generally, $a \approx r_{\text{eff}} \approx R$.

Universal systems are fine-tuned to get $a \gg r_{\text{eff}}$, *R*.

- Corrections to universal theory are of order of *r*eff/*a* and *R*/*a*.
- For *a* > 0, we have universal dimer with energy $E = -\hbar^2 / ma^2$.
- \bullet ⁴He Atoms: *a* \approx 170.9*a*₀, (*a*₀ = the Bohr radius), is much larger than its van der Waals radius, $r_{ndW} \approx 9.5a_0$.
- Nucleus: $a_s \approx -23.4$ fm, $a_t \approx 5.42$ fm, $R = \hbar/m_\pi c \approx 1.4$ fm. Deuteron binding energy, 2.22 MeV, is close to $\hbar/ma_t^2 \approx 1.4$ MeV.
- Ultracold atoms near a Feshbach resonance,

$$
a(B) = a_{bg} \left(1 + \frac{\Delta}{B - B_0} \right)
$$

- *The unitary limit*: $E_2 = 0$, $a \rightarrow \infty$. \bullet
- In 1970 V. Efimov found out that ä if $E_2 = 0$ the 3-body system will have an **infinite** number of bound states.
- The 3-body spectrum is $E_n = E_0 e^{-2\pi n/s_0}$ with $s_0 = 1.00624$.

F. Ferlaino and R. Grimm, Physics **3**, 9 (2010)

Efimov Physics in Ultracold Atoms

 39_K

M. Zaccanti *et al.*, Nature Phys. **5**, 586 (2009).

\bullet ⁷Li

N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Phys. Rev. Lett. **103**, 163202 (2009).

\bullet 7 Li

S.E. Pollack, D. Dries, and R.G. Hulet, Science **326**, 1683 (2009)

⁴He Atoms

- The system of ⁴He atoms is known to be a natural candidate for universal physics, since $a \approx 170.9a_0 \gg r_{vdW} \approx 9.5a_0$.
-
-
-

⁴He Atoms

- The system of ⁴He atoms is known to be a natural candidate for universal physics, since $a \approx 170.9a_0 \gg r_{vdW} \approx 9.5a_0$.
- The ⁴He dimer is bound by 1.62 mK ($\hbar^2/ma^2 \approx 1.48$ mK).
-
-

⁴He Atoms

- The system of ⁴He atoms is known to be a natural candidate for universal physics, since $a \approx 170.9a_0 \gg r_{vdW} \approx 9.5a_0$.
- The ⁴He dimer is bound by 1.62 mK ($\hbar^2/ma^2 \approx 1.48$ mK).
- $E_3 \approx 131.84 \text{ mK}$, $E_3^* \approx 2.6502 \text{ mK}$, giving a ratio of $E_3^*/E_3 \approx 49.7$.
-

⁴He Atoms

- The system of ⁴He atoms is known to be a natural candidate for universal physics, since $a \approx 170.9a_0 \gg r_{vdW} \approx 9.5a_0$.
- The ⁴He dimer is bound by 1.62 mK ($\hbar^2/ma^2 \approx 1.48$ mK).
- $E_3 \approx 131.84 \text{ mK}$, $E_3^* \approx 2.6502 \text{ mK}$, giving a ratio of $E_3^*/E_3 \approx 49.7$.
- Recently this excited state was observed experimentally.

Theory: E. Hiyama and M. Kamimura, Phys Rev A. **85**, 062505 (2012); Experiment: M. Kunitski *et al.*, Science **348** 551 (2015).

- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi} , but we want to study processes at momenta $Q \approx M_{lo} \ll M_{hi}$.
-
-
-
- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi} , but we want to study processes at momenta $Q \approx M_{lo} \ll M_{hi}$.
- For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
-
-
- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi} , but we want to study processes at momenta $Q \approx M_{lo} \ll M_{hi}$.
- **•** For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian have the same symmetries as the underlying theory.
-
- Typically in physics we have an "underlying" theory, valid at a mass scale M_{hi} , but we want to study processes at momenta $Q \approx M_{lo} \ll M_{hi}$.
- **•** For example, nuclear structure involves energies that are much smaller than the typical QCD mass scale, $M_{QCD} \approx 1$ GeV.
- Effective Field Theory (EFT) is a framework to construct the interactions systematically. The high-energy degrees of freedom are integrated out, while the effective Lagrangian have the same symmetries as the underlying theory.
- The details of the underlying dynamics are contained in the interaction strengths.

- The degrees of freedom in pionless EFT are the nucleons.
-
-

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 (\sigma_i \cdot \sigma_j) (\tau_i \cdot \tau_j)
$$

$$
V_{NLO} = b_1(k^2 + q^2) + b_2(k^2 + q^2)\sigma_i \cdot \sigma_j + b_3(k^2 + q^2)\tau_i \cdot \tau_j
$$

+
$$
b_4(k^2 + q^2)(\sigma_i \cdot \sigma_j)(\tau_i \cdot \tau_j)
$$

$$
q = p' - p, \quad k = p + p'
$$

- The degrees of freedom in pionless EFT are the nucleons.
- We have to include all terms conserving our theory symmetries, order by order.
-

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 (\sigma_i \cdot \sigma_j) (\tau_i \cdot \tau_j)
$$

$$
V_{NLO} = b_1(k^2 + q^2) + b_2(k^2 + q^2)\sigma_i \cdot \sigma_j + b_3(k^2 + q^2)\tau_i \cdot \tau_j
$$

+
$$
b_4(k^2 + q^2)(\sigma_i \cdot \sigma_j)(\tau_i \cdot \tau_j)
$$

$$
q = p' - p, \quad k = p + p'
$$

- The degrees of freedom in pionless EFT are the nucleons.
- We have to include all terms conserving our theory symmetries, order by order.
- For nucleons, the Leading Order (LO) is,

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 (\sigma_i \cdot \sigma_j) (\tau_i \cdot \tau_j)
$$

where due to symmetry, only 2 are independent, corresponding to the two scattering lengths.

 $q = p' - p$, $k = p + p'$

- The degrees of freedom in pionless EFT are the nucleons.
- We have to include all terms conserving our theory symmetries, order by order.
- For nucleons, the Leading Order (LO) is,

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 (\sigma_i \cdot \sigma_j) (\tau_i \cdot \tau_j)
$$

where due to symmetry, only 2 are independent, corresponding to the two scattering lengths.

• The Next to Leading Order (NLO) is,

$$
V_{NLO} = b_1(k^2 + q^2) + b_2(k^2 + q^2)\sigma_i \cdot \sigma_j + b_3(k^2 + q^2)\tau_i \cdot \tau_j
$$

+
$$
b_4(k^2 + q^2)(\sigma_i \cdot \sigma_j)(\tau_i \cdot \tau_j)
$$

$$
q = p' - p, \quad k = p + p'
$$

here also only 2 parameters are independent, corresponding to the two effective ranges.

- The degrees of freedom in pionless EFT are the nucleons.
- We have to include all terms conserving our theory symmetries, order by order.
- For nucleons, the Leading Order (LO) is,

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 (\sigma_i \cdot \sigma_j) (\tau_i \cdot \tau_j)
$$

where due to symmetry, only 2 are independent, corresponding to the two scattering lengths.

• The Next to Leading Order (NLO) is,

$$
V_{NLO} = b_1(k^2 + q^2) + b_2(k^2 + q^2)\sigma_i \cdot \sigma_j + b_3(k^2 + q^2)\tau_i \cdot \tau_j
$$

+
$$
b_4(k^2 + q^2)(\sigma_i \cdot \sigma_j)(\tau_i \cdot \tau_j)
$$

$$
q = p' - p, \quad k = p + p'
$$

here also only 2 parameters are independent, corresponding to the two effective ranges.

p-wave enters at *N*3*LO*!

$$
V_{LO} = a_1.
$$

$$
V_{NLO} = b_1(k^2 + q^2).
$$

 $V_{I O} = a_1$.

At NLO,

$$
V_{NLO} = b_1(k^2 + q^2).
$$

 $V_{I O} = a_1$.

At NLO,

$$
V_{NLO} = b_1(k^2 + q^2).
$$

• Terms proportional to $k \cdot q$ are omitted due to time reversal symmetry.

 $V_{I O} = a_1$.

At NLO,

$$
V_{NLO} = b_1(k^2 + q^2).
$$

- **•** Terms proportional to $k \cdot q$ are omitted due to time reversal symmetry.
- The LO term is iterated at NLO.

To solve the *N*-body Schrodinger equation, we use correlated Gaussian basis,

$$
\psi(\eta_1, \eta_2...\eta_{A-1}) = \sum_i c_i \mathcal{A} \exp(-\eta^T A_i \eta)
$$

η = Jacobi coordinates, A_i = matrix of $(N-1) \times (N-1)$ numbers.

-
-
-

To solve the *N*-body Schrodinger equation, we use correlated Gaussian basis,

$$
\psi(\eta_1, \eta_2...\eta_{A-1}) = \sum_i c_i \mathcal{A} \exp(-\eta^T A_i \eta)
$$

η = Jacobi coordinates, A_i = matrix of $(N-1) \times (N-1)$ numbers.

- Since $a \gg \Lambda^{-1}$, we need large spread of basis functions.
-
-

To solve the *N*-body Schrodinger equation, we use correlated Gaussian basis,

$$
\psi(\eta_1, \eta_2...\eta_{A-1}) = \sum_i c_i \mathcal{A} \exp(-\eta^T A_i \eta)
$$

η = Jacobi coordinates, A_i = matrix of $(N-1) \times (N-1)$ numbers.

- Since $a \gg \Lambda^{-1}$, we need large spread of basis functions.
- Symmetrization gives factor of *N*! which limits the number of particles.
-

To solve the *N*-body Schrodinger equation, we use correlated Gaussian basis,

$$
\psi(\eta_1, \eta_2...\eta_{A-1}) = \sum_i c_i \mathcal{A} \exp(-\eta^T A_i \eta)
$$

η = Jacobi coordinates, A_i = matrix of $(N-1) \times (N-1)$ numbers.

- Since $a \gg \Lambda^{-1}$, we need large spread of basis functions.
- Symmetrization gives factor of *N*! which limits the number of particles.
- Works for any angular momentum, for bosons and fermions. Spin and isospin can be introduced.
$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}} \langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k \text{ cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2)\right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}} \langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k \text{ cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2)\right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}} \langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k \text{ cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2)\right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

• The matrix elements can be calculated analytically in most cases:

$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

 $\langle A|T_{int}|A'\rangle = 3\langle A|A'\rangle$ Tr $[AB^{-1}A'\Pi]$; $\Pi_{ij} = (2\mu_i)^{-1}\delta_{ij}$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}} \langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k \text{ cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2)\right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

$$
\langle A|T_{int}|A'\rangle = 3\langle A|A'\rangle \text{Tr}[AB^{-1}A'\Pi]; \quad \Pi_{ij} = (2\mu_i)^{-1}\delta_{ij}
$$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}}\langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k \text{ cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2)\right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

$$
\langle A|A'\rangle = \left(\frac{(2\pi)^{N-1}}{\det B}\right)^{3/2}; \quad B = A + A'
$$

$$
\langle A|T_{int}|A'\rangle = 3\langle A|A'\rangle \text{Tr}[AB^{-1}A'\Pi]; \quad \Pi_{ij} = (2\mu_i)^{-1}\delta_{ij}
$$

$$
\langle A|V^{2b}|A'\rangle = \frac{\Lambda^2 C^{(0)}}{2m\sqrt{\pi}} \langle A|A'\rangle \sum_{i
$$

$$
\langle A|V^{3b}|A'\rangle = \frac{\Lambda^2 D^{(0)}}{16m\pi^2} \langle A|A'\rangle \sum_{i < j < k} \sum_{\text{cyc}} \left(\det(I + \Lambda^2 F_{ijk}/2) \right)^{-3/2}; \ \ F_{ijk} = \Omega_{ijk}^T B^{-1} \Omega_{ijk}
$$
\n
$$
\Omega_{ijk} = (\omega_{ik} \ \omega_{jk})
$$

- To find the best *Aⁱ* , we use the Stochastic Variational Method (SVM):
-
-
-

- To find the best *Aⁱ* , we use the Stochastic Variational Method (SVM):
- We add basis function one by one, or try to replace an exist basis function by a new one.
-
-

 \pm of Basis functions

- To find the best *Aⁱ* , we use the Stochastic Variational Method (SVM):
- We add basis function one by one, or try to replace an exist basis function by a new one.
- \bullet We choose randomly the matrix A_i element by element, trying to minimize the energy.
-

 \pm of Basis functions

- To find the best *Aⁱ* , we use the Stochastic Variational Method (SVM):
- We add basis function one by one, or try to replace an exist basis function by a new one.
- \bullet We choose randomly the matrix A_i element by element, trying to minimize the energy.
- According to the variational principle, an upper bound for the ground (excited) state is achieved.

• At LO, we have only contact interaction,

 $V(r_{ii}) = g\delta(r_{ii}).$

$$
-\nabla^2 \psi(r) + g\delta(r)\psi(r) = -B_2\psi(r)
$$

$$
p^{2}\phi(p) + g \int \frac{d^{3}p'}{(2\pi)^{3}} \phi(p') = -B_{2}\phi(p)
$$

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2 + B_2}
$$

• At LO, we have only contact interaction,

 $V(r_{ii}) = g\delta(r_{ii}).$

- This interaction needs regularization and renormalization.
-

$$
-\nabla^2 \psi(r) + g\delta(r)\psi(r) = -B_2\psi(r)
$$

$$
p^2\phi(p) + g \int \frac{d^3p'}{(2\pi)^3} \phi(p') = -B_2\phi(p)
$$

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2 + B_2}
$$

• At LO, we have only contact interaction,

$$
V(r_{ij})=g\delta(r_{ij}).
$$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons (here $\hbar = m = 1$),

$$
-\nabla^2 \psi(r) + g\delta(r)\psi(r) = -B_2\psi(r)
$$

and in momentum space,

$$
p^{2}\phi(p) + g \int \frac{d^{3}p'}{(2\pi)^{3}} \phi(p') = -B_{2}\phi(p)
$$

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2 + B_2}
$$

At LO, we have only contact interaction,

$$
V(r_{ij})=g\delta(r_{ij}).
$$

- This interaction needs regularization and renormalization.
- The bound state of two identical bosons (here $\hbar = m = 1$),

$$
-\nabla^2 \psi(r) + g\delta(r)\psi(r) = -B_2\psi(r)
$$

and in momentum space,

$$
p^2\phi(p) + g \int \frac{d^3p'}{(2\pi)^3} \phi(p') = -B_2\phi(p)
$$

• Therefore.

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{1}{p'^2 + B_2}
$$

which diverges!

• To regularize, we can smear the interaction over a range of $1/\Lambda$, $\delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).$

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{\exp(-2p'^2/\Lambda^2)}{p'^2 + B_2}
$$

$$
g = \frac{8\sqrt{2}\pi^{3/2}}{\Lambda} \left(1 + \sqrt{\pi} \frac{Q}{\Lambda} + \ldots \right).
$$

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$
\delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).
$$

Doing so for the incoming and outcoming momenta we have,

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{\exp(-2p'^2/\Lambda^2)}{p'^2 + B_2}
$$

$$
g = \frac{8\sqrt{2}\pi^{3/2}}{\Lambda} \left(1 + \sqrt{\pi} \frac{Q}{\Lambda} + \dots \right).
$$

$$
\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta_{\Lambda}(r')
$$

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$
\delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).
$$

Doing so for the incoming and outcoming momenta we have,

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{\exp(-2p'^2/\Lambda^2)}{p'^2 + B_2}
$$

Which can be expand by powers of *Q*/Λ, (*Q* = √ *B*2)

$$
g = \frac{8\sqrt{2}\pi^{3/2}}{\Lambda} \left(1 + \sqrt{\pi}\frac{Q}{\Lambda} + \ldots\right).
$$

$$
\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta_{\Lambda}(r')
$$

• To regularize, we can smear the interaction over a range of $1/\Lambda$,

$$
\delta_{\Lambda}(r) \stackrel{\Lambda \to \infty}{\longrightarrow} \delta(r).
$$

• Doing so for the incoming and outcoming momenta we have,

$$
\frac{1}{g} = \int \frac{d^3 p'}{(2\pi)^3} \frac{\exp(-2p'^2/\Lambda^2)}{p'^2 + B_2}
$$

Which can be expand by powers of *Q*/Λ, (*Q* = √ *B*2)

$$
g = \frac{8\sqrt{2}\pi^{3/2}}{\Lambda} \left(1 + \sqrt{\pi} \frac{Q}{\Lambda} + \dots \right).
$$

• With the price of non-local potential,

$$
\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta_{\Lambda}(r')
$$

We can cut the momentum transfer $q = p - p'$, to get a local potential, $\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta(r-r')$

but now the two-body equation is to be solved numerically.

$$
V_{LO}(r) = \frac{4\pi\hbar^2}{m\Lambda} C^{(0)}(\Lambda)\delta_{\Lambda}(r), \ \ C^{(0)}(\Lambda) = 2.38 \left(1 + \frac{2.25}{a\Lambda} - \frac{4.68}{(a\Lambda)^2} + \ldots\right)
$$

We can cut the momentum transfer $q = p - p'$, to get a local potential, $\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta(r-r')$

but now the two-body equation is to be solved numerically.

- The LEC is renormalized by fixing one observable, like the dimer binding energy or the scattering length, to its physical value.
-

$$
V_{LO}(r) = \frac{4\pi\hbar^2}{m\Lambda} C^{(0)}(\Lambda)\delta_{\Lambda}(r), \ \ C^{(0)}(\Lambda) = 2.38 \left(1 + \frac{2.25}{a\Lambda} - \frac{4.68}{(a\Lambda)^2} + \ldots\right)
$$

We can cut the momentum transfer $q = p - p'$, to get a local potential,

$$
\langle r|V|r'\rangle = g\delta_{\Lambda}(r)\delta(r-r')
$$

but now the two-body equation is to be solved numerically.

- The LEC is renormalized by fixing one observable, like the dimer binding energy or the scattering length, to its physical value.
- Using dimension less LEC,

Next to Leading Order

At NLO, the LO term is iterated and 2-derivatives term is added:

$$
V_{NLO}(r) = \frac{4\pi\hbar^2}{m\Lambda} \delta_\Lambda(r) \left\{ C_0^{(1)}(\Lambda) + C_2^{(1)}(\Lambda) \left[\overleftarrow{\nabla}^2 + \overrightarrow{\nabla}^2 \right] \right\}
$$

$$
\Delta f_k = -\frac{m}{k^2} \int dr \psi_{LO}^2 V_{NLC}
$$

$$
f_k \approx \frac{1}{-a^{-1} - ik} \left(1 - \frac{1}{-a^{-1} - ik} \left[\frac{1}{2} r_{\text{eff}} k^2 - \frac{1}{2} r_{\text{eff}} k^2 \right] \right)
$$

Next to Leading Order

At NLO, the LO term is iterated and 2-derivatives term is added:

$$
V_{NLO}(r) = \frac{4\pi\hbar^2}{m\Lambda} \delta_{\Lambda}(r) \left\{ C_0^{(1)}(\Lambda) + C_2^{(1)}(\Lambda) \left[\overleftarrow{\nabla}^2 + \overrightarrow{\nabla}^2 \right] \right\}
$$

- NLO term is to be taken in perturbative way.
-

$$
\Delta f_k = -\frac{m}{k^2} \int dr \psi_{LO}^2 V_{NLO}
$$

$$
f_k \approx \frac{1}{-a^{-1} - ik} \left(1 - \frac{1}{-a^{-1} - ik} \left[\frac{1}{2} r_{\text{eff}} k^2 + \frac{\delta a}{a^2} \right] \right)
$$

At NLO, the LO term is iterated and 2-derivatives term is added:

$$
V_{NLO}(r) = \frac{4\pi\hbar^2}{m\Lambda} \delta_{\Lambda}(r) \left\{ C_0^{(1)}(\Lambda) + C_2^{(1)}(\Lambda) \left[\overleftarrow{\nabla}^2 + \overrightarrow{\nabla}^2 \right] \right\}
$$

- NLO term is to be taken in perturbative way.
- For energies,

$$
\Delta E = \langle \psi_{LO} | V_{NLO} | \psi_{LO} \rangle
$$

$$
\Delta f_k = -\frac{m}{k^2} \int dr \psi_{LO}^2 V_{NLC}
$$

$$
f_k \approx \frac{1}{-a^{-1} - ik} \left(1 - \frac{1}{-a^{-1} - ik} \left[\frac{1}{2} r_{\text{eff}} k^2 + \frac{\delta a}{a^2} \right] \right)
$$

At NLO, the LO term is iterated and 2-derivatives term is added:

$$
V_{NLO}(r) = \frac{4\pi\hbar^2}{m\Lambda} \delta_{\Lambda}(r) \left\{ C_0^{(1)}(\Lambda) + C_2^{(1)}(\Lambda) \left[\overleftarrow{\nabla}^2 + \overrightarrow{\nabla}^2 \right] \right\}
$$

- NLO term is to be taken in perturbative way.
- For energies,

$$
\Delta E = \langle \psi_{LO} | V_{NLO} | \psi_{LO} \rangle
$$

For scattering amplitude - distorted wave Born approximation,

$$
\Delta f_k = -\frac{m}{k^2} \int dr \psi_{LO}^2 V_{NLO}
$$

$$
f_k \approx \frac{1}{-a^{-1} - ik} \left(1 - \frac{1}{-a^{-1} - ik} \left[\frac{1}{2} r_{\text{eff}} k^2 + \frac{\delta a}{a^2} \right] \right)
$$

At NLO, the LO term is iterated and 2-derivatives term is added:

$$
V_{NLO}(r) = \frac{4\pi\hbar^2}{m\Lambda} \delta_{\Lambda}(r) \left\{ C_0^{(1)}(\Lambda) + C_2^{(1)}(\Lambda) \left[\overleftarrow{\nabla}^2 + \overrightarrow{\nabla}^2 \right] \right\}
$$

- NLO term is to be taken in perturbative way.
- For energies,

$$
\Delta E = \langle \psi_{LO} | V_{NLO} | \psi_{LO} \rangle
$$

For scattering amplitude - distorted wave Born approximation,

$$
\Delta f_k = -\frac{m}{k^2} \int dr \psi_{LO}^2 V_{NLO}
$$

$$
\bullet
$$

$$
f_k \approx \frac{1}{-a^{-1} - ik} \left(1 - \frac{1}{-a^{-1} - ik} \left[\frac{1}{2} r_{\text{eff}} k^2 + \frac{\delta a}{a^2} \right] \right)
$$

Two-boson system

• From TTY potential we have $a = 189a_0$ and $B_2 = 1.31$ mK. LO is fitted to $a = 189a_0$, NLO to $r_{\text{eff}} = 14.2a_0$.

Two-boson system

• From TTY potential we have $a = 189a_0$ and $B_2 = 1.31$ mK. LO is fitted to *a* = 189*a*₀, NLO to $r_{\text{eff}} = 14.2a_0$.

*r*_{eff} / *a* ≈ 8%; $(r_{eff}$ / *a*)² ≈ 0.5%

Two-boson system

• From TTY potential we have $a = 189a_0$ and $B_2 = 1.31$ mK. LO is fitted to $a = 189a_0$, NLO to $r_{\text{eff}} = 14.2a_0$.

*r*_{eff} / *a* ≈ 8%; $(r_{eff}$ / *a*)² ≈ 0.5%

Fitting to powers of Q_2/Λ , $(B_A = AQ_A^2/2m)$ we extract *A* $B_2^{LO} = 1.21 \text{ mK}, B_2^{NLO} = 1.30 \text{ mK}, B_2^{TTY} = 1.31 \text{ mK}$

Tang, Toennies & Yiu, PRL **74**, 1546 (1995)

Trying to calculate the trimer binding energy we get the Thomas collapse:

$$
V_{LO}^{3N} = \frac{4\pi\hbar^2}{m\Lambda^4} D^{(0)} \sum_{i < j < k} \sum_{cyc} \delta_\Lambda(r_{ij}) \delta_\Lambda(r_{jk}),
$$

Trying to calculate the trimer binding energy we get the Thomas collapse:

• To stabilize the system, a 3-body counter term must be introduced at LO,

$$
V_{LO}^{3N} = \frac{4\pi\hbar^2}{m\Lambda^4} D^{(0)} \sum_{i < j < k} \sum_{cyc} \delta_\Lambda(\mathbf{r}_{ij}) \delta_\Lambda(\mathbf{r}_{jk}),
$$

 $Λ_*$ is a new momentum scale, $D^{(0)} = f(aΛ, Λ/Λ_*)$

Trying to calculate the trimer binding energy we get the Thomas collapse:

• To stabilize the system, a 3-body counter term must be introduced at LO,

$$
V_{LO}^{3N} = \frac{4\pi\hbar^2}{m\Lambda^4} D^{(0)} \sum_{i < j < k} \sum_{cyc} \delta_\Lambda(\mathbf{r}_{ij}) \delta_\Lambda(\mathbf{r}_{jk}),
$$

 $Λ_*$ is a new momentum scale, $D^{(0)} = f(aΛ, Λ/Λ_*)$ $D^{(0)}$ is fixed by another observable.

P. F. Bedaque, H.W. Hammer, and U. van Kolck Phys. Rev. Lett. **82** 463 (1999).

 $\Lambda_3 = \Lambda_2$, non-local, smooth cutoff R.F. Mohr *et al.*, Ann. Phys. **321**, 225 (2006).

Atom-dimer scattering

LO and NLO are fitted to $B_3^* = 1.74B_2$. The atom-dimer scattering length is calculated in a trap, using

$$
\frac{1}{\sqrt{2}} \frac{\Gamma[(1-\eta)/4]}{\Gamma[(3-\eta)/4]} = \frac{a_{ad}/a_{ho}}{1 - a_{ad}r_{ad}\eta/(4a_{ho}^2)}
$$

$$
a_{ho} = \sqrt{\hbar/(2\mu\omega)} \ \mu = 2m/3 \ \eta = 2(E_3 - E_2)/(h\omega)
$$

Suzuki *et al.*, PRA **80**, 033601 (2009); Stetcu *et al.*, Ann. Phys. **325**, 1644 (2010).

Trimer ground state

Fitting to powers of Q_3/Λ , $B_3(\Lambda) = B_{3\infty}(1+\alpha\frac{Q_3}{\Lambda}+\beta\left(\frac{Q_3}{\Lambda}\right)^2+\gamma\left(\frac{Q_3}{\Lambda}\right)^3$

Trimer ground state

Fitting to powers of Q_3/Λ , $B_3(\Lambda) = B_{3\infty}(1+\alpha\frac{Q_3}{\Lambda}+\beta\left(\frac{Q_3}{\Lambda}\right)^2+\gamma\left(\frac{Q_3}{\Lambda}\right)^3$ we extract

$$
B_3^{LO}/B_3^* = 64.8
$$
, $B_3^{NLO}/B_3^* = 49.8$, $B_3^{TTY}/B_3^* = 55.4$

 $Q_3 r_{\text{eff}} \approx 0.6 \gg Q_2 r_{\text{eff}} \approx 0.08$
Four-boson system

Are more terms needed to stabilize heavier systems?

Four-boson system

Are more terms needed to stabilize heavier systems?

 $B_4^{LO}/B_3 = 4.2(1), B_4^{TTY}/B_3 = 4.43$

Tjon line

Another evidence is the Tjon line, the correlation between the binding energies of the triton and the *α*-particle.

J.A. Tjon, Phys. Lett. B **56**, 217 (1975).

L. Platter, H.-W. Hammer, U.-G. Meissner, Phys. Lett. B **607**, 254 (2005).

5- and 6- boson system

Are more terms needed to stabilize heavier systems?

I. Stetcu, B.R. Barrett, and U. van Kolck, Phys. Lett. B **653** , 358 (2007).

Betzalel Bazak (IPNO) [1] J. von Stecher, J. Phys. B: At. Mol. Opt. Phys. 43, 1 [Pionless EFT for Few-Body Systems](#page-0-0) 26/30

5- and 6- boson system

Are more terms needed to stabilize heavier systems?

[1] J. von Stecher, J. Phys. B: At. Mol. Opt. Phys. **43**, 101002 (2010).

Generalized Tjon-lines

Correlation between B_3^* to B_3 , B_4 , B_5 , and B_6 :

...Therefore, no 4, 5 or 6-body terms are needed at LO.

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j
$$

$$
V_{LO} = C_S \hat{P}_S + C_T \hat{P}_T
$$

-
-
-

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j
$$

using the fermionic symmetry,

$$
V_{LO} = C_S \hat{P}_S + C_T \hat{P}_T
$$

-
-
-

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j
$$

using the fermionic symmetry,

$$
V_{LO} = C_S \hat{P}_S + C_T \hat{P}_T
$$

- The 2-body LECs are fitted to the deuteron binding energy and the singlet ${}^{1}S_0$ *np* scattering length.
-
-

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j
$$

using the fermionic symmetry,

$$
V_{LO} = C_S \hat{P}_S + C_T \hat{P}_T
$$

- The 2-body LECs are fitted to the deuteron binding energy and the singlet ${}^{1}S_0$ *np* scattering length.
- The 3-body LEC is fitted to the triton binding energy

$$
V_{LO} = a_1 + a_2 \sigma_i \cdot \sigma_j + a_3 \tau_i \cdot \tau_j + a_4 \sigma_i \cdot \sigma_j \tau_i \cdot \tau_j
$$

using the fermionic symmetry,

$$
V_{LO} = C_S \hat{P}_S + C_T \hat{P}_T
$$

- The 2-body LECs are fitted to the deuteron binding energy and the singlet ${}^{1}S_0$ *np* scattering length.
- The 3-body LEC is fitted to the triton binding energy
- No Coulumb interaction (should be NLO. See Koenig's talk next week).

α - ⁴He nuclei

A pionless EFT was constructed for few-body systems.

-
-
-
-
- A pionless EFT was constructed for few-body systems.
- The ⁴He atomic system was studied, and our EFT fits nicely the known results.
-
-
-
- A pionless EFT was constructed for few-body systems.
- The ⁴He atomic system was studied, and our EFT fits nicely the known results.
- The convergence of pionless EFT for $A = 4, 5$ and 6 was studied.
-
-
- A pionless EFT was constructed for few-body systems.
- The ⁴He atomic system was studied, and our EFT fits nicely the known results.
- The convergence of pionless EFT for $A = 4, 5$ and 6 was studied.
- Generalized Tjon-lines were introduced, showing that at LO no 4,5 or 6-body term is needed.
-
- A pionless EFT was constructed for few-body systems.
- The ⁴He atomic system was studied, and our EFT fits nicely the known results.
- The convergence of pionless EFT for $A = 4, 5$ and 6 was studied.
- Generalized Tjon-lines were introduced, showing that at LO no 4,5 or 6-body term is needed.
- Similar results was shown for atomic nucleus.