Constituent models

available at http://www.ipnl.in2p3.fr/perso/richard/SemConf/Talks.html

Jean-Marc Richard

Institut de Physique Nucléaire de Lyon Université Claude Bernard (Lyon 1)–IN2P3-CNRS Villeurbanne, France

Seattle, INT, November 2015

JMR

Table of contents

History

Mesons

- Some lessons from atomic physics
- 5 Chromoelectricity and multiquarks

9

10

Combining chromo-electric and

Chromomagnetism and

Outlook

multiquarks

History Some milestones

Baryons

• \sim 1964, Greenberg, Dalitz, Les Houches Lectures Horgan, Hey, \ldots Isgur & Karl, \ldots

Mesons

- 1974 \rightarrow charmonium models
- 1977 \rightarrow quarkonium models

Tetraquarks

- Late 70s baryonium, scalar mesons
- Early 80s \rightarrow Doubly heavy
- $20s \rightarrow X, Y, Z$

Other multiquarks

- Hadron-hadron interaction from quarks
- Dibaryon candidates, exp. or theory, as H (1977)
- Pentaquark candidates, exp. or theory as (*c̄uuds*) (1987)

JMR

Heavy-light encounters

Exotics with a mixing of light and heavy quarks: Rather old idea

ON THE POSSIBLE EXISTENCE OF STABLE FOUR-QUARK SCALAR MESONS WITH CHARM AND STRANGENESS $^{\rm th}$

Nathan ISGUR Department of Physics, University of Toronto, Toronto, Canada

and

Harry J. LIPKIN Argonne, National Laboratory, Argonne, IL 60439, USA Fermi National Accelerator Laboratory, Batavia, IL 60510, USA and Weizmann Institute of Science, Rehovoih, Israel

Received 4 September 1980

Do narrow heavy multiquark states exist?

J.-P. Ader Laboratoire de Physique Théorique, Université de Bordeaux, F-33170 Gradignan, France

J.-M. Richard Division de Physique Théorique, Institut de Physique Nucléaire, F-91406 Orsay, France and CERN, CH 1211 Genère 23, Subizerland

P. Taxil Institut de Physique, Université de Neuchâtel, CH 2000 Neuchâtel, Switzerland and Centre de Physique Théorique, F-13288 Marseille, France (Received 11 August 1981)

Possibility of Charmed Hypernuclei

C. B. Dover and S. H. Kahana Brookhaven Nalional Laboratory, Uplon, New York 11973 (Received 10 August 1977)

We suggest that both two-body and many-body bound states of a charmed baryon and nucleons should exist. Estimates indicate binding entry $\delta_{C_1}(t) = \delta_{C_1}(t) = \delta_{C_1}(t)$ SN (I = 1). We further estimate the binding energy of C_{C_1} . In various finite nuclei, On the existence of stable dimesons

L. Heller Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545

J. A. Tjon Theoretical Division, Los Alamos National Laboratory, University of California, Los Alamos, New Mexico 87545 and Institute for Theoretical Physics, P.O. Box 80,005, 3508 TA Utrecht, The Netherlands* (Received 11 August 1940)

POSSIBILITY OF STABLE MULTIQUARK BARYONS

C GIGNOUX *, B SILVESTRE-BRAC * and J M RICHARD * b

- * Institut des Sciences Nucléaires, 53, avenue des Martyrs, F-38026 Grenoble Cedex, France
- ^b Laboratore de Physique Theorique et Hautes Energies¹, T16-E1, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05, France

Received 8 April 1987

NEW POSSIBILITIES FOR EXOTIC HADRONS - ANTICHARMED STRANGE BARYONS*

Harry J. LIPKIN Department of Nuclear Physics, Weizmann Institute of Science, 76100 Rehovot, Israel

Received 1 June 1987

Mesons

- Assume V(r) (central) + spin-spin + ...
- Assume constituent masses
- Solve radial equation for energy and radial function
- For ³S₁ ³D₁ two coupled equations: for instance S-wave component of ψ" without assuming it is mainly 2S.
- More interesting if flavor independence is assumed
- Some mathematical developments (level order, etc.)

JMR

• Empirical V(r) supported by lattice QCD

Baryons in the quark model

- Some technicalities: solving the 3-body problem
 - Faddeev equations
 - Hyperspherical expansion $\tilde{X} = \{x, y\} = [r, \Omega_5]$
 - Variational methods
- Some minor math. developments, expansion around HO, or around hyperscalar
- Pairwise interaction? (see last section for alternatives)

JMR

If so, link meson-baryon?

$$V = \sum_{i < j} (1/2) V(r_{ij})$$

as given by color-octet exchange ?

Baryons Results and problems

Baryons usually heavier per quarks than mesons

 $\mathcal{M}(qqq)/3 > \mathcal{M}(qar{q})/2$

- or (qqq) + (qqq) > 3(qq) (annihilation via quark rearrangement allowed)
- But masses can change the pattern

 $\mathcal{M}(ar{Q}ar{Q}ar{Q}) + \mathcal{M}(qqq) < 3\mathcal{M}(ar{Q}q)$

if M/m large enough. $\overline{\Omega}_{bbb}$ does not annihilate on matter!

- Too many states with **x** and **y** excitations.
- Diquark model (Lichtenberg) perhaps too restrictive

Université Claude Bernard

• • • • • • • • • • • •

The simple prototype

$$H = \sum_{i} m_{i} + \frac{\boldsymbol{p}_{i}^{2}}{2 m_{i}} - \frac{3}{16} \sum_{i < j} \tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \boldsymbol{v}_{c}(\boldsymbol{r}_{ij}) - \frac{3}{16} \sum \tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j} \frac{\boldsymbol{v}_{ss}(\boldsymbol{r}_{ij})}{m_{i} m_{j}}$$

contains

- constituent masses
- kinetic energy
- chromoelectric energy (or say, central potential)
- chromomagnetic energy (or say, spin-spin)

We consider electric and magnetic parts separately, and then try to combine.

JMR

Before: lessons from atomic physics

Lessons from atomic physics with flavor independence!

• Three body

- Obvious binding of $(\alpha^{++}e^{-}\mu^{-})$
- Not so obvious binding of $H^- = (p, e^-, e^-)$ as any factorized wf $\Psi = f(\mathbf{r}_1) f(\mathbf{r}_2)$ fails. Solved by Hylleraas, Chandrasekhar, ...
- Every (M^+, m^-, m^-) stable $\forall M/m$ (Hill)
- (μ⁺μ⁻e⁻) unstable !

• Four body

- $(e^+e^+e^-e^-)$ weakly bound
- (μ⁺μ⁺e⁻e⁻) is more stable, with many excitations
- $(\mu^+ e^+ \mu^- e^-)$ is unstable
- Any $(m_1^+m_2^+m^-m^-)$ is stable (Varga, Fleck, R.)
- (M⁺m⁻M⁻m⁻) stable and Borromean near M/m = 2, as none of the 3-body subsystems is stable (R., 2003)
- Stability of (M⁺, m⁻, m⁻) and (m⁺₁m⁺m⁻m⁻): degenerate thresholds

JMR

H₂ vs. Ps₂

۲

۲

$$H(H_2) = \left(\frac{1}{4M} + \frac{1}{4m}\right) \sum \boldsymbol{p}_i^2 + V + \left(\frac{1}{4M} - \frac{1}{4m}\right) (\boldsymbol{p}_1^2 + \boldsymbol{p}_2^2 - \boldsymbol{p}_3^2 - \boldsymbol{p}_4^2)$$

$$H(\mathrm{H}_2) = H_0 + H_A$$

- where *H*(H₂) and *H*₀ of the rescaled Ps₂ have the same threshold
- as the systems with inverse masses $\{1/M, 1/m\}$ and $\{1/(2M) + 1/(2m), 1/(2M) + 1/(2m)\}$ have the same reduced mass.
- *H_A* breaks *C* conjugation, and lowers *H*(H₂) as compared to *H*₀

Université Claude Bernard

Atomic physics vs. quark model

No obvious excess of attraction

- Consider Ps_2 with $V = \sum g_{ij}(-1/r_{ij})$
- The threshold Ps + Ps has $g_{13} = g_{24} = +1$, others $g_{ij} = 0$, hence $\sum g_{ij} = +2$.
- The molecule has (after renumbering) g₁₂ = g₃₄ = −1, others g_{ij} = +1, hence the same ∑ g_{ij} = +2. Weak binding. Not so obvious.
- In quark models with a pure spin-independent interaction assumed to be pairwise and colour-dependent, $V \propto \sum \tilde{\lambda}_i^{(c)} . \tilde{\lambda}_j^{(c)} v(r_{ij})$, color neutrality imposes something similar:

JMR

$$\left\langle \sum ilde{\lambda}_{i}^{(c)}. ilde{\lambda}_{j}^{(c)}
ight
angle (qqar{q}ar{q}) = 2 \left\langle \sum ilde{\lambda}_{i}^{(c)}. ilde{\lambda}_{j}^{(c)}
ight
angle (qar{q}) \ ,$$

hence binding, again, is not obvious

Université Claude Bernard

Ps₂ vs. tetraquark

Meson-meson, atom-atom, Ps2, tetraquark of frozen color given by

$$H=\sum p_i^2/(2m)+\sum g_{ij}v(r_{ij})$$
.

After suitable renumbering:

$$H = \sum \frac{\mathbf{p}_i^2}{2m} + \left(\frac{1}{3} - \lambda\right) \left[v_{12} + v_{23}\right] + \left(\frac{1}{3} + \frac{\lambda}{2}\right) \left(v_{13} + v_{14} + v_{23} + v_{24}\right].$$

- Atomic physics Ps₂ vs. Threshold
- Quark model with frozen color $T = (\bar{3}, 3)$ or $M = (6, \bar{6})$

Chromoelectricity and multiquarks

$$H = \sum_{i} \frac{\boldsymbol{p}_{i}^{2}}{2 m_{i}} - \frac{3}{16} \sum_{i < j} \tilde{\lambda}_{i} . \tilde{\lambda}_{j} v_{c}(r_{ij})$$

- does not bind $(qq\bar{q}\bar{q})$ with equal masses
- binds $(QQ\bar{q}\bar{q})$ if M/m large enough
- the result is confirmed in *QCD* sum rule (Nielsen et al.), lattice QCD (Michael et al., Bicudo et al., etc.) and in the molecular approach (Manohar et al, ...)
- same favorable symmetry breaking that benefits to H₂(ppe⁻e⁻) as compared to Ps₂(e⁺e⁺e⁻e⁻)
- hence the spin-independent quark model can produce stable multiquarks in extreme circumstances

Chromomagnetism and multiquarks: H

• Jaffe (1977) studied (uuddss) with

$$ilde{H} = \sum_{i} ilde{m}_{i} - C \sum_{i < j} ilde{\lambda}_{i} \cdot ilde{\lambda}_{j} \, \sigma_{i} \cdot \sigma_{j}$$

- SU(3)_f symmetry
- Same short-range correlation C as for baryons,
- the colour-spin algebra reveals a good surprise,
- $\delta M = -8C$ for N, Λ, Ξ, \ldots
- Thus $\delta M = -16 C$ for the degenerate thresholds $N\Xi$, $\Lambda\Lambda$

JMR

- And $\delta M = -24 C$ for (*uuddss*), i.e., 150 MeV below threshold
- But removing the approximations (Oka, Yazaki, Rosner, Karl et al.,...) reduces the attraction and eventually spoils the binding

Chromomagnetism and multiquarks: *H*

- H with kinetic energy, central potentil, and spin-spin potential
- Oka et al., Carbonell et al. ... unbound
- Maltman & Wolfe: bound
- If long-range meson exchange added (σ): bound (Zhang et al., Maltman et al.)
- See review by Valcarce
- Will be revisited shortly with improved few-body techniques (Hiyama, Oka, Valcarce, Vijande, Sorba, R.)

Université Claude Bernard

Constituent models

Chromomagnetism and multiquarks: Pentaquark

- Same exercise repeated in 1987 for $P = (\bar{Q}uuds)$ (or *ddus* or *ssud*)
- Same assumptions: SU(3)_f, C borrowed from baryons
- and $m_Q
 ightarrow \infty$ in the chromomagnetic operator
- $\delta M = -16 C$ vs. $\delta M = -8 C$ for $(\bar{Q}q) + (qqq)$
- Again, any correction reduces the binding
- Silvestre-Brac and Leandri (Grenoble) and Yuan et al. (China) extended the estimate to other configurations, including ($\bar{c}cqqq$), and found interesting candidates, especially for $J^P = (1/2)^-$
- Not followed by a more detailed 5-body calculation

JMR

The 1987-vintage pentaquark: Search at Fermilab

Aitala et al. searched for $P_c^0 = (\bar{c}suud) \rightarrow K^{*,0}K^-p$ and $\phi\pi^-p$. Not conclusive.

A fraction of this collaboration was interested in doing some search at CERN or at some hadron factories, but this was never approved as a priority.

The 1987-vintage pentaquark: Search at Hera

Université Claude Bernard

JMR

Chromomagnetism and multiquarks: X(3872)

• Høgaasen et al. have analysed X(3872) using

$$ilde{\mathcal{H}} = \sum_{i} ilde{m}_{i} - \sum_{i < j} extsf{C}_{ij} \, ilde{\lambda}_{i}. ilde{\lambda}_{j} \, m{\sigma}_{i}. m{\sigma}_{j}$$

with the C_{ij} deduced from ordinary hadrons, e.g., $C_{\bar{c}a}$ from $D^* - D$.

• Good surprise that one state, with $J^{PC} = 1^{++}$ has almost exactly the mass and the properties of X(3872), in particular, in its $(c\bar{c}) - (q\bar{q})$ projection, is pure octet-octet and vector-vector. Hence the decay

 $X \rightarrow charmonium + light \ meson$

is suppressed.

alaa Ctanayyatal

- The model predicts an I = 1 partner slightly above, with $J^{PC} = 1^{++}$, unlike the $X(3900)^{\pm}$ seen at BESIII, Belle, and CLEOc.
- (Preliminary) the conclusions are supported by a more detailed
 4-body calculation

Combining chromo-electric and -magnetic effects

- For instance, Rosina et al., Yasui et al. $(cc\bar{u}\bar{d})$ with $J^P = 1^+$ has favorable chromoelectric binding and favorable chromomagnetic interaction as compared to $D + D^*$
- this requires an accurate solution of the 4-body problem, or 5-body for Pentaquark
- a method is based on correlated Gaussians

$$\Psi = \sum_{cs} \sum_{i} \gamma_{i,cs} \left[\exp(-\sum_{j < k} a_{jk} r_{jk}^2) \pm \cdots \right]$$

where \cdots means terms deduced by permutation

- For given {*a_{jk}*}, variational energy *E* and coefficients *γ_i* given by a generalized eigenvalue equation
- Non linear parameters {*a_{jk}*} deduced by astute methods (Kamimura et al., Suzuki et al., ...)
- \sum_{cs} spin-color states, \geq 15 for pentaquark with spin 1/2

Combining CE & CM: Heavy dibaryons

• Dibaryons (QQ'qqqq) tentatively combine

- The chromoelectric interaction QQ'
- The chromomagnetic interaction in *qqqq* (triplet of SU(3)_f) as in the 1987-vintage pentaquark
- while the thresholds such as (QQq) + (qqq) and (Qqq) + (Qqq) get only one effect.
- If its works, it means that one has many discoveries awaiting in the double-charm sector
 - double-charm baryons
 - double-charm mesons
 - double-charm dibaryons

Variants and approximations: 1. Born-Oppenheimer

- Very useful
- *V*(*r*) is already the BO potential after integrating our the gluons and light quarks
- (*QQq*) BO tested on explicit models (note: first excitation is between *QQ*, so the diquark model is not very useful here)
- Suggestion to treat all XYZ, and even P as levels in various BO potentials, with explicit g, qq
 q or qqq additions

Variants and approximations: 2. Diquarks

- The model was invented to minimize the number of baryon excitations, and a re very useful, for instance, for multiparticle production
- It is regularly rediscovered, e.g., for pentaquarks, and for the X, Y, Z mesons,
- It is at last realised that if it leads to pentaquarks, it also lead to dibaryons, etc.

From pentaquarks to dibaryons in $\Lambda_b(5620)$ decays

L. Maiani, A.D. Polosa*, V. Riquer

Dipartimento di Fisica and INFN, Sapienza' Università di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy

ARTICLE INFO

ABSTRACT

Article history: Received 17 August 2015 Accepted 20 August 2015 Available online 24 August 2015 Editor: A. Ringwald Pentaquarks and dibayons are natural possibilities if diquarks are used as the building blocks to assemble hadrons. In this short note, motivated by the very recent discovery of two pentaquark states, we highlight some possible channels to search for disayons in A, (2620) decays. © 2015 Published by Elsevier 8V. This is an open access article under the CC BY license http://craitwommons.org/licenses/hd/0.Funded by SCMP⁺.

Diquark Deuteron

Sverker Fredriksson and Magnus Jändel Department of Theoretical Physics, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden (Received 9 October 1981)

It is speculated that an almost stable state of hadronic and nuclear matter can be built from *diquarks*. It is suggested that this alternative form of matter has already revealed itself in existing experimental data in the form of a diquark "deuteron" with $J^{\mu} = 0$ and with several other anomalous properties.

Pairwise or multibody interaction? Steiner tree: baryons-1

• For baryons, the linear confinement is described by a *Y*-shape interaction (Artru, Merkuriev, Dosch, Kuti et al., Kogut et al., etc.)

$$v = \sigma r_{12} , \qquad V_Y = \sigma \min_{i=1}^3 r_{ii} .$$

۲

 No dramatic change for baryon spectroscopy, as compared to the 1/2 rule.

JMR

 Except for solving the 3-body problem (Taxil et al., Semay et al., etc.)

Steiner tree: baryons-2

• This baryon potential is the solution of the famous Fermat-Torricelli problem of the minimal path linking three points, with an interesting symmetry restoration, intimately related to a theorem by Napoleon.

Steiner tree: tetraquarks-1

$$\begin{split} & U = \min\{V_{\text{flip-flop}}, V_{\text{Steiner}}\}\\ & V_{\text{flip-flop}} = \min\{d_{13} + d_{24}, d_{14} + d_{23}\} \ ,\\ & V_{\text{Steiner}} = \min_{s_1, s_2} (\|v_1 s_1\| + \|v_2 s_1\| + \|s_1 s_2\| \\ & + \|s_2 v_3\| + \|s_2 v_4\|) \ , \end{split}$$

U dominated by the flip-flop term,

Université Claude Bernard

JMR

Steiner tree: tetraquarks-2

In the planar case, very simple construction of the connected term of the potential (this speeds up the computation).

$$V_4 = \sigma \left\| \mathbf{w}_{12} \mathbf{w}_{34} \right\| \,,$$

JMR

maximal distance between the two Melznak points.

Steiner tree: tetraquarks-3

$$V_4 = \sigma \left\| \mathbf{w}_{12} \mathbf{w}_{34} \right\| \,,$$

maximal distance between the two Melznak circles.

$$V_4 \leq \sigma \left\{ rac{\sqrt{3}}{2} \left[\| oldsymbol{x} \| + \| oldsymbol{y} \|
ight] + \| oldsymbol{z} \|
ight\} \; ,$$

which is exactly solvable. The Jacobi var.

$$\begin{split} & \pmb{x} = \pmb{v}_1 \, \pmb{v}_2, \\ & \pmb{y} = \pmb{v}_3 \, \pmb{v}_4, \\ & \pmb{z} = (\pmb{v}_1 + \pmb{v}_2)/2 - (\pmb{v}_3 + \pmb{v}_4)/2 \;, \end{split}$$

Steiner tree: pentaguark

- $U = \min\{\text{flip-flop}, \text{Steiner}\},\$
- Flip-flop
- Connected Steiner tree
 - $(\bar{q}qqqq)$, as well as $(\bar{Q}qqqq)$, $(\bar{q}qqqQ)$ for $M \gg m$, and probably many other configurations bound vs. spontaneous dissociation. (hyperscalar approx. with flip-flop alone sufficient to prove binding)
 - But short-range forces and antisymmetrisation constraints not ٢ Université Claude Bernard vet included.
 - (cuuds) should survive, as spin effects might help. .IMB

 s_{ij}

 S_{kl}

Steiner-tree: hexaquark

- Same scenario: flip-flop and connected diagrams,
- The latter, more interesting, but less important for the dynamics,
- Binding is obtained in most cases, where antisymmetrisation is neglected.

Steiner-tree: baryon-antibaryon

- Again: flip-flop and connected diagrams,
- Binding obtained in some cases.

JMR

Outlook

- The constituent quark model suggests very few bound states
- It involves intricate few-body calculations
- We aim at providing some benchmark estimates
- Multiquarks require both chromoelectric and chromomagnetic effects

JMR

- Double-flavor sector very promising
 - Doubly-heavy baryons
 - Doubly-heavy tetraquarks
 - Perhaps doubly-heavy dibaryons