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Our strategy to Nuclear/Astro physics from QCD

Potentials from 
lattice QCD
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1. HAL QCD method
--Overview--



 HAL QCD strategy

Define a non-local but energy-independent potential below inelastic threshold in QCD

from Nambu-Bethe-Salpeter (NBS) wave function

NN → NN NN → NN + others

�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk�
Wk = 2

�
k2 + m2

N

�k(r) �
�

l,m

Cl
sin(kr � l�/2 + �l(k))

kr
Yml(�r)

r = |r|!1

energy

�l(k) scattering phase shift  (phase of 
the S-matrix by unitarity) in QCD.

[�k �H0] �k(x) =
�

d3y U(x,y)�k(y) ϵk =
k2

2µ
H0 =

−∇2

2µ

Uk(x,y)� U(x,y) Vk(x)general

potential U(x, y) is faithful to QCD phase shift �l(k).

Aoki, Hatsuda & Ishii, PTP123(2010)89.

no interaction

interaction 
range



 A non-local but energy-independent potential exists.

U(x,y) =
Wk,Wk��Wth�

k,k�

[�k �H0] �k(x)��1
k,k��

†
k�(y)

��1
k,k� : inverse of �k,k� = (�k, �k�)

inner product

For �Wp < Wth = 2mN + m� (threshold energy)

�
d3y U(x,y)�p(y) =

�

k,k�

[�k �H0] �k(x)��1
k,k��k�,p = [�p �H0] �p(x)

Proof



Derivative (velocity) expansion U(x,y) = V (x,r)�3(x� y)

At LO, for example, we simply have

VLO(x) =
[�k �H0]�k(x)

�k(x)

phase shifts and binding energy below inelastic threshold

V (x,∇) = V0(r) + Vσ(r)(σ1 · σ2) + VT (r)S12 + VLS(r)L · S + O(∇2)
LO LO LO NLO NNLO

tensor operator S12 =
3
r2

(σ1 · x)(σ2 · x) − (σ1 · σ2)

spins

Note truncation of the derivative expansion introduces some systematics,
which fortunately can be estimated explicitly. 



Advantages

• milder finite volume corrections

• extension to coupled channel problems is easy. Inelastic scattering can be treated.

•  extensions to 3-body potential /particle production are possible with non-relativistic 
approximation, though numerically demanding.

• ground state saturation is not required to extract the potential. (See later.)

A + B � C + D

A + B � A + B + C

Disadvantages

• higher numerical cost than the standard method in both Flops and Bytes.



2. Previous results 



Extraction of potentials

NBS wave function Potential

4-pt Correlation function

It is now clear that there is no unique definition for the NN potential. Ref. [18, 24, 25], however,
criticized that the NBS wave function is not ”the correct wave function for two nucleons” and that its
relation to the correct wave function is given by

ϕW (r) = ZNN(|r|)⟨0|T{N0(x + r, 0)N0(x, 0)}|2N, W, s1, s2⟩ + · · · (23)

where N0(x, t) is ”a free-field nucleon operator” and the ellipses denotes ”additional contributions from
the tower of states of the same global quantum numbers”. Thus ⟨0|T{N0(x+r, 0)N0(x, 0)}|2N,W, s1, s2⟩
is considered to be ”the correct wave function”. In this claim it is not clear what is ”a free-field nucleon
operator” in the interacting quantum field theory such as QCD. An asymptotic in or out field operator
may be a candidate. If the asymptotic field is used for N0, however, the potential defined from the
wave function identically vanishes for all r by construction. To be more fundamental, a concept of
”the correct wave function” is doubtful. If some wave function were ”correct”, the potential would be
uniquely defined from it. This clearly contradicts the fact discussed above that the potential is not an
observable and therefore is not unique. This argument shows that the criticism of Ref. [18, 24, 25] is
flawed.

3 Lattice formulation

In this section, we discuss the extraction of the NBS wave function from lattice QCD simulations. For
this purpose, we consider the correlation function on the lattice defined by

F (r, t − t0) = ⟨0|T{N(x + r, t)N(x, t)}J (t0)|0⟩ (24)

where J (t0) is the source operator which creates two nucleon state and its explicit form will be considered
later. By inserting the complete set and considering the baryon number conservation, we have

F (r, t − t0) = ⟨0|T{N(x + r, t)N(x, t)}
∑

n,s1,s2

|2N, Wn, s1, s2⟩⟨2N, Wn, s1, s2|J (t0)|0⟩

=
∑

n,s1,s2

An,s1,s2ϕ
Wn(r)e−Wn(t−t0), An,s1,s2 = ⟨2N,Wn, s1, s2|J (0)|0⟩. (25)

For a large time separation that (t − t0) → ∞, we have

lim
(t−t0)→∞

F (r, t − t0) = A0ϕ
W0(r)e−W0(t−t0) + O(e−Wn̸=0(t−t0)) (26)

where W0 is assumed to be the lowest energy of NN states. Since the source dependent term A0 is just
a multiplicative constant to the NBS wave function ϕW0(r), the potential defined from ϕW0(r) in our
procedure is manifestly source-independent. Therefore the statement that the potential in this scheme
is ”source-dependent” in Ref. [26] is clearly wrong.

In this extraction of the wave function, the ground state saturation for the correlation function F in
eq. (26) is important. In principle, one can achieve this by taking a large t − t0. In practice, however,
F becomes very noisy at large t − t0, so that the extraction of ϕW0 becomes difficult at large t − t0.
Therefore it is crucial to find the region of t where the ground state saturation is approximately satisfied
while the signal is still reasonably good. The choice of the source operator becomes important to have
such a good t-region.

before using the potential in nuclear physics.
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NBS wave function

This is a standard method in lattice QCD and was employed for our first calculation.

ground state saturation at large t

�k(r) = �0|N(x + r, 0)N(x, 0)|NN, Wk� [�k �H0]�k(x) =
�

d3y U(x,y)�k(y)

+ · · ·

Standard method



Improved method (time-dependent method)

normalized 4-pt function R(r, t) ≡ F (r, t)/(e−mN t)2 =
∑

n

AnϕWn(r)e−∆Wnt

∆Wn = Wn − 2mN =
k2

n

mN
− (∆Wn)2

4mN

− ∂

∂t
R(r, t) =

{
H0 + U − 1

4mN

∂2

∂t2

}
R(r, t)

potential Leading Order
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−H0 −

∂

∂t
+

1
4mN

∂2

∂t2

}
R(r, t) =

∫
d3r′ U(r, r′)R(r′, t) = VC(r)R(r, t) + · · ·

1st 2nd 3rd total

3rd term(relativistic correction) 
is negligible. 

Ground state saturation is no more required !  
(advantage over the finite volume method.)

Ishii et al. (HALQCD), PLB712(2012) 437
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CNN (
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= ψ n (
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n
∑ ⋅an exp(−Ent)

 
ΔE = Ei+1 − Ei ~
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mN

1
L2
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2

mN
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L
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⎛
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⎞
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excited state contributions become bigger 
in the larger volume
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“TimeAdependent”$SchrodingerAlike$equa=on�

time-dependent HAL QCD method makes 
this difficulty milder

�E � m�

remaining t-dependence of the potential

1. Inelastic contributions (including excited states of one baryon)

2. Higher order terms in the derivative expansion

R(r, t) = F (r, t)/GN (t)2



Ishii et al. (HALQCD), PLB712(2012) 437.2+1 flavor QCD a=0.09fm, L=2.9fm m� � 700 MeV

NN potential
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Qualitative features of NN potential 
are reproduced.

It has a reasonable shape. The strength is 
weaker due to the heavier quark mass.

Need calculations at physical quark mass on 
“K” computer.

Doi’s Talk.



Convergence of velocity expansion
If the higher order terms are large, LO potentials determined from NBS wave 
functions at different energy become different.(cf. LOC of ChPT).

Numerical check in quenched QCD K. Murano, N. Ishii, S. Aoki, T. Hatsuda PTP 125 (2011)1225.
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�Higher order terms turn out to be very small at low energy in our scheme.

Recent comparison: Iritani’s talk 
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both methods 
agree very well.

This establishes a validity of the potential method and shows a good convergence 
of the velocity expansion.

Potential  vs. Finite volume 

phase shifts

I = 2 �� scattering in quenched QCD



Potential vs. Direct 
Reviewed in T.Doi, PoS LAT2012,009 (+ updates)

HAL (potential) method (HAL) :                                            unbound
Direct method (PACS-CS (Yamazaki et al.)/NPL/CalLat):    bound

“di-neutron” “deuteron”

Iritani’s talk Which is correct ?
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LO Tensor potential

•no repulsive core in the 
tensor potential.

• the tensor potential is 
enhanced in full QCD
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Figure 8: (Left) The spin-triplet central potential VC(r)(1,0) obtained from the orbital A+
1 −T+

2 coupled
channel in quenched QCD at mπ ≃ 529 MeV. (Right) The tensor potential VT (r) from the orbital
A+

1 − T+
2 coupled channel. For these two figures, symbols are same as in Fig. 7(Left). Taken from

Ref. [30].
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Figure 9: (Left) 2+1 flavor QCD results for the central potential and tensor potentials at mπ ≃ 701
MeV. (Right) Quenched results for the same potentials at mπ ≃ 731 MeV. Taken from Ref. [33].

4.4 Full QCD results

Needless to say, it is important to repeat calculations of NN potentials in full QCD on larger volumes
at lighter pion masses. The PACS-CS collaboration is performing 2 + 1 flavor QD simulations, which
cover the physical pion mass[31, 32]. Gauge configurations are generated with the Iwasaki gauge action
and non-perturbatively O(a)-improved Wilson quark action on a 323 × 64 lattice. The lattice spacing a
is determined from mπ, mK and mΩ as a ≃ 0.091 fm, leading to L ≃ 2.9 fm. Three ensembles of gauge
configurations are used to calculate NN potentials at (mπ,mN) ≃(701 MeV, 1583 MeV), (570 MeV,
1412 MeV) and (411 MeV,1215 MeV )[33] .

Fig. 9(Left) shows the NN local potentials obtained from the PACS-CS configurations at E ≃ 0
and mπ = 701 MeV, which is compared with the previous quenched results at comparable pion mass
mπ ≃ 731 MeV but at a ≃ 0.137 fm, given in Fig. 9(Right). Both the repulsive core at short distance
and the tensor potential become significantly enhanced in full QCD. The attraction at medium distance
tends to be shifted to outer region, while its magnitude remains almost unchanged. These differences
may be caused by dynamical quark effects. For more definite conclusion on this point, a more controlled
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Negative parity potentials

Murano et al. (HAL QCD), PLB735(2014)19a = 0.16 fm, L = 2.5 fm, m� = 1100 MeV
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3. Recent results
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  Results from HAL QCD Collaboration

Sasaki for HAL QCD Collaboration

2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter

π 701±1 570±2 411±2

K 789±1 713±2 635±2

m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
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2+1 flavor gauge configurations by PACS-CS collaboration.

RG improved gauge action & O(a) improved clover quark action

β = 1.90, a-1 = 2.176 [GeV], 323x64 lattice, L = 2.902 [fm].

κ
s
 = 0.13640 is fixed, κ

ud
 = 0.13700, 0.13727 and 0.13754 are chosen.

Flat wall source is considered to produce S-wave B-B state.

The KEK computer system A resources are used.  

u,d quark masses lighter
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m
π
/m

Κ
0.89 0.80 0.65

N 1585±5 1411±12 1215±12

Λ 1644±5 1504±10 1351±  8

Σ 1660±4 1531±11 1400±10

Ξ 1710±5 1610±  9 1503±  7

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

In unit 
of MeV

Numerical setupNumerical setupNumerical setupNumerical setup

2700

2800

2900

3000

3100

3200

3300

Esb 1Esb 1 Esb 2Esb 2 Esb 3Esb 3

ΛΛ : 3288MeV

ΝΞ : 3295MeV

ΣΣ  : 3320MeV

3008MeV

3021MeV

3062MeV

2702MeV

2718MeV

2800MeV

SU(3) breaking effects becomes larger

thresholds

Nf = 2 + 1 full QCD with L = 2.9 fm



ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS
00
 channel         channel        ΛΛ, ΝΞ, ΣΣ ΛΛ, ΝΞ, ΣΣ (I=0) (I=0) 11SS

00
 channel         channel        

In this channel, our group found the “H-dibaryon” in the SU(3) limit.
Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration

All channels have repulsive core

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Esb1 : mπ= 701 MeV 

Esb2 : mπ= 570 MeV

Esb3 : mπ= 411 MeV

Diagonal elements

Off-diagonal elements

shallow attractive pocket Deeper attractive pocket Strongly repulsive

Relatively weaker than the others

coupled channel 3x3 potentials



Preliminary !

Bound H-dibaryon
coupled to NΞ

H as resonance 
nearΛΛ threshold  
(H as bound NΞ)

H as resonance near 
NΞ threshold 
(H as bound NΞ)

This suggests that H-dibaryon becomes resonance at physical point. 
Below or above NΞ ? Need simulation at physical point.

�� and N� phase shift

  

ΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shiftsΛΛ ΛΛ and and ΝΞΝΞ phase shifts phase shifts

mπ = 700 MeV : bound state

mπ = 570 MeV : resonance near ΛΛ threshold

mπ = 410 MeV : resonance near ΝΞ threshold..

mπ = 410 MeVmπ = 410 MeVmπ = 700 MeV mπ = 700 MeV mπ = 570 MeVmπ = 570 MeV

Preliminary!Nf = 2+1 full QCD with L = 2.9fm

mπ = 410 MeVmπ = 410 MeV

H-dibaryon is unlikely bound state

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
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Zc(3900)
Y. Ikeda, et al. , arXiv:1602.03465[hep-lat]A tetraquark candidate

February 17, 2016

Fate of the Tetraquark Candidate Zc(3900) in Lattice QCD

Yoichi Ikeda1, Sinya Aoki2,3, Takumi Doi1, Shinya Gongyo2, Tetsuo Hatsuda1,4,
Takashi Inoue5, Takumi Iritani6, Noriyoshi Ishii7, Keiko Murano7, Kenji Sasaki3

(HAL QCD Collaboration)
1Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198, Japan

2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3Center for Computational Sciences, University of Tsukuba, Ibaraki 305-8571, Japan

4Kavli IPMU (WPI), The University of Tokyo, Chiba 277-8583, Japan
5Nihon University, College of Bioresource Sciences, Kanagawa 252-0880, Japan

6Department of Physics and Astronomy, Stony Brook University, New York 11794-3800, USA
7Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan

The possible exotic meson Zc(3900), found in e+e− reactions, is studied by the method of coupled-
channel scattering in lattice QCD. The interaction among πJ/ψ, ρηc and D̄D∗ channels is derived
from (2+1)-flavor QCD simulations at mπ = 410-700 MeV. The interaction is dominated by the
off-diagonal πJ/ψ-D̄D∗ and ρηc-D̄D∗ couplings, which indicates that the Zc(3900) is not a usual res-
onance but a threshold cusp. Semi-phenomenological analyses with the coupled-channel interaction
are presented to confirm this conclusion.

PACS numbers: 12.38.Gc, 14.40.Rt, 13.75.Lb

One of the long standing problems in hadron physics is
to identify the existence of exotic hadrons different from
the quark-antiquark states (mesons) and three-quark
states (baryons). Candidates of such exotic hadrons in-
clude the pentaquark states P+

c (4380) and P+
c (4450) ob-

served by LHCb Collaboration [1] and the tetraquark
states Zc(3900) reported by BESIII [2], Belle [3] and
CLEO-c [4] Collaborations. In particular, Zc(3900) ap-
pears as a peak in both the π±J/ψ and D̄D∗ invari-
ant mass spectra in the reaction, e+e− → Y (4260) →
π±π∓J/ψ,πD̄D∗: Its quantum numbers are then identi-
fied as IG(JPC) = 1+(1+−), so that at least four quarks,
cc̄ud̄ (or isospin partners), are involved. (See the level
structure and the decay scheme in Fig.1.)

So far, there have been various phenomenological
attempts to characterize the Zc(3900) as a hadro-
charmonium, a compact tetraquark, a hadronic molecule
(e.g., [5, 6]) as well as a kinematical threshold effect (e.g.,
[7, 8]). However, due to the lack of information of the
diagonal and off-diagonal interactions among different
channels (such as πJ/ψ, ρηc, and D̄D∗) the predictions
of those models are not well under theoretical control.
On the other hand, the direct lattice QCD studies with
the standard method of temporal correlations show no
candidate for the Zc(3900) eigenstate [9, 10], which indi-
cates that the Zc(3900) may not be an ordinary resonance
state. Under these circumstances, it is most desirable to
carry out manifest coupled-channel analysis with the first
principle QCD inputs.

The purpose of this Letter is to report a first seri-
ous attempt to determine the nature of the Zc(3900)
through the HAL QCD approach [11–16], which en-
ables us to carry out the direct coupled-channel analysis
in lattice QCD [17–19]. In the following, we consider
three two-body channels below Zc(3900) (πJ/ψ, ρηc and

D̄D∗) which couple with each other. The interactions
among different channels which are faithful to the QCD
S-matirix can be derived from the measurement of the
equal-time Nambu-Bethe-Salpeter (NBS) wave functions
on the lattice. The s-wave interactions thus obtained
are used to search for the complex poles in the πJ/ψ
and D̄D∗ scattering amplitudes to unravel the nature of
the Zc(3900). Finally, using scattering amplitudes ob-
tained in lattice QCD as inputs, we extract invariant
mass spectra of the three-body decays Y (4200) → ππJ/ψ
and πD̄D∗, which are compared with experimental data.

FIG. 1: The decay processes of the Y (4260) and the Zc(3900),
and the relevant two-meson thresholds of the Zc(3900) de-
cay at mπ ≃ 140 (Expt.), 410 (Case I), 570 (Case II) and
700 (Case III) MeV. The arrows represent the observed decay
modes in the experiments [2–4].

m� � 410 (Case I), 570 (Case II), 700 (Case III) MeV

coupled channel analysis 
is needed.

L � 2.9 fm, a � 0.09 fm
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FIG. 2: (Color online). The s-wave potentials for the (a) D̄D∗-D̄D∗, (b) ρηc-D̄D∗, (c) ρηc-ρηc, (d) πJ/ψ-D̄D∗, (e) πJ/ψ-ρηc

and (f) πJ/ψ-πJ/ψ channels. The coupled-channel potentials are obtained at time-slice t = 13 for Case I(red circles), Case
II(blue squares) and Case III(black triangles).
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FIG. 3: (Color online). The two-body invariant mass spectra in the (a) πJ/ψ (red circles), ρηc (green triangles) and D̄D∗

(blue squares) channels and (b) the pole of the S-matrix on the second Riemann sheet for all the πJ/ψ, ρηc and D̄D∗ channels.
The calculations are carried out for Case I in Table I. In Fig. (a), the black crosses show the two-body πJ/ψ invariant mass
spectrum, when we switch off the off-diagonal component of V αβ . For red circles and black crosses, the factor of 5 and 50 is
multiplied, respectively.

I. The peak structures in ρηc and D̄D∗ spectra just ap-
pear due to the opening of the s-wave thresholds. The
sudden enhancement of the spectrum in the πJ/ψ spec-

trum just above the D̄D∗ threshold is induced by the
πJ/ψ-D̄D∗ coupling. Indeed, if we switch off the off-
diagonal components of V αβ , the red circle points turn

coupled channel 3x3 potentials Case I
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trum just above the D̄D∗ threshold is induced by the
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�J/� mass spectrum w/o o�-diagonal parts

Case I

virtual pole in the second Riemann sheets of all channels  

the peak structure
in the �J/� spectrum (Zc(3900))
seems a ”threshold cusp”.

a pole of S matrix

zpole � (mD + mD�) = �167(94)� 183(46)i

its contribution to the two-body amplitudes 
is highly suppressed.



Case Ifits to experimental data 

Y (4260)� � + �J/�, � + D̄D�

4

into the black cross points, which do not show any peak
structure. This implies that the peak structure in the
πJ/ψ spectrum (called Zc(3900)) is a typical “threshold
cusp” [25, 26] due to the opening of the s-wave D̄D∗

threshold.
To make sure that the Zc(3900) is not associated with

the resonance structure, we examine the pole positions
of the S-matrix on the complex energy z-plane. On the
second Riemann sheet of πJ/ψ, ρηc and D̄D∗ channels,
we find only the virtual pole with a large imaginary part:
z − (mD̄ + mD∗) = −167(94) − 183(46)i MeV for Case
I, −128(76) − 157(32)i MeV for Case II and −190(56) −
44(27)i MeV for Case III. As shown in Fig. 3 (b) for
Case I, such pole is located far from the D̄D∗ threshold
on the real axis, so that its contribution to the two-body
amplitudes is highly suppressed.
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FIG. 4: (Color online). The invariant mass spectra of the
(a) Y (4260) → ππJ/ψ and (b) Y (4260) → πD̄D∗ below the
D̄∗D∗ threshold calculated with the coupled-channel poten-
tials for Case I in Table I. The shaded areas show the sta-
tistical errors. The vertical arrows show the predicted peak
positions from the calculations. The blue dashed lines show
the invariant mass spectra of the Y (4260) decay, when we
switch off the off-diagonal component of V αβ . The experi-
mental data are taken from Ref. [2].

To make further connection between the above result
and the experimentally observed structure in πJ/ψ and
D̄D∗ invariant mass spectra [2–4], let us now consider
semi-phenomenological analysis of the three-body decays

Y (4260) → ππJ/ψ, πD̄D∗ by taking into account the fi-
nal state rescattering due to V αβ extracted from lattice
QCD simulations. We model the primary vertex by com-
plex constants CY →π+α (α = (πJ/ψ, D̄D∗)). Then the
three-body amplitude TY →π+β (β = (πJ/ψ, D̄D∗)) is
given by

TY →π+β(p⃗, q⃗β ; W3) =
∑

α=πJ/ψ,D̄D∗

CY →π+α

×
[
δαβ +

∫
dq⃗α

Tαβ(q⃗α, q⃗β , p⃗; W3)
W3 − Eπ(p⃗) − Eα(p⃗, q⃗α) + iϵ

]
, (4)

where W3, Eπ(p⃗) and Eα(p⃗, q⃗α) represent the ener-
gies of the Y (4260), the spectator pion with the mo-
mentum p⃗ and the interacting pairs with the rela-
tive momentum q⃗α in channel α, respectively. The
decay amplitudes in the rest frame of Y (4260) is
obtained as dΓY →π+β(W3) = (2π)4δ(W3 − Eπ(p⃗) −
Eβ(p⃗, q⃗β)) dp⃗ dq⃗β |TY →π+β(p⃗, q⃗β ; W3)|2.

In order to have the same phase space as the ex-
periments, we employ the physical hadron masses while
Tαβ is taken from the lattice data for Case I. The com-
plex couplings CY →π+α are fitted to the BES III event
data [2], which results in |CY →π(D̄D∗)/CY →π(πJ/ψ)| =

0.95(18) and arg(CY →π(D̄D∗)/CY →π(πJ/ψ)) = −58(44)
degree. In the fit, the overall factors are not relevant
due to fitting to the event data. Resulting decay spec-
trum is shown in Fig. 4 (a) and (b) where the shaded
bands denotes the statistical errors: We find that the
coupled-channel potentials V αβ well reproduce the peak
structures just above the D̄D∗ threshold at 3.9 GeV. The
deviation from the experimental data around 4 GeV may
be attributed to the contributions from the higher partial
waves between the spectator pion and interacting pairs
or from the D̄∗D∗ states, which are not considered in
the present study. If we turn off the off-diagonal com-
ponents of V αβ with the same constants CY →π+α, we
obtain the results shown by the blue dashed lines, where
the lines are normalized to the results obtained from the
full calculations at 4 GeV. The peak structures at 3.9
GeV disappear in this case.

With all these analyses, we can conclude that the ex-
perimentally observed Zc(3900) is not a conventional res-
onance state but is a threshold cusp due to the strong
πJ/ψ-D̄D∗ coupling.

In summary, we have studied the πJ/ψ-ρηc-D̄D∗

coupled-channel interactions using (2+1)-flavor full QCD
gauge configurations in order to study the structure of
the tetraquark candidate Zc(3900). Thanks to the HAL
QCD method, we obtain the full coupled-channel po-
tentials, V αβ , whose diagonal components of V αβ are
all small, so that Zc(3900) cannot be a simple hadro-
charmnium or D̄D∗ molecular state.

We also found a strong off-diagonal transition between
πJ/ψ and D̄D∗, which indicates that the Zc(3900) can
be explained as a threshold cusp. To confirm this, we
calculated the invariant mass spectra and pole positions
associated with the coupled channel two-body S-matrix
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given by
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where W3, Eπ(p⃗) and Eα(p⃗, q⃗α) represent the ener-
gies of the Y (4260), the spectator pion with the mo-
mentum p⃗ and the interacting pairs with the rela-
tive momentum q⃗α in channel α, respectively. The
decay amplitudes in the rest frame of Y (4260) is
obtained as dΓY →π+β(W3) = (2π)4δ(W3 − Eπ(p⃗) −
Eβ(p⃗, q⃗β)) dp⃗ dq⃗β |TY →π+β(p⃗, q⃗β ; W3)|2.

In order to have the same phase space as the ex-
periments, we employ the physical hadron masses while
Tαβ is taken from the lattice data for Case I. The com-
plex couplings CY →π+α are fitted to the BES III event
data [2], which results in |CY →π(D̄D∗)/CY →π(πJ/ψ)| =

0.95(18) and arg(CY →π(D̄D∗)/CY →π(πJ/ψ)) = −58(44)
degree. In the fit, the overall factors are not relevant
due to fitting to the event data. Resulting decay spec-
trum is shown in Fig. 4 (a) and (b) where the shaded
bands denotes the statistical errors: We find that the
coupled-channel potentials V αβ well reproduce the peak
structures just above the D̄D∗ threshold at 3.9 GeV. The
deviation from the experimental data around 4 GeV may
be attributed to the contributions from the higher partial
waves between the spectator pion and interacting pairs
or from the D̄∗D∗ states, which are not considered in
the present study. If we turn off the off-diagonal com-
ponents of V αβ with the same constants CY →π+α, we
obtain the results shown by the blue dashed lines, where
the lines are normalized to the results obtained from the
full calculations at 4 GeV. The peak structures at 3.9
GeV disappear in this case.

With all these analyses, we can conclude that the ex-
perimentally observed Zc(3900) is not a conventional res-
onance state but is a threshold cusp due to the strong
πJ/ψ-D̄D∗ coupling.

In summary, we have studied the πJ/ψ-ρηc-D̄D∗

coupled-channel interactions using (2+1)-flavor full QCD
gauge configurations in order to study the structure of
the tetraquark candidate Zc(3900). Thanks to the HAL
QCD method, we obtain the full coupled-channel po-
tentials, V αβ , whose diagonal components of V αβ are
all small, so that Zc(3900) cannot be a simple hadro-
charmnium or D̄D∗ molecular state.

We also found a strong off-diagonal transition between
πJ/ψ and D̄D∗, which indicates that the Zc(3900) can
be explained as a threshold cusp. To confirm this, we
calculated the invariant mass spectra and pole positions
associated with the coupled channel two-body S-matrix
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4. Summary

• HAL QCD strategy is a very powerful one for “nuclear physics from lattice QCD”.  

• work well also for multi-channel scatterings

• More results  
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Figure 6: Scattering phase shift δ as a function of the kinetic energy E = k2/(2µ) in the
center of mass frame, obtained from the potential with the n = 1 fit at t − t0 = 8. Only
statistical errors are shown.

systematic errors, we consider the observables obtained from the average
over 7 ≤ t − t0 ≤ 11 and over 9 ≤ t − t0 ≤ 11, as well as those from the
average over tmin ≤ t− t0 ≤ 11 (tmin = 7, 8, 9) with n = 2. Finally we obtain

BNΩ = 18.9(5.0)(+12.1
−1.8 ) MeV, (7)

aNΩ = −1.28(0.13)(+0.14
−0.15) fm, (8)

(re)NΩ = 0.499(0.026)(+0.029
−0.048) fm. (9)

Here the numbers in the first parenthesis correspond to the statistical error,
while those in the second parenthesis show the systematic errors obtained
by taking the largest difference between the central value and the other 5
values. Note that this systematic uncertainty is still sizable, in particular for
the binding energy.
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Back-up:
Some applications to 
nuclear physics 



Three nuclear force (3NF)
V3N(x1 � x3,x2 � x3) =

�

i<j

V2N(xi � xj) + V3NF(x1 � x3,x2 � x3)

2-body potential 3-body potential 

Doi et al. (HAL QCD), PTP 127 (2012) 723
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Figure 24: (Left) The wave function with linear setup in the triton channel. Red, blue, brown points
correspond to ϕS, ϕM , ϕ3D1 , respectively. (Right) The scalar/isoscalar TNF in the triton channel,
plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].

the TNF can be extracted unambiguously in this channel, without the information of parity-odd 2N
potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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plotted against the distance r = |r12/2| in the linear setup. Taken from Ref. [58].
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potentials.
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wave function, since ϕS contains the component for which all three nucleons are in S-wave.
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potentials.

Same gauge configurations used for the effective 2N potential study are employed in the numerical
simulations. Fig. 24(Left) gives each wave function of ϕS = 1√

2
(−ψ1S0 +ψ3S1), ϕM ≡ 1√

2
(+ψ1S0 +ψ3S1),

ψ3D1 as a function of r = |r12/2| in the triton channel at t − t0 = 8. Among three ϕS dominates the
wave function, since ϕS contains the component for which all three nucleons are in S-wave.

By subtracting the V2N from the total potentials in the 3N system, the TNF is detemined. Fig. 24
(Right) shows results for the scalar/isoscalar TNF, where the r-independent shift by energies is not
included, and thus about O(10) MeV systematic error is understood. There are various physical im-
plications in Fig. 24 (Right). At the long distance region of r, the TNF is small as is expected. At
the short distance region, the indication of the repulsive TNF is observed. Recalling that the repulsive
short-range TNF is phenomenologically required to explain the saturation density of nuclear matter,
etc., this is very encouraging result. Of course, further study is necessary to confirm this result, e.g., the
study of the ground state saturation, the evaluation of the constant shift by energies, the examination
of the discretization error.

8.2 Meson-baryon interactions

The potential method can be naturally extended to the meson-baryon systems and the meson-meson
systems. In this subsection, two applications of the potential method to the meson-baryon system are
discussed.

The first application is the study of the KN interaction in the I(JP ) = 0(1/2−) and 1(1/2−)
channels in the potential method. These channels may be relevant for the possible exotic state Θ+,
whose existence is still controversial.

The KN potentials in isospin I = 0 and I = 1 channels have been calculated in 2 + 1 full
QCD simulations, employing 700 gauge configurations on a 163 × 32 lattice at a = 0.121(1) fm and
(mπ,mK ,mN) = (871(1), 912(2), 1796(7)) in unit of MeV[60].

Fig. 25 shows the NBS wave functions of the KN scatterings in the I = 0 (left) and I = 1 (right)
channels. The large r behavior of the NBS wave functions in both channels do not show a sign of bound
state, though more detailed analysis is needed with larger volumes for a definite conclusion. On the
other hand, the small r behavior of the NBS wave functions suggests the repulsive interaction at short
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scalar/isoscalar 3NF is seen at short distance.
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No saturation for Neutron matter.
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FIG. 2: Ground state energy of 16O at MPS ≃ 470 MeV as a
function of b at several ndim.

TABLE II: Single particle levels, total energy, and root mean
square radius of 16O and 40Ca at MPS ≃ 470 MeV. Energies
(radii) are in unit of MeV (fm).

Single particle level Total energy Radius

1S 1P 2S 1D E0 E0/A
p

⟨r2⟩
16O −35.8 −13.8 −34.7 −2.17 2.35
40Ca −59.0 −36.0 −14.7 −14.3 −112.7 −2.82 2.78

a HO frequency which reproduces the root-mean-square
(RMS) radius of the matter distribution obtained by the
BHF calculation.

Figure 2 shows the ground state energy of 16O at
MPS ≃ 470 MeV, as a function of the width parameter b
of the HO wave function with increasing number of HO
basis ndim. The solid vertical bar at the rightmost point
represents the error for E0 of about ±10% at b = 3 fm
and ndim = 9: It originates from the statistical error of
our lattice QCD simulations estimated by the Jackknife
analysis with the bin-size of 360 for 720 measurements
as was done in ref. [8]. Almost the same errors apply to
other E0 in the figure. A similar figure for 40Ca is ob-
tained for the same quark mass. As ndim increases, the
binding energy |E0| increases with the optimal b shifting
to larger values. From these results, we can definitely say
that self-bound systems are formed in both nuclei at this
lightest quark mass, corresponding to MPS ≃ 470 MeV.
On the other hand, the existence of deeply bound nuclei
is excluded for other 4 heavier quark masses, since we do
not find E0 < 0.

In Figure 3, single particle levels of 16O and 40Ca are
shown for the optimal width parameter with the largest
HO basis; b = 3.0 fm and ndim = 9. In spite of the un-
physical quark mass in our lattice QCD simulations, the
obtained single particle levels have the similar magnitude
expected for those nuclei in the real world. Also, in the
bound region, the level structure follows almost exactly
the harmonic oscillator spectra with !ω ≃ 22− 23 MeV.
Since the spin-orbit force is not included in our lattice

-70

-60

-50

-40

-30

-20

-10

0

10

En
er

gy
  [

M
eV

]

16O

S-state P-state D-state

40Ca

S-state P-state D-state

FIG. 3: Single particle levels of 16O and 40Ca nuclei at MPS ≃
470 MeV. Positive energy continuum states appear as discrete
levels due to the finite number of basis.
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FIG. 4: Nucleon number density inside 16O and 40Ca at
MPS ≃ 470 MeV as a function of distance from the center
of the nucleus.

nuclear force, the spin-orbit splittings in the P and D
states are not seen in the figure.

Table II shows the single particle energies, total bind-
ing energies and RMS radii of the matter distributions of
16O and 40Ca for b = 3.0 fm and ndim = 9. Breakdowns
of the total binding energies are

16O : E0 = (259.6− 10.3)− 284.0 = −34.7 MeV (4)
40Ca : E0 = (813.4− 9.8)− 916.3 = −112.7 MeV (5)

where the first, second and third numbers are the ki-
netic energy, the center of mass correction and the po-
tential energy, respectively. The total binding energy is
obtained as a result of a large cancellation between ki-
netic energy and potential energy. Principally due to the
heavier quark mass in our calculation, obtained binding
energies |E0| are approximately factor 3 smaller than the
experimental data 127 MeV for 16O and 342 MeV for
40Ca [17].

The RMS radii of the matter distribution given in Ta-
ble II are calculated without the nucleon form-factor and
the center-of-mass correction. We found that these radii
are more or less similar to experimental charge radii (2.73

single particle level
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a HO frequency which reproduces the root-mean-square
(RMS) radius of the matter distribution obtained by the
BHF calculation.

Figure 2 shows the ground state energy of 16O at
MPS ≃ 470 MeV, as a function of the width parameter b
of the HO wave function with increasing number of HO
basis ndim. The solid vertical bar at the rightmost point
represents the error for E0 of about ±10% at b = 3 fm
and ndim = 9: It originates from the statistical error of
our lattice QCD simulations estimated by the Jackknife
analysis with the bin-size of 360 for 720 measurements
as was done in ref. [8]. Almost the same errors apply to
other E0 in the figure. A similar figure for 40Ca is ob-
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binding energy |E0| increases with the optimal b shifting
to larger values. From these results, we can definitely say
that self-bound systems are formed in both nuclei at this
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On the other hand, the existence of deeply bound nuclei
is excluded for other 4 heavier quark masses, since we do
not find E0 < 0.
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expected for those nuclei in the real world. Also, in the
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nuclear force, the spin-orbit splittings in the P and D
states are not seen in the figure.

Table II shows the single particle energies, total bind-
ing energies and RMS radii of the matter distributions of
16O and 40Ca for b = 3.0 fm and ndim = 9. Breakdowns
of the total binding energies are

16O : E0 = (259.6− 10.3)− 284.0 = −34.7 MeV (4)
40Ca : E0 = (813.4− 9.8)− 916.3 = −112.7 MeV (5)

where the first, second and third numbers are the ki-
netic energy, the center of mass correction and the po-
tential energy, respectively. The total binding energy is
obtained as a result of a large cancellation between ki-
netic energy and potential energy. Principally due to the
heavier quark mass in our calculation, obtained binding
energies |E0| are approximately factor 3 smaller than the
experimental data 127 MeV for 16O and 342 MeV for
40Ca [17].

The RMS radii of the matter distribution given in Ta-
ble II are calculated without the nucleon form-factor and
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BHF calculation.
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MPS ≃ 470 MeV, as a function of the width parameter b
of the HO wave function with increasing number of HO
basis ndim. The solid vertical bar at the rightmost point
represents the error for E0 of about ±10% at b = 3 fm
and ndim = 9: It originates from the statistical error of
our lattice QCD simulations estimated by the Jackknife
analysis with the bin-size of 360 for 720 measurements
as was done in ref. [8]. Almost the same errors apply to
other E0 in the figure. A similar figure for 40Ca is ob-
tained for the same quark mass. As ndim increases, the
binding energy |E0| increases with the optimal b shifting
to larger values. From these results, we can definitely say
that self-bound systems are formed in both nuclei at this
lightest quark mass, corresponding to MPS ≃ 470 MeV.
On the other hand, the existence of deeply bound nuclei
is excluded for other 4 heavier quark masses, since we do
not find E0 < 0.
In Figure 3, single particle levels of 16O and 40Ca are
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physical quark mass in our lattice QCD simulations, the
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nuclear force, the spin-orbit splittings in the P and D
states are not seen in the figure.

Table II shows the single particle energies, total bind-
ing energies and RMS radii of the matter distributions of
16O and 40Ca for b = 3.0 fm and ndim = 9. Breakdowns
of the total binding energies are

16O : E0 = (259.6− 10.3)− 284.0 = −34.7 MeV (4)
40Ca : E0 = (813.4− 9.8)− 916.3 = −112.7 MeV (5)

where the first, second and third numbers are the ki-
netic energy, the center of mass correction and the po-
tential energy, respectively. The total binding energy is
obtained as a result of a large cancellation between ki-
netic energy and potential energy. Principally due to the
heavier quark mass in our calculation, obtained binding
energies |E0| are approximately factor 3 smaller than the
experimental data 127 MeV for 16O and 342 MeV for
40Ca [17].

The RMS radii of the matter distribution given in Ta-
ble II are calculated without the nucleon form-factor and
the center-of-mass correction. We found that these radii
are more or less similar to experimental charge radii (2.73

Nucleon number distribution

mπ = 470 MeV

E0/A vs A�1/3 form lattice QCD

29

Mass number A dependence 

● E0 /A of 4He and SNM ware obtained in our previous study.
● E0 of the nuclei with ndim = 9 are extrapolated to ndim = ∞ as

● E0 /A  in LQCD at the mq has a reasonable A dependence 
which is well described by a BW type mass formula.

E0(A )= aV A + aS A
2/3 + ⋯

Bethe-Weizsaker mass formula
     for nuclein in the real world

aV =−15.7 [MeV]

aS = 18.6 [MeV]

E0(A ; ndim) = E0(A ; ∞) + c (A )/ndim

aV =−5.46 [MeV] , aS = 6.56 [MeV]

E0/A = aV + asA
�1/3

aV = �5.46 MeV

aS = 6.56 MeV

aexp
S = 18.6 MeV

aexp
V = �15.7 MeV


