

Nov, 2015

CUSPS, Resonances, and Exotic States

Multi-electron States

1946: Wheeler suggests that Ps2 might be bound

Wheeler, J. A. Polyelectrons. Ann. NY Acad. Sci. 48, 219-238 (1946).

1946: Ore proves it is unbound

1947: Hylleraas & Ore prove it is bound

Hylleraas, E. A. & Ore, A. Binding energy of the positronium molecule. Phys. Rev. 71, 493-496 (1947)

FIG. 1. Coordinate system for the positronium molecule.

2007: Ps₂ is observed

Cassidy, D.B.; Mills, A.P. (Jr.) (2007). "The production of molecular positronium". Nature 449 (7159): 195-197

Multi-quark States

THRESHOLDS

Figure 5.2: Comparison of the $\gamma\gamma \rightarrow \rho\rho$ measured cross sections. The reaction $\gamma\gamma \rightarrow \rho^0\rho^0$ is presented as squares and is the measurement by PLUTO [11] and the reaction $\gamma\gamma \rightarrow \rho^+\rho^-$ as full dots.

not a threshold enhancement (?)

[Belle] PRL100, 202001 (08)

A Quark Model Example

A Quark Model Example

$$\sigma(s) = \sigma_{max} \left(\frac{\epsilon}{\epsilon_{max}}\right)^p \exp[p(1 - \epsilon/\epsilon_{max})]$$

$$p = 1/2 + L_{min}^{CD}$$
 endothermic $p = -1/2 + L_{min}^{CD}$ exothermic

$$\epsilon = \sqrt{s} - M_C - M_D$$

$$\epsilon_{max} \sim (0.2 - 0.5) \Lambda_{\rm QCD} \qquad \text{scale}$$

CUSPS

E.P. Wigner, Phys. Rev. 73 (1948) 1002

D. V. Bugg, Europhys. Lett. 96, 11002 (2011)

D. V. Bugg, Int. J. Mod. Phys. A 24, 394 (2009)

f0(980) example with effective range parameterization of the amplitude range [Bugg]

Other examples

 $K^- d \to \pi^-(\Lambda p) \quad \bar{p}p \to \bar{\Lambda}\Lambda \quad J/\psi \to \gamma \bar{p}p$

 $\Lambda = 0.5 \text{ GeV}$

EXOTIC EXPERIMENT

four-quark states(?)

 $B \to ZK \to \chi_{c1}\pi K$

.manifestly
exotic
.dubious

M ($\chi_{c1}\pi^+$), GeV/c²R. Mizuk et al. [Belle], PRD76, 072004 (08)

 $Z_1(4050)$

[Belle] 1410.7641

 $Z^{+}(4430)$

 $Z^{+}(4430)$

.confirmed by LHCb
$$J^P = 1^+$$

0.2 Re A^{Z⁻}

Z(4240) [?]

 $Z_{c}(4200)$

 $B \to K \pi J/\psi$

dotted: without Zc(4200)

K. Chilikin et al. [Belle] 1408.6457

 $Z_b^+(10610) \quad Z_b^+(10650)$

Adachi et al. [Belle] 1105.4583

$$I^G J^P = 1^+ 1^+$$

 $Z_b^+(10610) \quad Z_b^+(10650)$

[Belle] preliminary [C.-Z. Yuan, INT Nov 2015]

Observation of Zc(3900) at BESIII

Shuangshi Feng [BESIII] H13

Zc(3900)

$$e^+e^- \to \pi D\bar{D}^* \qquad \sqrt{s} = 4.26$$

 $M = 3883.9 \pm 1.5 \pm 4.2$ $\Gamma = 24.8 \pm 3.3 \pm 11.0$

Zc(3900)

Wolfgang Gradl, "Bound States in QCD", St Goar, Mar 24-27, 2015

New BESIII result with all three particles identified. Much smaller background.

 $Z_{c}(4025)$

 $e^+e^- \to (D^*\bar{D}^*)^{\pm}\pi^{\mp}$

$M = 4026.3 \pm 2.6 \pm 3.7$ $\Gamma = 24.8 \pm 5.6 \pm 7.7$

BESIII Phys. Rev. Lett. 112, 132001 (2014)

Theory

From SPIRE HEP Database (21st, Apr):

- 1. Tetraquarks
- arXiv:1110.1333, 1303.6857
- arXiv:1304.0345, 1304.1301
- 2. Hadronic molecules
- arXiv:1303.6608, 1304.2882, 1304.1850
- 3. Four quark state (1 or 2)
- arXiv:1304.0380
- 4. Meson loop
- arXiv:1303.6355
- arXiv:1304.4458
- 5. ISPE model
- arXiv:1303.6842

Meson loop

EXOTIC PHENOMENOLOGY

Charged Exotics as Threshold Cusps

It seems foolish to ignore that many of these states are just above open charm/bottom thresholds.

Cusp Model

Q: how does Y(5S) couple to $Y\pi\pi$?

$$\begin{split} \Upsilon(5S) &\to \text{ hidden bottom} = 3.8\% \\ \Upsilon(5S) &\to B^{(*)} \bar{B}^{(*)} = 57.3\% \\ \Upsilon(5S) &\to B^{(*)} \bar{B}^{(*)} \pi = 8.3\% \\ \Upsilon(5S) &\to \Upsilon(nS) \pi \pi < 7.8 \cdot 10^{-3} \end{split}$$

E.S. Swanson, arXiv:1409.3291

Cusp Model

[NB: this exhibits phase motion!]

Cusp Model

$$\Pi_{\alpha\beta}(s) = \frac{1}{\pi} \int_{s_{th}}^{\infty} ds' \, \frac{\mathrm{Im}\Pi_{\alpha\beta}(s')}{s' - s - i\epsilon}$$

Cusp Model $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

 $\beta_{\alpha i} = 0.7 \text{ GeV}$

$$g_{\Upsilon(nS)BB^*}^2 = 0.9 \cdot g_{\Upsilon(nS)B^*B^*}^2$$

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex].
Cusp Model $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

same couplings used!

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex].

Cusp Model $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi\pi$

Zb(10610), Zb(10650)

Adachi et al. [Belle Collaboration], arXiv:1105.4583 [hep-ex]; Garmash et al. [Belle Collaboration], arXiv:1403.0992 [hep-ex

Cusp Model $\Upsilon(5S) \rightarrow h_b(nP)\pi\pi$

Zb(10610), Zb(10650)

arb. units

Cusp Model $\Upsilon(5S) \rightarrow h_b(nP)\pi\pi$

Zb(10610), Zb(10650)

solid line: same as above

dashed line:

 $\begin{array}{l} \beta_{BB^*} = 0.7 \ {\rm GeV}, \ \beta_{B^*B^*} = 0.4 \ {\rm GeV} \\ g_{BB^*}^2 = 0.5 \ g_{B^*B^*}^2 \end{array}$

Attempt a "microscopic" cusp model [separable nonrelativistic model; solve exactly] [iterate all bubbles]

 $g_{DD^*} \cdot \exp(-\lambda(s_{\pi Y})/\beta_{\pi Y}^2) \exp(-\lambda(s_{DD^*})/\beta_{DD^*}^2)$

effect of the bubble sum

no evidence for π D* dynamics, background, or bubble

fit the pi Y: DD* vertex

fit the pi Y: DD* vertex

Wolfgang Gradl, "Bound States in QCD", St Goar, Mar 24-27, 2015

continue to Y: pi pi J/psi

Now pi pi dynamics is important

Y: pi pi J/psi

Y: pi pi J/psi

M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 111, 242001 (2013).

 $e^+e^- \rightarrow \pi^+\pi^-h_c$ sums 13 different ee energy values "no significant Zc(3900) observed" DD* cusp 140 120 D*D* reflection D*D* cusp

Cusp Model-II

 $e^+e^- \to \pi^+\pi^-h_c$

F.-K. Guo et al. arXiv: 1411.5584

Hanhart *et al.* claim that the strength of the vertex requires bubble summation, which generates a pole.

Z.Y. Zhou and Z. Xiao, ``Distinguishing cusp effects and near-threshold-pole effects," arXiv:1505.05761 [hep-ph].

EXOTIC PHENOMENOLOGY

ADDITIONAL ASPECTS

other cusp channels

•
$$\Upsilon(5S) \rightarrow KK\Upsilon(nS)$$
 $B\bar{B}_s^* + B^*\bar{B}_s$ 10695
 $B^*\bar{B}_s^*$ 10745

•
$$e^+e^- \to K\bar{K}J/\psi$$
 $D\bar{D}_s^* + D^*\bar{D}_s$ 3980
 $D^*\bar{D}_s^*$ 4120

will now argue for

- $\bar{B}^0 \to J/\psi \pi^0 \pi^0$ $B^{\pm} \to J/\psi \pi^{\pm} \pi^0$

Cusp Model

missing exotics...

R. Aaij et al. [LHCb Collaboration], Phys. Rev. D 90, 012003 (2014).

Cusp Model

missing exotics...

$$Y(4260) \to \pi^+ \pi^- J/\psi$$

$$B_0 \to \pi^+ \pi^- J/\psi$$

$$B_s^0 \to K^+ K^- J/\psi$$

COMPASS

$$\exp(-\lambda(s_{\gamma N}, m_{\psi}^2, m_{\pi}^2)/(4s_{\gamma N}\beta^2) \approx \\\exp(-(s_{\gamma N} - m_{\psi}^2)^2/(4s_{\gamma N}\beta^2) \approx \\\exp(-88)$$

C. Adolph et al. [COMPASS] arXiv:1407.6186v1

Cusp Model

missing exotics...

colour enhanced, indirect II

the direct process is suppressed due to the small odds of back to back charm quarks making a J/psi

W

D

 \overline{C}

Ċ

in more detail...

$$\rho(m_{c\bar{c}}) = \int \overline{|\mathcal{M}|^2}(m_{c\bar{c}}, m_{d\bar{c}}) \, dm_{d\bar{c}}^2$$

$$\bar{p} = \frac{\int_0^{\sqrt{m_b^2/4 - m_c^2}} \rho(p) p \, dp}{\int_0^{\sqrt{m_b^2/4 - m_c^2}} \rho(p) \, dp}$$

$$\mathcal{P}(\bar{p}) \doteq \int_{\bar{p}}^{\infty} d^3 q \, |\psi(q)|^2$$

 $\mathcal{P}(0.92) = 25\%$

the wavefunction penalty is confirmed in the data

$B \to X$	Bf
D^*D^*	$8 \cdot 10^{-4}$
DD^*	$4 \cdot 10^{-4}$
DD	$4 \cdot 10^{-4}$
$\psi\pi$	$4 \cdot 10^{-5}$
ψho	$5 \cdot 10^{-5}$
$\psi\pi\pi$	$4 \cdot 10^{-5}$

no penalty for extra light quarks

$B \to X$	Bf
$D\pi^+$	$2.7 \cdot 10^{-3}$
$D^0\pi^+\pi^-$	$8 \cdot 10^{-4}$
$D^-\pi^+\pi^+\pi^-$	$6 \cdot 10^{-3}$
ψK	$8.2 \cdot 10^{-4}$
$\psi K\pi$	$1.2 \cdot 10^{-3}$
$-\psi\pi^0$	$1.7 \cdot 10^{-5}$
$\psi \pi^+ \pi^-$	$4 \cdot 10^{-5}$

direct => wavefunction suppressed colour enhanced, indirect I, II => rescattering suppressed colour suppressed, wavefunction enhanced => < rescattering suppressed

The first three must be weak since the Zc is not seen by LHCb in B -> psi pi+ pi- .

The same happens in Bs -> psi K+ K- , which 'should' see a 3980 (DsD* + DDs*) and a 4215 (DsDs*).

We conclude that either the direct diagram or the rescattering wavefunction enhanced diagram dominates.

If the latter dominates then cusp states should be visible in

$$B^0 \to \pi^0 \pi^0 J/\psi \qquad B^{\pm} \to \pi^{\pm} \pi^0 J/\psi \qquad B_s \to \pi \varphi J/\psi$$

Cusp Model Application to X(3872)

 \overline{b}

colour suppressed rescattering enhanced

 \bar{u}/\bar{d}

 $B^+ \to K^+ D^0 \bar{D}^0$ $B^+ \to K^+ D^+ D^-$

 $B^0 \to K^0 D^+ D^ B^0 \to K^0 D^0 \overline{D}^0$

colour enhanced, II rescattering suppressed

 $B^+ \to K^+ D^0 \bar{D}^0$ $B^+ \to K^0 D^+ D^0$

 $B^0 \to K^0 D^- D^+$ $B^0 \to K^+ D^- D^0$

Cusp Model

Application to X(3872)

colour enhanced rescattering suppressed colour suppressed rescattering enhanced

$$B^+ \to K^+ D^0 \bar{D}^0$$
$$B^+ \to K^0 D^+ D^0$$

$$B^+ \to K^+ D^0 \bar{D}^0$$
$$B^+ \to K^+ D^+ D^-$$

$$B^0 \to K^0 D^- D^+$$
$$B^0 \to K^+ D^- D^0$$

$$B^0 \to K^0 D^+ D^-$$
$$B^0 \to K^0 D^0 \overline{D}^0$$

$$\frac{Br(B^0 \to K^0 X)}{Br(B^+ \to K^+ X)} = \left| \frac{N_c Z_{+-} + \gamma Z_{00} + \gamma Z_{+-}}{N_c Z_{00} + \gamma Z_{00} + \gamma Z_{+-}} \right|^2 \approx \left| \frac{\gamma}{N_c + \gamma} \right|^2$$

Cusp Model Application to X(3872)

$$\frac{Br(B^0 \to K^0 X)}{Br(B^+ \to K^+ X)} = \left| \frac{N_c Z_{+-} + \gamma Z_{00} + \gamma Z_{+-}}{N_c Z_{00} + \gamma Z_{00} + \gamma Z_{+-}} \right|^2 \approx \left| \frac{\gamma}{N_c + \gamma} \right|^2$$

$$\frac{Br(B^0 \to K^0 X)}{Br(B^+ \to K^+ X)} = 0.50 \pm 0.30 \pm 0.05$$

Thus $\gamma \approx 7^{+17}_{-4.6}$

Now: 0.82 +- 0.22 +- 0.05 arXiv:0809.1224

Cusp ModelApplication to X(3872)colour enhanced
rescattering suppressedcolour suppressed
rescattering enhanced
$$B^+ \to K^+ D^0 \bar{D}^0$$

 $B^+ \to K^0 D^+ D^0$ $B^+ \to K^+ D^0 \bar{D}^0$
 $B^+ \to K^+ D^+ D^ B^0 \to K^0 D^- D^+$
 $B^0 \to K^0 D^+ D^-$
 $B^0 \to K^0 D^0 \bar{D}^0$

An X^+ or X^- should be made with approximately the same strength as the X. These modes are not seen \Rightarrow X has no charge-partners, and X is not a cusp effect.

Cusp Model Application to X(3872)

Note that the rescattering enhanced diagram goes through a χ'_{c1} explaining the large production seen, if this state has a large overlap with the X.

Cusp Model Application to X(3872)

X-χ mixing

		Table 1: $X - \chi_{c1}$ Mixing.				
state	$E_B (MeV)$	$a \ (fm)$	Z_{00}	$a_{\chi} \ ({\rm MeV})$	prob	
χ_{c1}	0.1	14.4	93%	94	5%	
	0.5	6.4	83%	120	10%	
χ_{c1}'	0.1	14.4	93%	60	100%	
	0.5	6.4	83%	80	> 100%	
Cusp Model

to do

• examine the X(3872): interplay of cusp, possible bound state dynamics, and mixing with cc states

Cusp Diagnostics

- lie just above thresholds
- S-wave quantum numbers
- asymmetric lineshapes
- partner states of similar width widths will depend on channel
- the reaction $\Upsilon(5S) \to K\bar{K}\Upsilon(nS)$ should reveal "states" at 10695 ($B\bar{B}_s^* + B^*\bar{B}_s$) and 10745 ($B^*\bar{B}_s^*$)

$$e^+e^- \to K\bar{K}J/\psi$$

 $\bar{B}^0 \to J/\psi\pi^0\pi^0$
 $B^\pm \to J/\psi\pi^\pm\pi^0$

(if the wavefunction enhanced rescattering diagram contributes)