Dealing with multi-quark operators in lattice QCD

Colin Morningstar

Carnegie Mellon University

INT Workshop INT-15-60W: Modern Exotic Hadrons Seattle, WA

November 11, 2015

Overview

- goals:
 - comprehensive survey of QCD stationary states in finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
 - focus: large 32^3 anisotropic lattices, $m_\pi \sim 240$ MeV
- extracting excited-state energies
- single-hadron and multi-hadron operators
- the stochastic LapH method
- level identification issues
- results for I = 1, S = 0, T_{1u}^+ channel
 - 100 × 100 correlator matrix, all needed 2-hadron operators
- other channels
- I=1 *P*-wave $\pi\pi$ scattering phase shifts and width of ρ
- future work

Dramatis Personae

current grad students:

Jake Fallica CMU

Andrew Hanlon Pitt

Bijit Singha CMU

former CMU postdocs:

Justin Foley Software, NVIDIA

Jimmy Juge Faculty, Stockton, CA

past CMU grad students:

Brendan Fahy 2014 Postdoc KEK Japan

Jhang 2013 Silicon Valley

David Lenkner 2013 Data Science Auto., PGH

Ricky Wong 2011 Postdoc Germany

2009 Faculty, Dublin

Adam Lichtl 2006 SpaceX, LA

thanks to NSF Teragrid/XSEDE:

- Athena+Kraken at NICS
- Ranger+Stampede at TACC
- Comet at SDSC

Temporal correlations from path integrals

• stationary-state energies from $N \times N$ Hermitian correlation matrix

$$C_{ij}(t) = \langle 0 | O_i(t+t_0) \overline{O}_j(t_0) | 0 \rangle$$

• judiciously designed operators \overline{O}_j create states of interest

$$O_j(t) = O_j[\overline{\psi}(t), \psi(t), U(t)]$$

ullet correlators from path integrals over quark $\psi,\overline{\psi}$ and gluon U fields

$$C_{ij}(t) = \frac{\int \mathcal{D}(\overline{\psi}, \psi, U) \ O_i(t+t_0) \ \overline{O}_j(t_0) \ \exp(-S[\overline{\psi}, \psi, U])}{\int \mathcal{D}(\overline{\psi}, \psi, U) \ \exp(-S[\overline{\psi}, \psi, U])}$$

involves the action

$$S[\overline{\psi}, \psi, U] = \overline{\psi} K[U] \psi + S_G[U]$$

Integrating the quark fields

- integrals over Grassmann-valued quark fields done exactly
- meson-to-meson example:

$$\int \mathcal{D}(\overline{\psi}, \psi) \ \psi_a \psi_b \ \overline{\psi}_c \overline{\psi}_d \ \exp\left(-\overline{\psi} K \psi\right)$$

$$= \left(K_{ad}^{-1} K_{bc}^{-1} - K_{ac}^{-1} K_{bd}^{-1}\right) \det K.$$

baryon-to-baryon example:

$$\int \mathcal{D}(\overline{\psi}, \psi) \ \psi_{a_1} \psi_{a_2} \psi_{a_3} \ \overline{\psi}_{b_1} \overline{\psi}_{b_2} \overline{\psi}_{b_3} \ \exp\left(-\overline{\psi} K \psi\right)$$

$$= \left(-K_{a_1b_1}^{-1} K_{a_2b_2}^{-1} K_{a_3b_3}^{-1} + K_{a_1b_1}^{-1} K_{a_2b_3}^{-1} K_{a_3b_2}^{-1} + K_{a_1b_2}^{-1} K_{a_2b_1}^{-1} K_{a_3b_3}^{-1} - K_{a_1b_2}^{-1} K_{a_3b_1}^{-1} - K_{a_1b_3}^{-1} K_{a_2b_1}^{-1} K_{a_3b_2}^{-1} + K_{a_1b_3}^{-1} K_{a_2b_2}^{-1} K_{a_3b_1}^{-1}\right) \det K$$

Monte Carlo integration

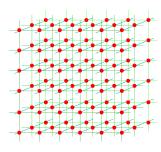
correlators have form

$$C_{ij}(t) = \frac{\int \mathcal{D}U \operatorname{det} K[U] K^{-1}[U] \cdots K^{-1}[U] \operatorname{exp} (-S_G[U])}{\int \mathcal{D}U \operatorname{det} K[U] \operatorname{exp} (-S_G[U])}$$

- resort to Monte Carlo method to integrate over gluon fields
- use Markov chain to generate sequence of gauge-field configurations U_1, U_2, \dots, U_N
- most computationally demanding parts:
 - including det K in updating
 - evaluating K^{-1} in numerator

Lattice QCD

- Monte Carlo method using computers requires hypercubic space-time lattice
- quarks reside on sites, gluons reside on links between sites
- for gluons, 8 dimensional integral on each link
- path integral dimension $32N_xN_vN_zN_t$
 - 268 million for 32³×256 lattice
- Metropolis method with global updating proposal
 - RHMC: solve Hamilton equations with Gaussian momenta
 - det K estimates with integral over pseudo-fermion fields
- systematic errors
 - discretization
 - finite volume



Excited states from correlation matrices

in finite volume, energies are discrete (neglect wrap-around)

$$C_{ij}(t) = \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}, \qquad Z_{j}^{(n)} = \langle 0 | O_{j} | n \rangle$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$\widetilde{C}(t) = U^{\dagger} C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2} U$$

- columns of U are eigenvectors of $C(\tau_0)^{-1/2} C(\tau_D) C(\tau_0)^{-1/2}$
- choose τ_0 and τ_D large enough so $\widetilde{C}(t)$ diagonal for $t > \tau_D$
- $egin{align*} ullet & ext{ effective energies} \ & \widetilde{m}_{lpha}^{ ext{eff}}(t) = rac{1}{\Delta t} \ln \left(rac{\widetilde{C}_{lphalpha}(t)}{\widetilde{C}_{lphalpha}(t+\Delta t)}
 ight) \end{aligned}$

tend to N lowest-lying stationary state energies in a channel

ullet 2-exponential fits to $\widetilde{C}_{lphalpha}(t)$ yield energies E_lpha and overlaps $Z_j^{(n)}$

Excited states in lattice QCD timeline

- LHPC spectroscopy effort: Isgur and Negele 2001
- initial excited-state skepticism: Bob Sugar
- operator construction PRD 72, 094506 (2005)
- Lichtl at Lattice 2005 in Dublin: "we'll get twelve levels or more"
- first quenched results: PRD 76 074504 (2007)
 - point-to-all propagators
- need to incorporate multi-hadron operators begins 2007
- distillation for small lattices: PRD 80, 054506 (2009)
- stochastic LapH for large lattices: PRD 83, 114505 (2011)

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_i(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

$$\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \; \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$$

- ullet 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q_{a\alpha j}^{A}=D^{(j)}\widetilde{\psi}_{a\alpha}^{(A)}, \qquad \overline{q}_{a\alpha j}^{A}=\widetilde{\overline{\psi}}_{a\alpha}^{(A)}\gamma_{4}D^{(j)\dagger}$$

• displacement $D^{(j)}$ is product of smeared links:

$$D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$$

• to good approximation, LapH smearing operator is

$$S = V_s V_s^{\dagger}$$

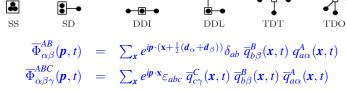
• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations



group-theory projections onto irreps of lattice symmetry group

$$\overline{M}_l(t) = c_{lphaeta}^{(l)*} \overline{\Phi}_{lphaeta}^{AB}(t)$$
 $\overline{B}_l(t) = c_{lphaeta\gamma}^{(l)*} \overline{\Phi}_{lphaeta\gamma}^{ABC}(t)$

• definite momentum p, irreps of little group of p

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

$$c^{I_{3a}I_{3b}}_{\pmb{p}_a\lambda_a;\;\pmb{p}_b\lambda_b}\;B^{I_aI_{3a}S_a}_{\pmb{p}_a\Lambda_a\lambda_ai_a}\;B^{I_bI_{3b}S_b}_{\pmb{p}_b\Lambda_b\lambda_bi_b}$$

- fixed total momentum $p = p_a + p_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \hat{x} \pm \hat{y}$, $\pm \hat{x} \pm \hat{z}$, $\pm \hat{y} \pm \hat{z}$
 - cubic diagonal $\pm \hat{x} \pm \hat{y} \pm \hat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction pref
 - each p, select one reference rotation R_{ref}^p that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Quark propagation

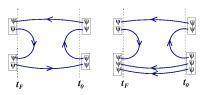
- quark propagator is inverse K^{-1} of Dirac matrix
 - rows/columns involve lattice site, spin, color
 - very large $N_{\rm tot} \times N_{\rm tot}$ matrix for each flavor

$$N_{\text{tot}} = N_{\text{site}} N_{\text{spin}} N_{\text{color}}$$

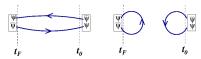
- for $32^3 \times 256$ lattice, $N_{\rm tot} \sim 101$ million
- not feasible to compute (or store) all elements of K^{-1}
- solve linear systems Kx = y for source vectors y
- translation invariance can drastically reduce number of source vectors y needed
- multi-hadron operators and isoscalar mesons require large number of source vectors y

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines



• isoscalar mesons also require sink-to-sink quark lines



solution: the stochastic LapH method!

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix K[U]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- \mathbb{Z}_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$P^{(a)}P^{(b)} = \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)}$$
 $\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$

define

$$\eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

$$\rho_{\alpha k}(t), \qquad t = \text{time}, \ \alpha = \text{spin}, \ k = \text{eigenvector number}$$

• four dilution schemes:

$$\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & \text{(none)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & \text{(full)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & \text{(interlace-}K)} \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \bmod k} & a = 0, 1, \dots, K-1 & \text{(block-}K)} \end{array}$$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

$$Q = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$$

displaced-smeared-diluted quark source and quark sink vectors:

$$\varrho^{[b]}(\rho) = D^{(j)} V_s P^{(b)} \rho
\varphi^{[b]}(\rho) = D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$Q_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$Q_{uv}^{(AB)} pprox rac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \overline{\varrho}_u^{[b]}(\rho^r) \, \overline{\varphi}_v^{[b]}(\rho^r)^*$$

16

defining
$$\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$$
 and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

C. Morningstar Excited States

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{l\bar{i}}^A \mathcal{Q}_{j\bar{j}}^B \mathcal{Q}_{k\bar{k}}^C$$

stochastic estimate with dilution

$$C_{\bar{l}l} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}j\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*} \right)$$

$$\times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*} \right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*} \right)$$

define baryon source and sink

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) = c_{ijk}^{(l)} \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]}$$

$$\mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) = c_{ijk}^{(l)} \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]}$$

correlator is dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

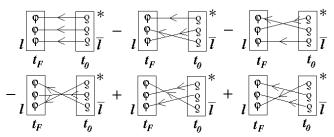
C. Morningstar Excited States 17

Correlators and quark line diagrams

baryon correlator

$$C_{\bar{l}\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

express diagrammatically



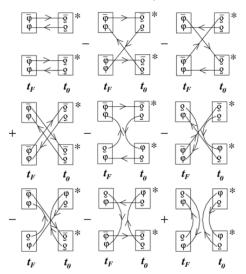
meson correlator

$$- \underbrace{l}_{q} \xrightarrow{\overline{Q}} \underbrace{\bar{q}}_{q} * + \underbrace{l}_{l} \underbrace{\bar{q}}_{l} * \underbrace{t_{F}} t_{0}$$

C. Morningstar

More complicated correlators

• two-meson to two-meson correlators (non isoscalar mesons)



Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group Oh

$$A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, u$$

• on-axis momenta: little group $C_{4\nu}$

$$A_1, A_2, B_1, B_2, E, G_1, G_2$$

planar-diagonal momenta: little group C_{2v}

$$A_1, A_2, B_1, B_2, G_1, G_2$$

• cubic-diagonal momenta: little group C_{3v}

$$A_1, A_2, E, F_1, F_2, G$$

include *G* parity in some meson sectors (superscript + or −)

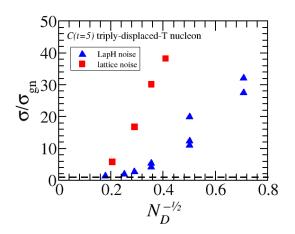
Spin content of cubic box irreps

• numbers of occurrences of Λ irreps in J subduced

		\boldsymbol{J}	A_1	A_2	\boldsymbol{E}	T_1	T_2	
		0	1	0	0	0	0	
		1	0	0	0	1	0	
		2	0	0	1	0	1	
		3	0	1	0	1	1	
		4	1	0	1	1	1	
		5	0	0	1	2	1	
		6	1	1	1	1	2	
		7	0	1	1	2	2	
\boldsymbol{J}	G_1	•	G_2	H	j		G_1 G_2	H
$\frac{1}{2}$	1		0	0	2		1 0	2
$\frac{1}{2}$ $\frac{3}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	0		0	1			1 1	2
$\frac{5}{2}$	0		1	1	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3	1 2	2
$\frac{7}{2}$	1		1	1	$\frac{1}{2}$	5	1 1	3

The effectiveness of stochastic LapH

- comparing use of lattice noise vs noise in LapH subspace
- N_D is number of solutions to Kx = y



Ensembles and run parameters

- focusing on two Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_{\pi} \approx 240$ MeV, $m_{\pi}L \sim 4.4$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_{\pi} \approx 390$ MeV, $m_{\pi}L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_v = 112$ for 24^3 lattices
 - $N_v = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

Use of XSEDE resources

- use of XSEDE resources crucial
- Monte Carlo generation of gauge-field configurations:
 200 million core hours
- quark propagators: ~ 100 million core hours
- hadrons + correlators: ~ 40 million core hours
- storage: ~ 300 TB

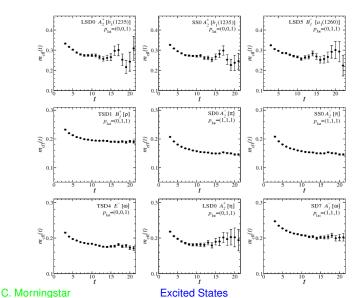
Kraken at NICS

Stampede at TACC

Comet at SDSC

Testing single-hadron operators

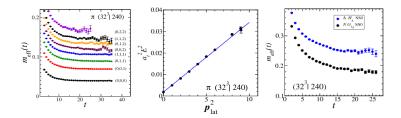
• meson effective masses on (24³|390) ensemble



25

Testing single-hadron operators (con't)

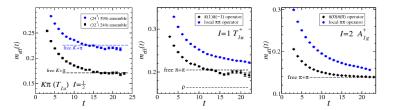
- (left and center) pion energies on (323 | 240) ensemble
- ullet (right) nucleon and Δ baryons



Testing our two-meson operators

- (left) $K\pi$ operator in $T_{1u}I = \frac{1}{2}$ channels
- (center and right) comparison with localized $\pi\pi$ operators

$$(\pi\pi)^{A_{1g}^+}(t) = \sum_{\mathbf{x}} \pi^+(\mathbf{x}, t) \pi^+(\mathbf{x}, t), (\pi\pi)^{T_{1u}^+}(t) = \sum_{\mathbf{x}, k=1,2,3} \{ \pi^+(\mathbf{x}, t) \Delta_k \pi^0(\mathbf{x}, t) - \pi^0(\mathbf{x}, t) \Delta_k \pi^+(\mathbf{x}, t) \}$$



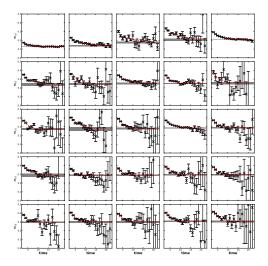
• less contamination from higher states in our $\pi\pi$ operators

Status report

- correlator software last_laph completed summer 2013
 - testing of all flavor channels for single and two-mesons completed fall 2013
 - testing of all flavor channels for single baryon and meson-baryons completed summer 2014
- small-a expansions of all operators completed
- first focus on the resonance-rich ρ -channel: $I=1, S=0, T_{1\mu}^+$
- results from 63×63 matrix of correlators $(32^3|240)$ ensemble
 - 10 single-hadron (quark-antiquark) operators
 - " $\pi\pi$ " operators
 - " $\eta\pi$ " operators, " $\phi\pi$ " operators
 - "KK" operators
- inclusion of all possible 2-meson operators
- 3-meson operators currently neglected
- still finalizing analysis code sigmond
- next focus: the 20 bosonic channels with I = 1, S = 0

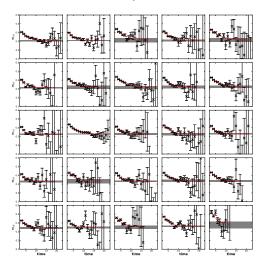
$I = 1, S = 0, T_{1u}^+$ channel

- effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 24 (B. Fahy, PhD thesis)
- energies obtained from two-exponential fits



$I=1,\ S=0,\ T_{1u}^+$ energy extraction, continued

- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 25 to 49
- energies obtained from two-exponential fits



Level identification

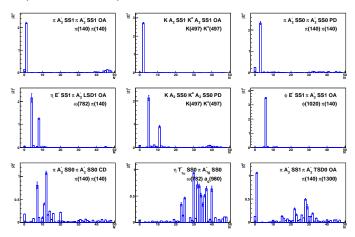
- level identification inferred from Z overlaps with probe operators
- analogous to experiment: infer resonances from scattering cross sections
- keep in mind:
 - probe operators \overline{O}_i act on vacuum, create a "probe state" $|\Phi_i\rangle$, Z's are overlaps of probe state with each eigenstate

$$|\Phi_j\rangle \equiv \overline{O}_i|0\rangle, \qquad Z_i^{(n)} = \langle \Phi_j|n\rangle$$

- $|\Phi_j\rangle\equiv\overline{O}_i|0\rangle, \qquad Z_j^{(n)}=\langle\Phi_j|n\rangle$ have limited control of "probe states" produced by probe operators
 - ideal to be ρ , single $\pi\pi$, and so on
 - use of small—a expansions to characterize probe operators
 - use of smeared quark, gluon fields
 - field renormalizations
- mixing is prevalent
- identify by dominant probe state(s) whenever possible

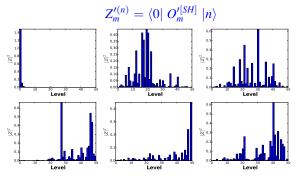
Level identification

overlaps for various operators



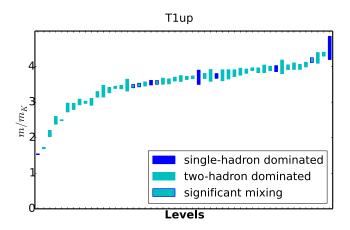
Identifying quark-antiquark resonances

- resonances: finite-volume "precursor states"
- probes: optimized single-hadron operators
 - analyze matrix of just single-hadron operators $O_i^{[SH]}$ (12 × 12)
 - perform single-rotation as before to build probe operators $O_m^{I[SH]} = \sum_i v_i^{\prime(m)*} O_i^{[SH]}$
- obtain Z' factors of these probe operators



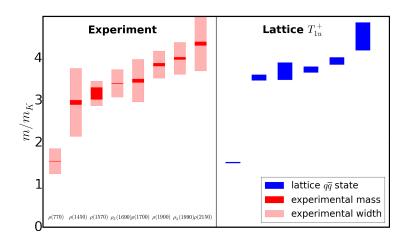
Staircase of energy levels

• stationary state energies I = 1, S = 0, T_{1u}^+ channel on $(32^3 \times 256)$ anisotropic lattice



Summary and comparison with experiment

- right: energies of $\overline{q}q$ -dominant states as ratios over m_K for $(32^3|240)$ ensemble (resonance precursor states)
- left: experiment

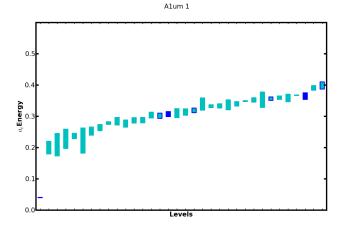


Issues

- address presence of 3 and 4 meson states
- in other channels, address scalar particles in spectrum
 - scalar probe states need vacuum subtractions
 - hopefully can neglect due to OZI suppression
- infinite-volume resonance parameters from finite-volume energies
 - Luscher method too cumbersome, restrictive in applicability
 - need for new hadron effective field theory techniques

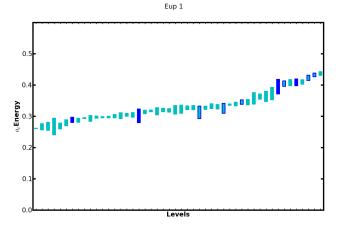
Bosonic $I = 1, S = 0, A_{1u}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



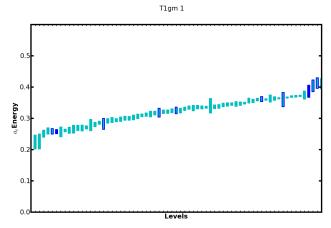
Bosonic $I = 1, S = 0, E_u^+$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators



Bosonic $I=1,\ S=0,\ T_{1g}^-$ channel

- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

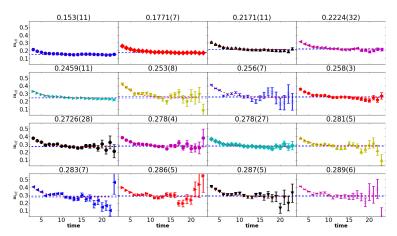


Bosonic $I = 1, S = 0, T_{1u}^-$ channel

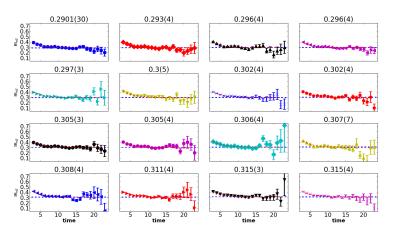
- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

T1um 1 0.5 0.4 2, Energy 0.1 Levels

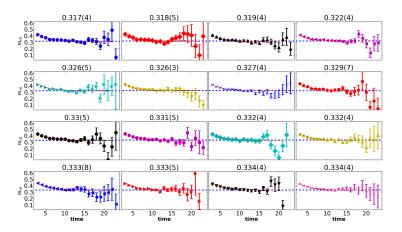
- kaon channel: effective energies $\widetilde{m}^{\text{eff}}(t)$ for levels 0 to 8
- results for $32^3 \times 256$ lattice for $m_\pi \sim 240$ MeV
- two-exponential fits (Y.C. Jhang, PhD thesis)



- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 9 to 17
- results for $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- two-exponential fits

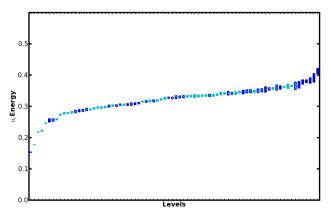


- effective energies $\widetilde{m}^{\rm eff}(t)$ for levels 18 to 23
- dashed lines show energies from single exponential fits



- finite-volume stationary-state energies: "staircase" plot
- $32^3 \times 256$ lattice for $m_{\pi} \sim 240$ MeV
- use of single- and two-meson operators only
- blue: levels of max ovelaps with SH optimized operators

kaon T1u 32



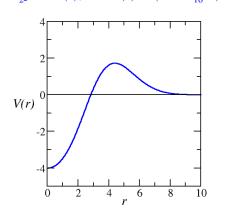
Scattering phase shifts in lattice QCD timeline

- DeWitt 1956: finite-volume energies related to scattering phase shifts
- Lüscher 1984: quantum mechanics in a box
- Rummukainen and Gottlieb 1995: nonzero total momenta
- Kim, Sachrajda, and Sharpe 2005: field theoretic derivation
- explosion of papers since then
- generalized to arbitrary spin, multiple channels

Resonances in a box: an example

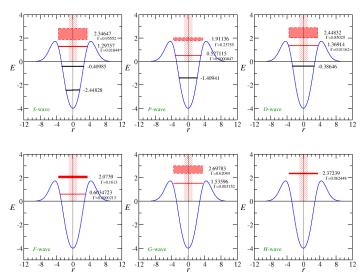
- consider a simple quantum mechanical example
- Hamiltonian

$$H = \frac{1}{2}\mathbf{p}^2 + V(r), \qquad V(r) = (-4 + \frac{1}{16}r^4) e^{-r^2/8}$$



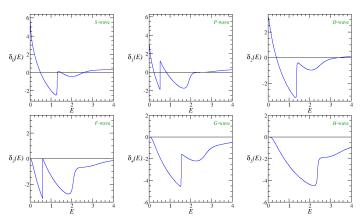
Spectrum of example Hamiltonian

• spectrum for E < 4 and l = 0, 1, 2, 3, 4, 5 of example system



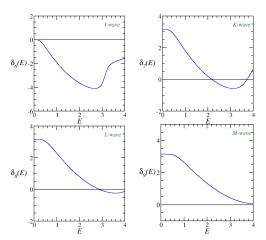
Scattering phase shifts

• scattering phase shifts for various partial waves



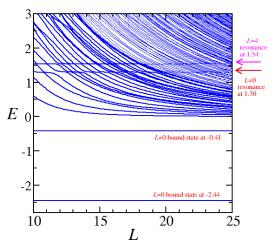
More scattering phase shifts

scattering phase shifts for higher partial waves



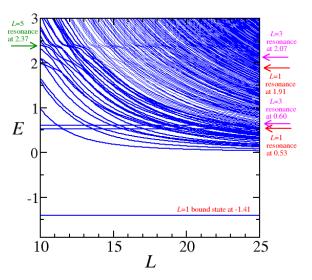
Spectrum in box: A_{1g} channel

- spectrum discrete in box, periodic b.c., momenta quantized
- stationary-state energies in A_{1g} channel shown below
- narrow resonance is avoided level crossing, broad resonances?



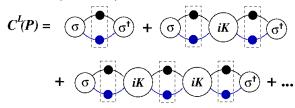
Spectrum in box: T_{1u} channel

• stationary-state energies in T_{1u} channel shown below



Scattering phase shifts from finite-volume energies

• correlator of two-particle operator σ in finite volume

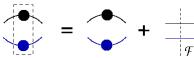


Bethe-Salpeter kernel

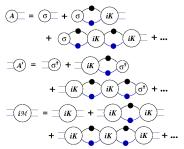
- $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts → series of poles
- C^L poles: two-particle energy spectrum of finite volume theory

Phase shift from finite-volume energies (con't)

 \bullet finite-volume momentum sum is infinite-volume integral plus correction ${\cal F}$



• define the following quantities: A, A', invariant scattering amplitude $i\mathcal{M}$



Phase shifts from finite-volume energies (con't)

• subtracted correlator $C_{\text{sub}}(P) = C^{L}(P) - C^{\infty}(P)$ given by

$$C_{\text{sub}}(P) = \underbrace{A}_{\mathcal{F}} \underbrace{A'}_{\mathcal{F}} + \underbrace{A}_{\mathcal{F}} \underbrace{i\mathcal{M}}_{\mathcal{F}} \underbrace{A'}_{\mathcal{F}} + \dots$$

sum geometric series

$$C_{\text{sub}}(P) = A \mathcal{F}(1 - i\mathcal{M}\mathcal{F})^{-1} A'.$$

- poles of $C_{\text{sub}}(P)$ are poles of $C^L(P)$ from $\det(1-i\mathcal{MF})=0$
- key tool: for $g_c(\mathbf{p})$ spatially contained and regular

$$\frac{1}{L^3} \sum_{p} g_c(p) = \int \frac{d^3k}{(2\pi)^3} g_c(\mathbf{k}) + O(e^{-mL})$$

$$\frac{1}{L^3} \sum_{\mathbf{p}} \frac{g_c(\mathbf{p}^2)}{(\mathbf{p}^2 - a^2)} = \frac{1}{L^3} \sum_{\mathbf{p}} \frac{g_c(a^2)}{(\mathbf{p}^2 - a^2)} + \int \frac{d^3k}{(2\pi)^3} \frac{g_c(\mathbf{p}^2) - g(a^2)}{(\mathbf{p}^2 - a^2)} + O(e^{-mL})$$

C. Morningstar

Phase shifts from finite-volume energies (con't)

- work in spatial L³ volume with periodic b.c.
- total momentum $P = (2\pi/L)d$, where d vector of integers
- masses m_1 and m_2 of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$\begin{split} E_{\rm cm} &= \sqrt{E^2 - \textbf{\textit{P}}^2}, \qquad \gamma = \frac{E}{E_{\rm cm}}, \\ \textbf{\textit{q}}_{\rm cm}^2 &= \frac{1}{4} E_{\rm cm}^2 - \frac{1}{2} (m_1^2 + m_2^2) + \frac{(m_1^2 - m_2^2)^2}{4 E_{\rm cm}^2}, \\ u^2 &= \frac{L^2 \textbf{\textit{q}}_{\rm cm}^2}{(2\pi)^2}, \qquad s = \left(1 + \frac{(m_1^2 - m_2^2)}{E_{\rm cm}^2}\right) \textbf{\textit{d}} \end{split}$$

• E related to S matrix (and phase shifts) by

$$\det[1 + F^{(s,\gamma,u)}(S-1)] = 0,$$

where F matrix defined next slide

C. Morningstar Excited States

Phase shifts from finite-volume energies (con't)

F matrix in JLS basis states given by

$$\begin{split} F_{J'm_{J'}L'S'a';\;Jm_{J}LSa}^{(s,\gamma,u)} &= \frac{\rho_{a}}{2} \delta_{a'a} \delta_{S'S} \bigg\{ \delta_{J'J} \delta_{m_{J'}m_{J}} \delta_{L'L} \\ &+ W_{L'm_{L'};\;Lm_{L}}^{(s,\gamma,u)} \langle J'm_{J'} | L'm_{L'}, Sm_{S} \rangle \langle Lm_{L}, Sm_{S} | Jm_{J} \rangle \bigg\}, \end{split}$$

- total angular mom J, J', orbital mom L, L', intrinsic spin S, S'
- a, a' channel labels
- $\rho_a = 1$ distinguishable particles, $\rho_a = \frac{1}{2}$ identical

$$W_{L'm_{L'};\;Lm_L}^{(s,\gamma,u)} = \frac{2i}{\pi\gamma u^{l+1}}\mathcal{Z}_{lm}(s,\gamma,u^2) \int d^2\Omega \; Y_{L'm_{L'}}^*(\Omega) Y_{lm}^*(\Omega) Y_{Lm_L}(\Omega)$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions Z_{lm} defined next slide
- $F^{(s,\gamma,u)}$ diagonal in channel space, mixes different J,J'
- recall *S* diagonal in angular momentum, but off-diagonal in channel space

C. Morningstar

RGL shifted zeta functions

compute Z_{lm} using

$$\begin{split} &\mathcal{Z}_{lm}(\boldsymbol{s},\gamma,\boldsymbol{u}^2) = \sum_{\boldsymbol{n} \in \mathbb{Z}^3} \frac{\mathcal{Y}_{lm}(\boldsymbol{z})}{(\boldsymbol{z}^2 - \boldsymbol{u}^2)} e^{-\Lambda(\boldsymbol{z}^2 - \boldsymbol{u}^2)} + \delta_{l0} \frac{\gamma \pi}{\sqrt{\Lambda}} F_0(\Lambda \boldsymbol{u}^2) \\ &+ \frac{i^l \gamma}{\Lambda^{l+1/2}} \int_0^1 \! dt \left(\frac{\pi}{t}\right)^{l+3/2} \! e^{\Lambda t \boldsymbol{u}^2} \sum_{\boldsymbol{n} \in \mathbb{Z}^3 \atop \boldsymbol{n} \neq 0} e^{\pi i \boldsymbol{n} \cdot \boldsymbol{s}} \mathcal{Y}_{lm}(\boldsymbol{w}) \; e^{-\pi^2 \boldsymbol{w}^2/(t\Lambda)} \end{split}$$

where

$$z = \mathbf{n} - \gamma^{-1} \left[\frac{1}{2} + (\gamma - 1)s^{-2}\mathbf{n} \cdot \mathbf{s} \right] \mathbf{s},$$

$$\mathbf{w} = \mathbf{n} - (1 - \gamma)s^{-2}\mathbf{s} \cdot \mathbf{n}\mathbf{s}, \qquad \mathcal{Y}_{lm}(\mathbf{x}) = |\mathbf{x}|^{l} Y_{lm}(\widehat{\mathbf{x}})$$

$$F_{0}(x) = -1 + \frac{1}{2} \int_{0}^{1} dt \, \frac{e^{tx} - 1}{t^{3/2}}$$

- choose $\Lambda \approx 1$ for convergence of the summation
- integral done Gauss-Legendre quadrature
- $F_0(x)$ given in terms of Dawson or erf function

Block diagonalization of F matrix

quantization condition is large determinant relation:

$$\det[1 + F^{(s,\gamma,u)}(S-1)] = 0$$

define the matrix

$$B_{J'm_{I'}L'S'a';\;Jm_{J}LSa}^{(R)} = \delta_{J'J}\delta_{L'L}\delta_{S'S}\delta_{a'a}D_{m_{I'}m_{J}}^{(J)*}(R)$$

can show that under lattice symmetry operator R,

$$F^{(Rs,\gamma,u)} = R^{(R)} F^{(s,\gamma,u)} R^{(R)\dagger}$$

- can block diagonalize F by diagonalizing $D_{m'm}^{(J)}(R)$ for each J
- change of basis: little group irrep Λ , row λ , n occurrence of Λ in

$$D_{m'm}^{(J)}(R)$$
 $|\Lambda \lambda nJLSa\rangle = \sum c_{Jm_J}^{\Lambda \lambda n} |Jm_JLSa\rangle$

- F diagonal in Λ , λ , but not in $n_{\Lambda}^{m_J}$
- can now focus on the matrix elements:

$$F_{J'n'L'S'a'; JnLSa}^{(s,\gamma,u)(\Lambda,\lambda)}$$

P-wave I=1 $\pi\pi$ scattering

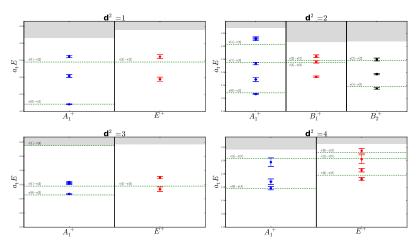
- for *P*-wave phase shift $\delta_1(E_{\rm cm})$ for $\pi\pi~I=1$ scattering
- define

$$w_{lm} = \frac{\mathcal{Z}_{lm}(\mathbf{s}, \gamma, u^2)}{\gamma \pi^{3/2} u^{l+1}}$$

d	Λ	$\cot\delta_1$
(0,0,0) (0,0,1)	T_{1u}^+	Re <i>w</i> _{0,0}
(0,0,1)	A_1^+	$\text{Re } w_{0,0} + \frac{2}{\sqrt{5}} \text{Re } w_{2,0}$
	E^+	Re $w_{0,0} - \frac{\sqrt{5}}{\sqrt{5}}$ Re $w_{2,0}$
(0,1,1)	A_1^+	Re $w_{0,0} + \frac{1}{2\sqrt{5}}$ Re $w_{2,0} - \sqrt{\frac{6}{5}}$ Im $w_{2,1} - \sqrt{\frac{3}{10}}$ Re $w_{2,2}$,
	B_{1}^{+}	Re $w_{0,0} - \frac{1}{\sqrt{5}}$ Re $w_{2,0} + \sqrt{\frac{6}{5}}$ Re $w_{2,2}$,
	B_2^+	Re $w_{0,0} + \frac{1}{2\sqrt{5}}$ Re $w_{2,0} + \sqrt{\frac{6}{5}}$ Im $w_{2,1} - \sqrt{\frac{3}{10}}$ Re $w_{2,2}$
(1,1,1)	A_1^+	Re $w_{0,0} + 2\sqrt{\frac{6}{5}}$ Im $w_{2,2}$
	E^+	Re $w_{0,0} - \sqrt{\frac{6}{5}}$ Im $w_{2,2}$

Finite-volume $\pi\pi I = 1$ energies

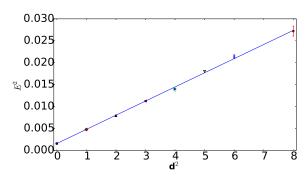
- $\pi\pi$ -state energies for various d^2
- dashed lines are non-interacting energies, shaded region above inelastic thresholds



Pion dispersion relation

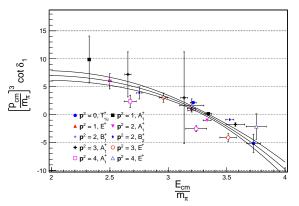
- boost to cm frame requires aspect ratio on anisotropic lattice
- aspect ratio ξ from pion dispersion

$$(a_t E)^2 = (a_t m)^2 + \frac{1}{\xi^2} \left(\frac{2\pi a_s}{L}\right)^2 \textbf{\textit{d}}^2$$
 • slope below equals $(\pi/(16\xi))^2$, where $\xi = a_s/a_t$



$I=1~\pi\pi$ scattering phase shift and width of the ρ

- results $32^3 \times 256$, $m_{\pi} \approx 240$ MeV: $g_{\rho\pi\pi} = 6.16(36)$, $m_{\rho}/m_{\pi} = 3.324(24)$, $\chi^2/\text{dof} = 1.43$
- additional collaborator: Ben Hoerz (Dublin)

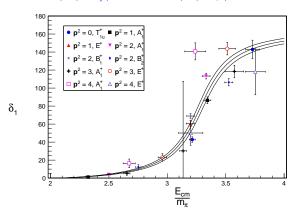


• fit
$$g_{\rho\pi\pi}^2 q_{\rm cm}^3 \cot(\delta_1) = 6\pi E_{\rm cm} (m_{\rho}^2 - E_{\rm cm}^2)$$

C. Morningstar

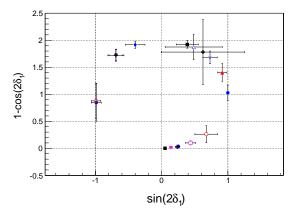
$I=1~\pi\pi$ scattering phase shift and width of the ho

• results $32^3 \times 256$, $m_{\pi} \approx 240$ MeV: $g_{\rho\pi\pi} = 6.16(36)$, $m_{\rho}/m_{\pi} = 3.324(24)$, $\chi^2/\text{dof} = 1.43$



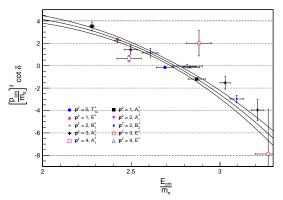
$I=1~\pi\pi$ scattering phase shift and width of the ρ

Argand plot of P-wave scattering phase shift



$I=1~\pi\pi$ scattering phase shift and width of the ρ

- results $48^3 \times 128$, $m_{\pi} \approx 280$ MeV isotropic improved Wilson: $g_{\rho\pi\pi} = 5.68(24)$, $m_{\rho}/m_{\pi} = 2.745(24)$, $\chi^2/\text{dof} = 1.20$
- plot from Ben Hoerz (Dublin)

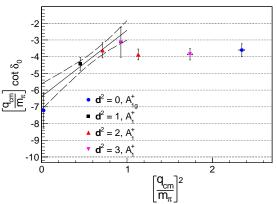


• fit $g_{\rho\pi\pi}^2 q_{\rm cm}^3 \cot(\delta_1) = 6\pi E_{\rm cm} (m_{\rho}^2 - E_{\rm cm}^2)$

$I=2~\pi\pi$ scattering phase shift

- results $32^3 \times 256$, $m_{\pi} \approx 240$ MeV
- very small phase shifts

$$m_{\pi}a_0 = -0.157(19), \ m_{\pi}r_{\text{eff}} = 7.9(2.4), \ \chi^2/\text{dof} = 0.61$$



• fit
$$q_{\rm cm} \cot(\delta_1) = \frac{1}{a_0} + \frac{1}{2} q_{\rm cm}^2 r_{\rm eff}$$

C. Morningstar

References

S. Basak et al., *Group-theoretical construction of extended baryon operators in lattice QCD*, Phys. Rev. D **72**, 094506 (2005).

S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).

C. Morningstar et al., *Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD*, Phys. Rev. D **83**, 114505 (2011).

C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D **88**, 014511 (2013).

Conclusion

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- analysis software sigmond urgently being developed
- analysis of 20 channels I = 1, S = 0 for $(24^3|390)$ and $(32^3|240)$ ensembles nearing completion
- can evaluate and analyze correlator matrices of unprecedented size 100×100 due to XSEDE resources
- study various scattering phase shifts also planned
- infinite-volume resonance parameters from finite-volume energies — need new effective field theory techniques