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History Some milestones

Baryons

∼ 1964, Greenberg, Dalitz, Les Houches Lectures

Horgan, Hey, . . .

Isgur & Karl, . . .

Mesons

1974 → charmonium models

1977 → quarkonium models

Tetraquarks

Late 70s baryonium, scalar mesons

Early 80s → Doubly heavy

20s → X ,Y ,Z

Other multiquarks

Hadron-hadron interaction from quarks

Dibaryon candidates, exp. or theory, as H (1977)

Pentaquark candidates, exp. or theory as (c̄uuds) (1987)
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Heavy-light encounters

Exotics with a mixing of light and heavy quarks: Rather old idea

JMR Constituent models



History Mesons Baryons Some lessons from atomic physics Chromoelectricity and multiquarks Chromomagnetism and multiquarks Combining chromo-electr

Mesons

Assume V (r) (central) + spin-spin + . . .

Assume constituent masses

Solve radial equation for energy and radial function

For 3S1
3D1 two coupled equations: for instance S-wave

component of ψ′′ without assuming it is mainly 2S.

More interesting if flavor independence is assumed

Some mathematical developments (level order, etc. )

Empirical V (r) supported by lattice QCD
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Baryons in the quark model

Some technicalities: solving the 3-body problem

Faddeev equations

Hyperspherical expansion X̃ = {x , y} = [r ,Ω5]
Variational methods

Some minor math. developments, expansion around HO,

or around hyperscalar

Pairwise interaction? (see last section for alternatives)

If so, link meson–baryon?

V =
∑

i<j

(1/2)V (rij)

as given by color-octet exchange ?
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Baryons Results and problems

Baryons usually heavier per quarks than mesons

M(qqq)/3 >M(qq̄)/2

or (q̄q̄q̄) + (qqq) > 3(q̄q)
(annihilation via quark rearrangement allowed)

But masses can change the pattern

M(Q̄Q̄Q̄) +M(qqq) < 3M(Q̄q)

if M/m large enough. Ω̄bbb does not annihilate on matter!

Too many states with x and y excitations.

Diquark model (Lichtenberg) perhaps too restrictive
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The simple prototype

H =
∑

i

mi +
p2

i

2 mi

− 3

16

∑

i<j

λ̃i .λ̃jvc(rij)−
3

16

∑

λ̃i .λ̃j σi .σj

vss(rij)

mi mj

contains

constituent masses

kinetic energy

chromoelectric energy (or say, central potential)

chromomagnetic energy (or say, spin-spin)

We consider electric and magnetic parts separately, and then try to

combine.

Before: lessons from atomic physics
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Lessons from atomic physics
with flavor independence!

Three body

Obvious binding of (α++e−µ−)
Not so obvious binding of H− = (p, e−, e−) as any factorized wf

Ψ = f (r1) f (r2) fails. Solved by Hylleraas, Chandrasekhar, . . .

Every (M+,m−,m−) stable ∀M/m (Hill)

(µ+µ−e−) unstable !

Four body

(e+e+e−e−) weakly bound

(µ+µ+e−e−) is more stable, with many excitations

(µ+e+µ−e−) is unstable

Any (m+
1 m+

2 m−m−) is stable (Varga, Fleck, R.)

(M+m−M−m−) stable and Borromean near M/m = 2, as none of

the 3-body subsystems is stable (R., 2003)

Stability of (M+,m−,m−) and (m+
1 m+

2 m−m−): degenerate

thresholds
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H2 vs. Ps2

H(H2) =

(

1

4M
+

1

4m

)

∑

p
2
i +V+

(

1

4M
− 1

4m

)

(p2
1+p

2
2−p

2
3−p

2
4)

H(H2) = H0 + HA

where H(H2) and H0 of the rescaled Ps2 have the same

threshold

as the systems with inverse masses {1/M, 1/m} and

{1/(2M) + 1/(2m), 1/(2M) + 1/(2m)} have the same reduced

mass.

HA breaks C conjugation, and lowers H(H2) as compared to H0
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Atomic physics vs. quark model

No obvious excess of attraction

Consider Ps2 with V =
∑

gij(−1/rij)

The threshold Ps + Ps has g13 = g24 = +1, others gij = 0, hence
∑

gij = +2.

The molecule has (after renumbering) g12 = g34 = −1, others

gij = +1, hence the same
∑

gij = +2. Weak binding. Not so

obvious.

In quark models with a pure spin-independent interaction

assumed to be pairwise and colour-dependent,

V ∝ ∑

λ̃
(c)
i .λ̃

(c)
j v(rij), color neutrality imposes something similar:

〈

∑

λ̃
(c)
i .λ̃

(c)
j

〉

(qqq̄q̄) = 2
〈

∑

λ̃
(c)
i .λ̃

(c)
j

〉

(qq̄) ,

hence binding, again, is not obvious
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Ps2 vs. tetraquark

Meson-meson, atom-atom, Ps2, tetraquark of frozen color given by

H =
∑

p
2
i /(2m) +

∑

gijv(rij) .

After suitable renumbering:

H =
∑ p2

i

2m
+

(

1

3
− λ

)

[v12 + v23] +

(

1

3
+
λ

2

)

(v13 + v14 + v23 + v24] .

Atomic physics Ps2 vs. Threshold

Quark model with frozen color T = (3̄, 3) or M = (6, 6̄)

E

λ
0 ThPs2 TM

Tetraquarks penalized by the non-Abelian algebra!!!
JMR Constituent models
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Chromoelectricity and multiquarks

H =
∑

i

p2
i

2 mi

− 3

16

∑

i<j

λ̃i .λ̃jvc(rij)

does not bind (qqq̄q̄) with equal masses

binds (QQq̄q̄) if M/m large enough

the result is confirmed in QCD sum rule (Nielsen et al.), lattice

QCD (Michael et al., Bicudo et al., etc.) and in the molecular

approach (Manohar et al, . . . )

same favorable symmetry breaking that benefits to H2(ppe−e−)
as compared to Ps2(e

+e+e−e−)

hence the spin-independent quark model can produce stable

multiquarks in extreme circumstances
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Chromomagnetism and multiquarks: H

Jaffe (1977) studied (uuddss) with

H̃ =
∑

i

m̃i − C
∑

i<j

λ̃i .λ̃j σi .σj

SU(3)f symmetry

Same short-range correlation C as for baryons,

the colour-spin algebra reveals a good surprise,

δM = −8C for N, Λ, Ξ, . . .

Thus δM = −16 C for the degenerate thresholds NΞ, ΛΛ

And δM = −24 C for (uuddss), i.e., 150 MeV below threshold

But removing the approximations (Oka, Yazaki, Rosner, Karl et

al., . . . ) reduces the attraction and eventually spoils the binding
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Chromomagnetism and multiquarks: H
Full calculation

H with kinetic energy, central potentil, and spin-spin potential

Oka et al., Carbonell et al. . . . unbound

Maltman & Wolfe: bound

If long-range meson exchange added (σ): bound (Zhang et al.,

Maltman et al.)

See review by Valcarce

Will be revisited shortly with improved few-body techniques

(Hiyama, Oka, Valcarce, Vijande, Sorba, R.)
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Chromomagnetism and multiquarks: Pentaquark

Same exercise repeated in 1987

for P = (Q̄uuds) (or ddus or ssud)

Same assumptions: SU(3)f , C borrowed from baryons

and mQ → ∞ in the chromomagnetic operator

δM = −16 C vs. δM = −8 C for (Q̄q) + (qqq)

Again, any correction reduces the binding

Silvestre-Brac and Leandri (Grenoble) and Yuan et al. (China)

extended the estimate to other configurations, including (c̄cqqq),
and found interesting candidates, especially for JP = (1/2)−

Not followed by a more detailed 5-body calculation
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The 1987-vintage pentaquark: Search at Fermilab

Aitala et al. searched for P0
c = (c̄suud) → K ∗,0K−p and φπ−p. Not

conclusive.

A fraction of this collaboration was interested in doing some search at

CERN or at some hadron factories, but this was never approved as a

priority.

JMR Constituent models
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The 1987-vintage pentaquark: Search at Hera
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Chromomagnetism and multiquarks: X (3872)

Høgaasen et al. have analysed X (3872) using

H̃ =
∑

i

m̃i −
∑

i<j

Cij λ̃i .λ̃j σi .σj

with the Cij deduced from ordinary hadrons,

e.g., Cc̄q from D∗ − D.

Good surprise that one state, with JPC = 1++ has almost exactly

the mass and the properties of X (3872), in particular, in its

(cc̄)− (qq̄) projection, is pure octet-octet and vector-vector.

Hence the decay

X → charmonium + light meson

is suppressed.

The model predicts an I = 1 partner slightly above, with

JPC = 1++, unlike the X (3900)± seen at BESIII, Belle, and

CLEOc.

(Preliminary) the conclusions are supported by a more detailed

4-body calculation

See, also, Stancu et al. JMR Constituent models
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Combining chromo-electric and -magnetic effects

For instance, Rosina et al., Yasui et al. (ccūd̄) with JP = 1+ has

favorable chromoelectric binding and favorable chromomagnetic

interaction as compared to D + D∗

this requires an accurate solution of the 4-body problem, or

5-body for Pentaquark

a method is based on correlated Gaussians

Ψ =
∑

cs

∑

i

γi,cs



exp(−
∑

j<k

ajk r2
jk )± · · ·





where · · · means terms deduced by permutation

For given {ajk}, variational energy E and coefficients γi given by

a generalized eigenvalue equation

Non linear parameters {ajk} deduced by astute methods

(Kamimura et al., Suzuki et al., . . . )
∑

cs spin-color states, ≥ 15 for pentaquark with spin 1/2
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Combining CE & CM: Heavy dibaryons

Dibaryons (QQ′qqqq) tentatively combine

The chromoelectric interaction QQ′

The chromomagnetic interaction in qqqq (triplet of SU(3)f ) as in the

1987-vintage pentaquark

while the thresholds such as (QQq) + (qqq) and (Qqq) + (Qqq)
get only one effect.

If its works, it means that one has many discoveries awaiting in
the double-charm sector

double-charm baryons

double-charm mesons

double-charm dibaryons
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Variants and approximations: 1. Born-Oppenheimer

Very useful

V (r) is already the BO potential after integrating our the gluons

and light quarks

(QQq) BO tested on explicit models (note: first excitation is

between QQ, so the diquark model is not very useful here)

Suggestion to treat all XYZ , and even P as levels in various BO

potentials, with explicit g, qq̄ or qqq additions

JMR Constituent models
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Variants and approximations: 2. Diquarks

The model was invented to minimize the number of baryon

excitations, and a re very useful, for instance, for multiparticle

production

It is regularly rediscovered, e.g., for pentaquarks, and for the

X ,Y ,Z mesons,

It is at last realised that if it leads to pentaquarks, it also lead to

dibaryons, etc.

JMR Constituent models
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Pairwise or multibody interaction?
Steiner tree: baryons-1

For baryons, the linear confinement is described by a Y -shape

interaction (Artru, Merkuriev, Dosch, Kuti et al., Kogut et al., etc.)

v = σ r12 , VY = σ min
J

3
∑

i=1

riJ .

No dramatic change for baryon spectroscopy, as compared to

the 1/2 rule.

Except for solving the 3-body problem (Taxil et al., Semay et al.,

etc.)

JMR Constituent models
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Steiner tree: baryons-2

This baryon potential is the solution of the famous

Fermat-Torricelli problem of the minimal path linking three points,

with an interesting symmetry restoration, intimately related to a

theorem by Napoleon.

b

s
b v1

b

v2

b

v3

b

w1

b w2

b w3

b

t3
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Steiner tree: tetraquarks-1

U = min{Vflip-flop,VSteiner}
Vflip-flop = min {d13 + d24, d14 + d23} ,

VSteiner = min
s1,s2

(

‖v1s1‖+ ‖v2s1‖+ ‖s1s2‖

+ ‖s2v3‖+ ‖s2v4‖
)

,

U dominated by the flip-flop term,

b

v2

b

v1
b

v3

b

v4

b

v2

b

v1
b

v3

b

v4

b

s1
b

s2
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Steiner tree: tetraquarks-2

In the planar case, very simple construction of the connected term of

the potential (this speeds up the computation).

V4 = σ ‖w12w34‖ ,

maximal distance between the two Melznak points.

JMR Constituent models
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Steiner tree: tetraquarks-3

V4 = σ ‖w12w34‖ ,
maximal distance between the two

Melznak circles.

V4 ≤ σ

{√
3

2
[‖x‖+ ‖y‖] + ‖z‖

}

,

which is exactly solvable. The Jacobi var.

x = v1v2,

y = v3v4,

z = (v1 + v2)/2 − (v3 + v4)/2 ,

JMR Constituent models
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Steiner tree: pentaquark

U = min{flip-flop,Steiner},

Flip-flop

Connected Steiner tree

1 S

j

i

sij

ℓ

kskℓ

(q̄qqqq), as well as (Qqqqq), (q̄qqqQ) for M ≫ m, and probably

many other configurations bound vs. spontaneous dissociation.

(hyperscalar approx. with flip-flop alone sufficient to prove

binding)

But short-range forces and antisymmetrisation constraints not

yet included.

(c̄uuds) should survive, as spin effects might help.
JMR Constituent models
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Steiner-tree: hexaquark

Same scenario: flip-flop and connected diagrams,

The latter, more interesting, but less important for the dynamics,

Binding is obtained in most cases, where antisymmetrisation is

neglected.
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Steiner-tree: baryon-antibaryon

Again: flip-flop and connected diagrams,

Binding obtained in some cases.

JMR Constituent models
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Outlook

The constituent quark model suggests very few bound states

It involves intricate few-body calculations

We aim at providing some benchmark estimates

Multiquarks require both chromoelectric and chromomagnetic

effects

Double-flavor sector very promising

Doubly-heavy baryons

Doubly-heavy tetraquarks

Perhaps doubly-heavy dibaryons
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