Resonant matrix elements from lattice QCD Raúl Briceño

rbriceno@jlab.org

Jefferson Lab

D DOMINION

I D E A FUSION

 $N^{\star}(1440)$

the Roper: $\Gamma \sim 350 \text{ MeV}$

Horgan, Liu, Meinel, Wingate (2013)

inability to understand it?"

"substantiating the molecular nature of composite states"

Hall, Kamleh, Leinweber, Menadue, Owen, Thomas, Young (2014)

Non-resonant matrix elements (e.g., deuteron elastic/inelastic form factors)

Transition processes

Importance of transition processes:

- Probe the inner structure and shape of hadrons
- Access the excited spectrum of QCD
- Fest our understanding of QCD
- Fest the limits of the standard model

Transition processes

- Lattice QCD is a theoretical tool that
- is non-perturbative in QCD
- generates resonating states dynamically
- allows resonances to decay in accordance to QCD
- includes quark-core, two-body, three-body, ..., n-body effects
- Ireats electroweak effects perturbatively (or non-perturbatively)

Check list

Formalism

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Implementation & analysis (i.e., what are you waiting for? do it!)

Check list

Formalism

(i.e., do we know what we need to study?)

1→2 and 0→2 processes: RB, Hansen & Walker-Loud (2014) RB & Hansen (Feb 2015) 2→2 RB & Hansen (Sept 2015)

Hansen

Walker-Loud

Everyone's dream

"one can only hope"

Finite vs. infinite volume spectrum

Finite vs. infinite volume spectrum

Finite vs. infinite volume spectrum

Finite volume states are not resonance!
 Must do better!

What about scattering?

Scattering in finite volume: *impossible*!

Finite volume - a necessity for lattice QCD

- No asymptotic states, i.e., no scattering, resonances, etc.
- Search Challenging, but *not* an limitation
- Finite volume effects allow us to determine the S-matrix

Huang & Yang (1957) Lüscher (1986) Lellouch & Lüscher (2000)

Lellouch-Lüscher formalism

🗣 Lellouch & Lüscher (2000)

🗳 Lin, G. Martinelli, C. T. Sachrajda (2001)

🗳 Christ, Kim, and Yamazaki (2005)

- 🗳 Kim, Sachrajda, and. Sharpe (2005)
- 🗳 Meyer (2011)
- Hansen and Sharpe (2012)
- Agadjanov, V. Bernard, Meissner, Rusetsky (2013)

🗣 Feng, Aoki, Hashimoto, Kaneko (2014)

Ş...

Three-point functions: $C_{i \to f\mathcal{J}}^{3pt.} = \langle 0 | T \mathcal{O}_f(\delta t) \mathcal{J}(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle_L$

n

Three-point functions: $C_{i \to f\mathcal{J}}^{3pt.} = \langle 0 | T \mathcal{O}_f(\delta t) \mathcal{J}(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle_L$

Definition #1:

Complete set of finite volume (L) state: $1 = \sum |n, L\rangle \langle n, L|$

<u>**Hadrons in a box**</u>: the energy and states are those of IR degrees of freedom of the finite volume QCD Hamiltonian

Three-point functions: $C_{i \to f\mathcal{J}}^{3pt.} = \langle 0 | T \mathcal{O}_f(\delta t) \mathcal{J}(t) \mathcal{O}_i^{\dagger}(0) | 0 \rangle_L$

Definition #1:

Complete set of finite volume (L) state: $1 = \sum_{n} |n, L\rangle \langle n, L|$

$$C_{i \to f\mathcal{J}}^{3pt.} = \sum_{n,n'} Z_{n,f} Z_{n',i}^* e^{-(\delta t - t)E_n} e^{-tE_{n'}} \langle n, L | \mathcal{J} | n', L \rangle$$

$$\begin{bmatrix} E_n \leftrightarrow \text{scattering} \\ \langle n, L | \mathcal{J} | n', L \rangle \leftrightarrow ? \end{bmatrix}$$
 Jo's talk

Field theory

What?: Relativistic quantum field theory

Why?: to give meaning to correlation functions

Where?: a finite Euclidean spacetime?

How?: Non-perturbatively, or to all order in perturbation theory

$$\mathbf{p} = 2\pi\mathbf{n}/L$$
, where $\mathbf{n} \in Z^3$
 $p^2 = p_0^2 + \mathbf{p}^2$

 $C^{3pt.}_{i \to f\mathcal{J}} = \text{F.T.} \text{ [sum over finite volume diagram with a single current insertion]}$

Definition #2: [e.g., 1→2 processes, below the 3body thresholds] $C_{i \to f \mathcal{J}}^{3pt.} = \text{ F.T. } \left\{ \bigcirc_{i}^{\uparrow} - \bigvee_{v} \bigcirc_{f} + \bigcirc_{i}^{\uparrow} - \bigvee_{v} \bigvee_{v} \bigcirc_{f} + \cdots \right\}$

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

Definition #2: [e.g., 1→2 processes, below the 3body thresholds] $C_{i \to f \mathcal{J}}^{3pt.} = \text{ F.T. } \left\{ \bigcirc_{i}^{\uparrow} - \bigvee_{v} \bigcirc_{f} + \bigcirc_{i}^{\uparrow} - \bigvee_{v} \bigvee_{v} \bigcirc_{f} + \cdots \right\}$

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

Definition #2: [e.g., 1→2 processes, below the 3body thresholds] $C_{i \to f \mathcal{J}}^{3pt.} = \text{F.T.} \left\{ \underbrace{\bigcirc_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\bigcirc_{f}}_{V} + \underbrace{\bigcirc_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\bigtriangledown_{i}^{\dagger}}_{V} \underbrace{\odot_{i}^{\dagger}}_{V} \underbrace{\odot_{i$

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

$$C_{i \to f \mathcal{J}}^{3pt.} = \text{F.T.} \left\{ \underbrace{\bigcirc_{i}^{\dagger}}_{i} - \underbrace{\underbrace{\mathcal{H}}}_{V} \underbrace{\bigvee_{i} \mathcal{A}_{f}}_{i} + \underbrace{\bigcirc_{i}^{\dagger}}_{i} - \underbrace{\underbrace{\mathcal{H}}}_{V} \underbrace{\bigvee_{i} \mathcal{A}_{f}}_{V} \underbrace{\bigvee_{i} \mathcal{A}_{f}}_{V} + \cdots \right\}$$

<u>Take home message</u>: finite volume correlation functions can be written in terms of on-shell, infinite volume quantities!

By equating the two definitions and after some algebra, we find:

1) $1 \rightarrow 2$ processes:

$$\left(|\langle \mathbf{2} | \mathcal{J} | \mathbf{1} \rangle_L | = \sqrt{\frac{1}{2E_1}} \sqrt{\mathcal{H}^{\text{in}} \mathcal{R} \mathcal{H}^{\text{out}}} \right)$$

RB, Hansen & Walker-Loud (2014) RB & Hansen (2015)

By equating the two definitions and after some algebra, we find:

1) $1 \rightarrow 2$ processes:

$$\left| \langle \mathbf{2} | \mathcal{J} | \mathbf{1} \rangle_L \right| = \sqrt{\frac{1}{2E_1}} \sqrt{\mathcal{H}^{\text{in } \mathcal{R} \mathcal{H}^{\text{out}}}}$$

summarizes everything previously done and more!

Lellouch-Lüscher formalism

- 穿 Lellouch & Lüscher (2000)
- 🗳 Lin, G. Martinelli, C. T. Sachrajda (2001)
- 🗳 Christ, Kim, and Yamazaki (2005)
- 🐓 Kim, Sachrajda, and. Sharpe (2005)
- 🗳 Meyer (2011)
- 穿 Hansen and Sharpe (2012)
- Agadjanov, V. Bernard, Meissner, Rusetsky (2013)
- 🗣 Feng, Aoki, Hashimoto, Kaneko (2014)

¥.

By equating the two definitions and after some algebra, we find:

1) $1 \rightarrow 2$ processes:

$$\left(|\langle \mathbf{2} | \mathcal{J} | \mathbf{1} \rangle_L | = \sqrt{\frac{1}{2E_1}} \sqrt{\mathcal{H}^{\text{in}} \mathcal{R} \mathcal{H}^{\text{out}}} \right)$$

Holds below three-particle thresholds
 On-going efforts to address these limitation
 Hansen & Sharpe (2014-2015)

1)
$$1 \rightarrow 2$$
 processes:

$$|\langle \mathbf{2} | \mathcal{J} | \mathbf{1} \rangle_L| = \sqrt{\frac{1}{2E_1}} \sqrt{\mathcal{H}^{\text{in}} \mathcal{R} \mathcal{H}^{\text{out}}}$$
RB, Hansen & Walker-Loud (2014)
RB & Hansen (Feb 2015)
2) $0 \rightarrow 2$ processes:

$$|\langle \mathbf{2} | \mathcal{J} | \mathbf{0} \rangle_L| = \sqrt{L^3} \sqrt{\mathcal{V}^{\text{in}} \mathcal{R} \mathcal{V} \mathcal{H}^{\text{out}}}$$
RB & Hansen (Feb 2015)
3) $2 \rightarrow 2$ processes:

$$|\langle \mathbf{2} | \mathcal{J} | \mathbf{2} \rangle_L| = \frac{1}{\sqrt{L^3}} \sqrt{\text{Tr} [\mathcal{R} \mathcal{W}_{L, \text{df}} \mathcal{R} \mathcal{W}_{L, \text{df}}]}$$
RB & Hansen (Sept 2015)
RB & Hansen (Sept 2015)

Check list

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Implementation & analysis

(i.e., what are you waiting for? do it!)

Check list

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Radiative transitions

$[m_{\pi} = 700 \text{ MeV}]$

Nearly everything is stable:

🖇 analysis is relatively simple

perfect place to test code

The basic idea is to replace: $C_{i \to f \mathcal{J}}^{3pt.} = \langle 0 | \mathcal{O}_{f}(\delta t) \mathcal{J}(t) \mathcal{O}_{i}^{\dagger}(0) | 0 \rangle_{L} = \sum_{n,n'} Z_{n,f} Z_{n',i}^{*} e^{-(\delta t - t)E_{n}} e^{-tE_{n'}} \langle n, L | \mathcal{J} | n', L \rangle$ with: $C_{i \to f \mathcal{J}}^{3pt.} = \langle 0 | \Omega_{f,n_{f}}(\delta t) \mathcal{J}(t) \Omega_{i,n_{i}}^{\dagger}(0) | 0 \rangle_{L} = Z_{n_{f},f} Z_{n_{i},i}^{*} e^{-(\delta t - t)E_{n_{f}}} e^{-tE_{n_{i}}} \langle n_{f}, L | \mathcal{J} | n_{i}, L \rangle + \cdots$ optimized operators: typically, a linear combination of 10-30 operators

Benefits to using optimized operators:

- sexcited state contamination is suppressed
- can also access excited state matrix elements

Elastic form factors

[ϱ form factors @ m_{π} =700 MeV]

Elastic form factors

[π' form factor @ m_{π} =700 MeV]

Transition form factors

[$\varrho' \pi'$ form factors @ m_{π} =700 MeV]

Transition form factors

[$Q\pi$ form factors @ m_{π} =700 MeV]

Transition form factors

[$Q\pi$ form factors @ m_{π} =700 MeV]

Check list

Implementation & analysis

(i.e., what are you waiting for? do it!)

Check list HadSpec **Collaboration** Wilson Thomas Shultz Dudek Edwards RB, Dudek, Edwards, Shultz, Thomas & Wilson [Accepted to PRL] (2015)

Implementation & analysis

(i.e., what are you waiting for? do it!)

 $\pi \gamma^*$ -to- $\pi \pi$

Exploratory $\pi \gamma^*$ -to- $\pi \pi / \pi \gamma^*$ -to- ϱ calculation:

 $m_{\pi} \sim 400 MeV$

Solution Matrix element determined in 48 kinematic point: $(E_{\pi\pi}, Q^2)$

Comparing with experiment

Extrapolation performed using Unitarized χPT

cute, but aren't experiments performed using m_{π} =140 MeV?

- Weinberg (1966)
- 🐓 Gasser & Leutwyler (1983-85)
- Dobado and Pelaez (1997)
- Soller, Oset, and Pelaez (1998)

 $\pi\gamma^*$ -to- $\pi\pi$

(some more motivation)

1. Building block of N γ^* -to-N $\pi\pi$

 $\pi\gamma^*$ -to- $\pi\pi$

(some more motivation)

- 1. Building block of N γ^* -to-N $\pi\pi$
- 2. Testing ground for more challenging processes

 $\pi \gamma^*$ -to- $\pi \pi$

(some more motivation)

- 1. Building block of $N\gamma^*\text{-to-}N\pi$
- 2. Testing ground for more challenging processes

JC,

3. g_µ-2

Building blocks for hadronic light-by-light:

Muon anomalous magnetic moment: $a_{\mu} = \frac{g_{\mu} - 2}{2}$

*-to-ππ $\pi\gamma$ (some motivation)

- 1. Building block of N γ^* -to-N π
- 2. Testing ground for more challenging processes
- 3. g_µ-2
- 4. ϱ -to- $\pi\gamma^*$ decay
- 5. chiral anomaly

First resonating 1-to-2 calculation!

 $\pi \gamma^*$ -to- $\pi \pi$ (a sketch)

On the lattice we calculate: $_L\langle \pi; P_\pi | \mathcal{J}_{x=0}^\mu | \pi\pi; P_{\pi\pi} \rangle_L$

Electromagnetic current: $\mathcal{J}^{\mu} = \frac{2}{3}\bar{u}\gamma^{\mu}u - \frac{1}{3}\bar{d}\gamma^{\mu}d$

This can be *mapped* to : $\mathcal{H}^{\mu}_{\pi\pi,\pi\gamma^{\star}} = \left\langle \text{out}; \pi, P_{\pi} \middle| \mathcal{J}^{\mu}_{x=0} \middle| \text{in}; \pi\pi, P_{\pi\pi}, \ell = 1 \right\rangle$

RB, Hansen & Walker-Loud (2014)

This gives us:

Solution energy-dependent π -to- ϱ form factor $\Im \pi \gamma^*$ -to- $\pi \pi$ amplitude for arbitrary virtuality $\Im \pi \gamma^*$ -to- $\pi \pi$ cross section

 $\pi\gamma^*$ -to- $\pi\pi$ (more details)

Lorentz decomposition:

Approximations:

F-wave $\pi\gamma^*$ -to- $\pi\pi$ is ignored kinematically and dynamically suppressed contractions:

 $\pi\gamma^*$ -to- $\pi\pi$ amplitude

$\pi\gamma^*$ -to- $\pi\pi$ amplitude

Amplitude vs. form factor

Amplitude near the resonance is dominated by $\pi\pi$ rescattering

Form factor definition:

$$\mathcal{A}_{\pi\pi,\pi\gamma^{\star}}(E_{\pi\pi}^{\star},Q^2) = F_{\pi\rho}(E_{\pi\pi}^{\star},Q^2) \sqrt{\frac{8\pi}{q_{\pi\pi}^{\star}\Gamma_1(E_{\pi\pi}^{\star})}} \sin \delta_1(E_{\pi\pi}^{\star}) e^{i\delta_1(E_{\pi\pi}^{\star})}$$

Intuitive picture:

Energy-dependent form factor

Energy-dependent form factor

Form factor at q pole

 $\pi\gamma^*$ -to- $\pi\pi$ amplitude

$\pi\gamma$ -to- $\pi\pi$ cross section

Check list

(i.e., what are you waiting for? do it!)

The exotic future

Outlook of the future can sometimes be overly optimistic...

...and at times just right.

The exotic frontier!

Liu, Moir, Peardon, Ryan, Thomas, Vilaseca, Dudek, Edwards, Joó, Richards (2012)

The exotic frontier!

(check list)

Formalism

(i.e., do we know what we need to study?)

Code development

(i.e., can we perform said calculation?)

Implementation & analysis

(i.e., what are you waiting for? do it!)

The exotic frontier!

(back to the drawing board)

- A relatively clear pathway forward:
- 2-to-2 transitions:

RB & Hansen (2015) Bernard, Hoja , Meissner & Rusetsky (2012) RB & Davoudi (2012)

3/2 particles in a box:

Hansen & Sharpe (2014-2015) RB & Davoudi (2013) Polejaeva & Rusetsky (2012)

1-to-3, 2-to-3, 3-to-3 transitions:

In need of a thesis project?

Collaborators

formalism

LQCD calculations [HadSpec]

Hansen

Walker-Loud

RB, Hansen & Walker-Loud (PRD, 2014) RB & Hansen (PRD accepted, Feb 2015) RB & Hansen (arXiv, Sept 2015)

Wilson, RB, Dudek, Edwards & Thomas (PRD accepted, 2015) RB, Dudek, Edwards, Shultz, Thomas & Wilson (PRL accepted, 2015)