Charm spectroscopy from lattice QCD

Mike Peardon School of Mathematics

Trinity College Dublin Coláiste na Tríonóide. Baile Átha Cliath The University of Dublin

Modern Exotic Hadrons, INT Seattle, 5th November 2015

Mike Peardon (TCD) [Charm spectroscopy from lattice QCD](#page-32-0) INT, 5th Nov 2015 1 / 33

Charm spectroscopy — collaborators:

Using Hadron Spectrum Collaboration datasets Trinity College Dublin: Sinéad Ryan, Pol Vilaseca Cambridge University: Christopher Thomas, Graham Moir Universität Bonn: Liuming Liu JLab: Jo Dudek, Robert Edwards, Bálint Joó, David Richards

Details in:

JHEP 1207 (2012) 126 [arXiv:1204.5425] **JHEP 1305 (2013) 021** [arXiv:1301.7670]

Overview

Anatomy of a lattice calculation

- **Technicalities: Euclidean space-time, quark fields, ...**
- **Variational methods and the spectrum in a box.**
- **Technology: distillation and operator construction.**

Results

- **Charmonium.**
- **Charmonium hybrids.**
- *D* **and** *D^s* **.**

Challenges

- **Current work, technical and physics limitations.**
- **Opportunities.**

Field theory on a Euclidean lattice

- **• Monte Carlo simulations are only practical using importance sampling**
- **• Need a non-negative weight for each field configuration on the lattice**

Minkowski → Euclidean

- **• Benefit: can isolate lightest states in the spectrum.**
- **• Problem: direct information on scattering is lost and must be inferred indirectly.**
- **• For excitations and resonances, must use a variational method.**

Quarks on the computer

- **• Most computer time spent handling quark dynamics**
- **• Calculation of two-point correlator between isovector quark bilinears:**

$$
C(t) = \frac{\int \mathcal{D}U \mathcal{D} \bar{\psi} \mathcal{D} \psi \bar{\psi}_u \Gamma^a \psi_d(t) \bar{\psi}_d \Gamma^b \psi_u(0) e^{-S_G[U] + \bar{\psi}_f M_f[U] \psi_f}}{\int \mathcal{D}U \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-S_G[U] + \bar{\psi}_f M_f[U] \psi_f}} = \frac{\int \mathcal{D}U \text{ Tr } \Gamma^a M_d^{-1}(t, 0) \Gamma^b M_u^{-1}(0, t) \text{ det } M^2[U] e^{-S_G[U]}}{\int \mathcal{D}U \text{ det } M^2[U] e^{-S_G[U]}}
$$

- **• Quarks in lagrangian [→] determinant**
- **• Quarks in measurement [→] propagators**

Both present their own specific problems

Mike Peardon (TCD) [Charm spectroscopy from lattice QCD](#page-0-0) INT, 5th Nov 2015 5 / 33

Variational method in Euclidean QFT

Ground-state energies found from $t \rightarrow \infty$ **limit of:**

Euclidean-time correlation function

$$
C(t) = \langle O | \Phi(t) \Phi^{\dagger}(O) | O \rangle
$$

=
$$
\sum_{k,k'} \langle O | \Phi | k \rangle \langle k | e^{-\hat{H}t} | k' \rangle \langle k' | \Phi^{\dagger} | O \rangle
$$

=
$$
\sum_{k} |\langle O | \Phi | k \rangle|^2 e^{-E_k t}
$$

• So lim*t***→**[∞] *^C*(*t*) = *Ze***−***E*0*^t*

• Variational idea: find operator ^Φ **to maximise** *^C*(*t*)/*C*(*t*0) **from** ${\sf sum~of~basis~operators} \ \Phi = \sum_a {\sf v}_a \boldsymbol{\phi}_a$

> **[C. Michael and I. Teasdale. NPB215 (1983) 433] [M. Lüscher and U. Wolff. NPB339 (1990) 222]**

Excitations

Variational method

If we can measure $\mathsf{C}_{ab}(t) = \langle \mathsf{O} | \pmb{\phi}_a(t) \pmb{\phi}_b^\dagger$ $\binom{1}{b}(0)|0\rangle$ for all a, b and solve **generalised eigenvalue problem:**

C(*t*) $v = \lambda C(t_0) v$

then

$$
\lim_{t-t_0\to\infty}\lambda_k=e^{-E_kt}
$$

For this to be practical, we need:

- **• a 'good' basis set that resembles the states of interest**
- **• all elements of this correlation matrix measured**

[see Blossier et.al. JHEP 0904 (2009) 094]

Inputs and outputs...

- **• Choose the lattice volume and quark masses, which fixes the spectrum in each symmetry channel** $\Gamma_1, \Gamma_2, \ldots$
- **• Choose a basis set of creation operators.**

• Compute the two-point correlation matrix and solve the generalised eigenvalue problem. If overlap onto some states is small, they will be missing. This is particularly seen in two-meson continuum, which is usually not observed when just single-meson-like operators are used.

Distillation

- **• We can ameliorate the problems coming from measuring quark propagation by looking more carefully at how hadrons can be constructed most efficiently.**
- **• Smeared fields: determine** ^ψ˜ **from the "raw" field in the path-integral,** ψ**:**

 $\tilde{\psi}(t) = \Box[U(t)]\psi(t)$

- **• Extract confinement-scale degrees of freedom while preserving symmetries.**
- **• Build creation operators on smeared fields.**
- **• Re-define smearing to be a projection operator into a small vector space smooth fields: distillation.**

A tale of two symmetries

• Continuum: states classified by *^J P* **irreducible representations of** *O*(3)**.**

- **Lattice regulator breaks** $O(3) \rightarrow O_h$
- **• Lattice: states classified by** *^R P* **"quantum letter" labelling irrep of** *O^h*

Irreps of *O^h*

- **•** *^O* **has 5 conjugacy classes (so** *^O^h* **has 10)**
- **• Number of conjugacy classes = number of irreps**
- **Schur:** $24 = 1^2 + 1^2 + 2^2 + 3^2 + 3^2$
- **These irreps are labelled** A_1 , A_2 , E , T_1 , T_2

Spin on the lattice

- \bullet *O_h* has 10 irreps: $\{A_1^{g,u}$ 1 , *A g*,*u* 2 , *E g*,*u* , *T g*,*u* 1 , *T g*,*u* 2 , }**, where** {*g*, *u*} **label even/odd parity.**
- **• Link to continuum: subduce representations of** *^O*(3) **into** *^O^h*

A_1	A_2	E	T_1	T_2		
$J = 0$	1	1				
$J = 1$	1	1				
$J = 2$	1	1	1			
$J = 3$	1	1	1			
$J = 4$	1	1	1	1		
...

• Enough to search for degeneracy patterns in the spectrum?

$$
4 \equiv 0 \oplus 1 \oplus 2
$$

Operator basis — derivative construction

- **• A closer link to the continuum is needed**
- **• Start with continuum operators, built from** *ⁿ* **derivatives:**

$$
\Phi = \bar{\psi} \mathrel{\Gamma} \left(D_{i_1} D_{i_2} D_{i_3} \ldots D_{i_n} \right) \psi
$$

- **• Construct irreps of** *SO*(3)**, then subduce these representations to** *O^h*
- **• Now replace the derivatives with lattice finite differences:**

$$
D_j\psi(x) \to \frac{1}{\alpha} \Big(U_j(x)\psi(x+\hat{j}) - U_j^{\dagger}(x-\hat{j})\psi(x-\hat{j}) \Big)
$$

$\boldsymbol{\mathsf{Example:}}$ $J^{PC}=2^{++}$ meson creation operator

• Need more information to discriminate spins. Consider continuum operator that creates a 2^{++} meson:

$$
\Phi_{ij} = \bar{\psi} \left(\gamma_i D_j + \gamma_j D_i - \frac{2}{3} \delta_{ij} \gamma \cdot D \right) \psi
$$

- **• Lattice: Substitute gauge-covariant lattice finite-difference** *D*l*att* **for** *D*
- **• A reducible representation:**

$$
\Phi^{T_2}=\{\Phi_{12},\Phi_{23},\Phi_{31}\}
$$

$$
\Phi^E=\left\{\frac{1}{\sqrt{2}}(\Phi_{11}-\Phi_{22}),\,\frac{1}{\sqrt{6}}(\Phi_{11}+\Phi_{22}-2\Phi_{33})\right\}
$$

• Look for signature of continuum symmetry:

$$
\langle O|\Phi^{(T_2)}|2^{++(T_2)}\rangle=\langle O|\Phi^{(E)}|2^{++(E)}\rangle
$$

Results *c*¯*c*, *c* ¯*l* **and** *c*¯*s*

- **•** *m*^π **≈** 400*MeV*
- **• No two-meson operators in basis**
- **• No disconnected charm contributions**
- **• No** *a* **→** 0 **extrapolation**

Dispersion relations - η*^c* **and** *D* **mesons**

- **• Action parameters for charm quark tuned to ensure dispersion relation for** η*^c* **is relativistic**
- **• Using these tuned parameters,** *^D* **meson also has relativistic dispersion relation**

Fits to $\lambda_k(t)$

- **• Variational basis, so can access excited states**
- **Fit** $\lambda_k(t)$ to one or two exponentials
- **• Second exponential to stabilise some fits value not used**
- **Plots show** $\lambda_k(t) \times e^{E_k(t-t_0)}$


```
• Data from T
−−
                   \frac{1}{1} channel (/ = 1, 3, 4, . . . )
```
Subduction of derivative-based operators

- **•** *^T* **−−** 1 **variational basis**
- **26 operators, up to** $D_i D_j P_k$
- **• Correlation matrix at** $t/a_t = 5$, normalised:

$$
Q_{ij}=\frac{C_{ij}}{\sqrt{C_{ii}C_{jj}}}
$$

• Reasonable spin separation seen

Spin identification

- **• Using** *^Z* ⁼ **〈**0**|**Φ**|***k***〉, helps to identify continuum spins**
- **• For high spins, can look for agreement between irreps**
- **• Data below for** *^T* **−−** 1 **irrep, colour-coding is Spin 1, Spin 3 and Spin 4.**

 \bullet Can help identify glue-rich states, using operators with $[D_i, D_j]$

... the rest of the spin-4 state

- **• All polarisations of the spin-4 state are seen**
- **• Spin labelling: Spin 2, Spin 3 and Spin 4.**

Identifying spin - operator overlaps

- **• Example —** ³ **−− continuum**
- **• Look for remnant of continuum symmetry:**

$$
\langle O|\Phi_{A_2^{-}}^{[J=3]}|k\rangle = \langle O|\Phi_{T_1^{-}}^{[J=3]}|k\rangle = \langle O|\Phi_{T_2^{-}}^{[J=^{\infty}]}|k\rangle
$$

• Can identify two spin-3 states.

Spectrum - dependence on distillation basis

- \bullet 16³ lattice vary $N_{\mathcal{D}}$
- **• Calculation done on smaller ensemble**

Stable spectrum for $N_{\mathcal{D}} > 48$

Lattice artefacts in charmonium

- **• Hyperfine structure sensitive to lattice artefacts. Boost co-efficient of action term to suppress these.**
- **• green [→] light blue. Shifts are [≈]** ⁴⁰ **MeV.**

[Liu et.al. arXiv:1204.5425]

Excitation spectrum of charmonium

- **• Quark model:** ¹*S*,1*P*, ²*S*,1*D*, ²*P*,1*F*, ²*D*, . . . **all seen.**
- **• Not all fit quark model: spin-exotic (and non-exotic) hybrids seen**

Mike Peardon (TCD) [Charm spectroscopy from lattice QCD](#page-0-0) INT, 5th Nov 2015 25 / 33

[Liu et.al. arXiv:1204.5425]

Gluonic excitations in charmonium?

- **• See states created by operators that excite intrinsic gluons**
- **• two- and three-derivatives create states in the open-charm region.**

[Liu et.al. arXiv:1204.5425]

Excitation spectrum of *D*

- \bullet Subtract $\frac{1}{2}M_{\eta_c}$ to reduce systematic error
- **• Thresholds for both physical** M_π and $M_\pi \approx 400$ MeV

[Moir et.al. JHEP 1305 (2013) 021]

Excitation spectrum of *D^s*

- \bullet Subtract $\frac{1}{2}M_{\eta_c}$ to reduce systematic error
- **•** Thresholds for both physical M_{π} and $M_{\pi} \approx 400$ MeV

[Moir et.al. JHEP 1305 (2013) 021]

Hybrid excitations in *D*/*D^s* **spectrum**

Challenges

- **• Scattering properties and matrix elements (talks tomorrow).**
- **•** *DK*,*D*^π **soon...**
- **•** ... then *DD* (with tetraquarks?)
- **• Tetraquark computations are very (too?) expensive in current framework - working on technical improvements, which would have an impact on the cost of baryon (and pentaquark) calculations.**
- **• Other suggestions?**

Static sources - worth revisiting?

- **• Lattice calculations with static colour sources have a long history.**
- **• Technology developed by Hadron Spectrum Collaboration makes these calculations accessible.**
- **• Do they tell us anything about the**

- **• Technology for studying excited mesons works well in the charm sector.**
- **• Next steps to look at scattering of charmed mesons underway.**
- **• New technology needed to speed up calculations with tetraquarks.**