Resonant matrix elements from lattice QCD Raúl Briceño

rbriceno@jlab.org

D DOMINION

IDEAFUSION

Jefferson Lab

N?(1440)

the Roper: Γ~350 MeV

Horgan, Liu, Meinel, Wingate (2013)

inability to understand it?"

"substantiating the molecular nature of composite states"

Hall, Kamleh, Leinweber, Menadue, Owen, Thomas, Young (2014)

Non-resonant matrix elements (e.g., deuteron elastic/inelastic form factors)

Transition processes

⇡

p

Importance of transition processes:

Probe the inner structure and shape of hadrons

p \approx Access the Access the excited spectrum of QCD

Test our understanding of QCD

…

Test the limits of the standard model

Transition processes

- Lattice QCD is a theoretical tool that
- is non-perturbative in QCD

…

- generates resonating states dynamically
- \approx allows resona *u* allows resonances to decay in accordance to QCD
- *d* includes quark-core, two-body, three-body, …, n-body effects
- *p u u* Pertundan treats electroweak effects perturbatively (or non-perturbatively)

Check list

Formalism

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Implementation & analysis

(i.e., what are you waiting for? do it!)

Check list

Formalism

(i.e., do we know what we need to study?)

 R , Hansen \mathcal{R} RB & Hansen (Sept 2015) Tansen Walker-Loud 1→2 and 0→2 processes: RB, Hansen & Walker-Loud (2014) RB & Hansen (Feb 2015) $2\rightarrow 2$

Everyone's dream

"one can only hope"

Finite vs. infinite volume spectrum

Finite vs. infinite volume spectrum

Finite vs. infinite volume spectrum

 Finite volume states are not resonance! ¥ $\ddot{\bullet}$ Must do better!

What about scattering?

Scattering in finite volume: *impossible!*

Finite volume - a necessity for lattice QCD

- No asymptotic states, i.e., no scattering, resonances, etc.
- Challenging, but *not* an limitation
- Finite volume effects allow us to determine the S-matrix

Huang & Yang (1957) Lüscher (1986) Lellouch & Lüscher (2000)

Lellouch-Lüscher formalism

Lellouch & Lüscher (2000)

Lin, G. Martinelli, C. T. Sachrajda (2001)

Christ, Kim, and Yamazaki (2005)

Kim, Sachrajda, and. Sharpe (2005)

• Meyer (2011)

Hansen and Sharpe (2012)

Agadjanov, V. Bernard, Meissner, Rusetsky (2013)

Feng, Aoki, Hashimoto, Kaneko (2014)

…

Three-point functions: $C^{3pt.}_{i\to f\mathcal{J}}=\langle 0|T\mathcal{O}_f(\delta t)\mathcal{J}(t)\mathcal{O}_i^\dagger(0)|0\rangle_L$

n

Three-point functions: $C^{3pt.}_{i\to f\mathcal{J}}=\langle 0|T\mathcal{O}_f(\delta t)\mathcal{J}(t)\mathcal{O}_i^\dagger(0)|0\rangle_L$

Definition #1:

Complete set of finite volume (L) state: $1 = \sum$ $|n,L\rangle\langle n,L|$

Hadrons in a box: the energy and states are those of IR degrees of freedom of the finite volume QCD Hamiltonian

Three-point functions: $C^{3pt.}_{i\to f\mathcal{J}}=\langle 0|T\mathcal{O}_f(\delta t)\mathcal{J}(t)\mathcal{O}_i^\dagger(0)|0\rangle_L$

Definition #1:

Complete set of finite volume (L) state: $1 = \sum$ *n* $|n,L\rangle\langle n,L|$

$$
C_{i\to fJ}^{3pt.} = \sum_{n,n'} Z_{n,f} Z_{n',i}^* e^{-(\delta t - t)E_n} e^{-tE_{n'}} \langle n, L| \mathcal{J} | n', L \rangle
$$

$$
E_n \longleftrightarrow \text{scattering} \boxed{\text{Jo's talk}}
$$

Field theory

What?: Relativistic quantum field theory

Why?: to give meaning to correlation functions

Where?: a finite Euclidean spacetime?

How?: Non-perturbatively, or to all order in perturbation theory

$$
\mathbf{p} = 2\pi \mathbf{n}/L, \text{ where } \mathbf{n} \in \mathbb{Z}^3
$$
\n
$$
p^2 = p_0^2 + \mathbf{p}^2
$$
\nEquation 2: 1.22, 2.33, and 3.44, and 4.54, and 5.64, respectively.

 $C^{3pt.}_{i\rightarrow f}$ $=$ F.T. [sum over finite volume diagram with a single current insertion]]

 $C_{i\rightarrow fJ}^{3pt.} = F.T. \left\{ \begin{aligned} \odot \odot \odot \odot \odot \odot \odot \odot + \odot \odot \odot \odot \odot \odot + \cdots \end{aligned} \right\}$ $\int_{i \to fJ}^{i3pt} fJ = F.T.$ $\left\{ \begin{pmatrix} \mathbb{O}_i^{\dagger} & \mathbb{O}_j \\ i \to fJ \end{pmatrix} + \begin{pmatrix} \mathbb{O}_i^{\dagger} & \mathbb{O}_j \\ i \to fJ \end{pmatrix} \right\}$ *i d v O v (* σ *_{<i>f*}) Definition #2: [e.g., $1\rightarrow 2$ processes, below the 3body thresholds]

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

 $C_{i\rightarrow fJ}^{3pt.} = F.T. \left\{ \begin{aligned} \odot \odot \odot \odot \odot \odot \odot \odot + \odot \odot \odot \odot \odot \odot + \cdots \end{aligned} \right\}$ $\int_{i \to fJ}^{i3pt.} fJ = F.T.$ $\left\{ \begin{pmatrix} \mathbb{O}_i^{\dagger} & \mathbb{O}_j \\ i \to fJ \end{pmatrix} \right\}$ $\left\{ \begin{array}{ccc} V & \bigcirc \hspace{-0.8em} \bigcirc \hspace{-0.8em} V & V & \widehat{\hspace{-0.8em} C \hspace{-0.8em} \end{array} \right\}$ Definition #2: [e.g., $1\rightarrow 2$ processes, below the 3body thresholds]

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

 $C_{i\rightarrow fJ}^{3pt.} = F.T. \left\{ \begin{aligned} \odot \odot \odot \odot \odot \odot \odot \odot + \odot \odot \odot \odot \odot \odot + \cdots \end{aligned} \right\}$ $\int_{i \to fJ}^{i3pt} fJ = F.T.$ $\left\{ \begin{pmatrix} \mathbb{O}_i^{\dagger} & \mathbb{O}_j \ \mathbb{O}_j & \mathbb{O}_f \end{pmatrix} + \begin{pmatrix} \mathbb{O}_j^{\dagger} & \mathbb{O}_j \ \mathbb{O}_f & \mathbb{O}_f \end{pmatrix} \right\}$ Definition #2: [e.g., $1\rightarrow 2$ processes, below the 3body thresholds]

Using techniques developed by Kim, Sachrajda, and Sharpe (2005)

$$
C_{i\to fJ}^{3pt.} = F.T. \left\{ \begin{aligned} \n\overrightarrow{C_i} & \overrightarrow{H} \quad \overrightarrow{V} & \overrightarrow{A_j} + \overrightarrow{C_i} \quad \overrightarrow{H} \quad \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{V} & \overrightarrow{A_j} + \cdots \end{aligned} \right\}
$$

Take home message: finite volume correlation functions can be written in terms of on-shell, infinite volume quantities!

By equating the two definitions and after some algebra, we find:

1) $1\rightarrow2$ processes:

$$
\left[|\langle 2|\mathcal{J}|1\rangle_L|=\sqrt{\frac{1}{2E_1}}\sqrt{\mathcal{H}^{\text{in}}\;\mathcal{R}\;\mathcal{H}^{\text{out}}}\right]
$$

RB, Hansen & Walker-Loud (2014) RB & Hansen (2015)

By equating the two definitions and after some algebra, we find:

1) $1\rightarrow2$ processes:

$$
\left[\langle {\bf 2} \vert {\cal J} \vert {\bf 1} \rangle_L \right] = \sqrt{\frac{1}{2E_1}} \sqrt{{\cal H}^{\rm in}} \,\, {\cal R} \,\, {\cal H}^{\rm out}
$$

summarizes everything previously done and more!

Lellouch-Lüscher formalism

- Lellouch & Lüscher (2000)
- Lin, G. Martinelli, C. T. Sachrajda (2001)
- Christ, Kim, and Yamazaki (2005)
- Kim, Sachrajda, and. Sharpe (2005)
- Meyer (2011)
- Hansen and Sharpe (2012)
- Agadjanov, V. Bernard, Meissner, Rusetsky (2013)
- Feng, Aoki, Hashimoto, Kaneko (2014)

…

By equating the two definitions and after some algebra, we find:

1) $1\rightarrow2$ processes:

$$
\left[|\langle 2|\mathcal{J}|1\rangle_L|=\sqrt{\frac{1}{2E_1}}\sqrt{\mathcal{H}^{\text{in}}\;\mathcal{R}\;\mathcal{H}^{\text{out}}}\right]
$$

Holds below three-particle thresholds On-going efforts to address these limitation •Hansen & Sharpe (2014-2015)

1) 1→2 processes:
\n
$$
|(2|\mathcal{J}|1\rangle_L| = \sqrt{\frac{1}{2E_1}} \sqrt{\mathcal{H}^{\text{in}} \mathcal{R} \mathcal{H}^{\text{out}}}
$$
\n
$$
R, \text{Hansen & Walker-Loud (2014)}
$$
\n
$$
R, \text{Hansen & Walker-Loud (2014)}
$$
\n
$$
R, \text{Hansen (Feb 2015)}
$$
\n2) 0→2 processes:
\n
$$
(2|\mathcal{J}|0\rangle_L| = \sqrt{L^3}\sqrt{\mathcal{V}^{\text{in}} \mathcal{R} \mathcal{V}^{\text{out}}}
$$
\n
$$
R, \text{B & Hansen (Feb 2015)}
$$
\n
$$
R, \text{B & Hansen (Feb 2015)}
$$
\n
$$
R, \text{B & Hansen (Feb 2015)}
$$
\n
$$
R, \text{B & Hansen (Sept 2015)}
$$

Check list

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Check list

(i.e., do we know what we need to study?)

Radiative transitions

$[m_{\pi}=700 \text{ MeV}]$

Nearly everything is stable:

- analysis is relatively simple
- perfect place to test code

The basic idea is to replace:

$$
C_{i\to f\mathcal{J}}^{3pt.} = \langle 0|\mathcal{O}_f(\delta t)\mathcal{J}(t)\mathcal{O}_i^{\dagger}(0)|0\rangle_L = \sum_{n,n'} Z_{n,f} Z_{n',i}^* e^{-(\delta t - t)E_n} e^{-tE_{n'}} \langle n,L|\mathcal{J}|n',L\rangle
$$

with:

$$
C_{i\to f\mathcal{J}}^{3pt.} = \langle 0|\Omega_{f,n_f}(\delta t)\mathcal{J}(t)\Omega_{i,n_i}^{\dagger}(0)|0\rangle_L = Z_{n_f,f}Z_{n_i,i}^*e^{-(\delta t-t)E_{n_f}}e^{-tE_{n_i}}\langle n_f,L|\mathcal{J}|n_i,L\rangle + \cdots
$$

optimized operators: typically, a linear combination of 10-30 operators

Benefits to using optimized operators:

- excited state contamination is suppressed
- can also access excited state matrix elements

Elastic form factors

[ϱ form factors \varnothing m_{π}=700 MeV]

Elastic form factors

[π' form factor @ m_{π} =700 MeV]

Transition form factors

[ϱ' π' form factors \varnothing m_{π}=700 MeV]

Transition form factors

[$\varrho \pi$ form factors @ m_{π} =700 MeV]

Transition form factors

[$\varrho \pi$ form factors @ m_{π} =700 MeV]

Check list

(i.e., what are you waiting for? do it!)

Check list **HadSpec Collaboration** Wilson Shultz Thomas Dudek Edwards RB, Dudek, Edwards, Shultz, Thomas & Wilson **[Accepted to PRL]** (2015)

Implementation & analysis

(i.e., what are you waiting for? do it!)

 $\pi\gamma^*$ -to- $\pi\pi$

Exploratory $\pi\gamma^*$ -to- $\pi\pi/\pi\gamma^*$ -to- ϱ calculation:

 \approx m π ~400MeV

Matrix element determined in 48 kinematic point: $(E_{\pi\pi},Q^2)$

Comparing with experiment

Extrapolation performed using Unitarized χ PT

cute, but aren't experiments performed using $m_{\pi}=140$ MeV?

- Weinberg (1966)
- Gasser & Leutwyler (1983-85)
- Dobado and Pelaez (1997)
- Oller, Oset, and Pelaez (1998)

 $\pi\gamma^*$ -to- $\pi\pi$

(some more motivation)

1. Building block of N γ^* -to-N $\pi\pi$

 $\pi\gamma^*$ -to- $\pi\pi$

(some more motivation)

- 1. Building block of $N\gamma^*$ -to- $N\pi\pi$
- 2. Testing ground for more challenging processes

 $\pi\gamma^*$ -to- $\pi\pi$

(some more motivation)

 γ^* i de dir

 $g_\mu - 2$

 γ^*

2

- 1. Building block of N γ^* -to-N π
- 2. Testing ground for more challenging processes

 γ^*

 $3. g_µ-2$

Building blocks for hadronic light-by-light: $[QC]$

Muon anomalous magnetic moment:

 $\pi\gamma^*$ -to- $\pi\pi$ (some motivation)

- 1. Building block of N γ^* -to-N π
- 2. Testing ground for more challenging processes
- $3. g_µ-2$

…
…

- 4. ρ -to- $\pi \gamma^*$ decay
- 5. chiral anomaly

First resonating 1-to-2 calculation!

 $\pi\gamma^*$ -to- $\pi\pi$ (a sketch)

 $_L\langle \pi; P_{\pi}$ On the lattice we calculate: $\left|L\left\langle\pi;P_{\pi}\middle|\mathcal{J}_{x=0}^{\mu}\right|\pi\pi;P_{\pi\pi}\right\rangle_{L}$

Electromagnetic current: $\mathcal{J}^{\mu} = \frac{2}{3} \bar{u} \gamma^{\mu} u - \frac{1}{3} \bar{d} \gamma^{\mu} d$

This can be *mapped* to : $\mathcal{H}_{\pi\pi,\pi\gamma^\star}^\mu = \langle \text{out}; \pi, \text{P}_\pi \rangle$ $\int J^{\mu}_{\rm x=0}$ $\left|\text{in}; \pi\pi, \text{P}_{\pi\pi}, \ell = 1\right\rangle$

RB, Hansen & Walker-Loud (2014)

This gives us:

 \bullet energy-dependent π -to- ϕ form factor $\sqrt{3}$ $\pi\gamma^*$ -to- $\pi\pi$ amplitude for arbitrary virtuality $\sqrt{\pi \gamma^*}$ -to- $\pi \pi$ cross section

not independent

 $\pi\gamma^*$ -to- $\pi\pi$ (more details)

Lorentz decomposition:

Approximations:

F-wave $\pi\gamma^*$ -to- $\pi\pi$ is ignored kinematically and dynamically suppressed contractions:

 $\pi \gamma^*$ -to- $\pi \pi$ amplitude

 $\overline{2.2}$ $\overline{2.6}$ 2.4 $E_{\pi\pi}^*/m_\pi$

$\pi \gamma^*$ -to- $\pi \pi$ amplitude

Amplitude vs. form factor

Amplitude near the resonance is dominated by $\pi\pi$ rescattering

Form factor definition:

$$
\mathcal{A}_{\pi\pi,\pi\gamma^{\star}}(E_{\pi\pi}^{\star},Q^2) = F_{\pi\rho}(E_{\pi\pi}^{\star},Q^2) \sqrt{\frac{8\pi}{q_{\pi\pi}^{\star}\,\Gamma_1(E_{\pi\pi}^{\star})}}\,\sin\delta_1(E_{\pi\pi}^{\star})\,e^{i\delta_1(E_{\pi\pi}^{\star})}
$$

Intuitive picture:

Energy-dependent form factor

Energy-dependent form factor

Form factor at ρ pole

 $\pi \gamma^*$ -to- $\pi \pi$ amplitude

$\pi\gamma$ -to- $\pi\pi$ cross section

Check list

The *exotic* future

Outlook of the future can sometimes be overly optimistic…

…and at times just right.

The exotic frontier!

Liu, Moir, Peardon, Ryan, Thomas, Vilaseca, Dudek, Edwards, Joó, Richards (2012)

The exotic frontier!

(check list)

Formalism

(i.e., do we know what we need to study?)

Code development (i.e., can we perform said calculation?)

Implementation & analysis

(i.e., what are you waiting for? do it!)

The exotic frontier!

(back to the drawing board)

- A relatively clear pathway forward:
- 2-to-2 transitions: š

RB & Hansen (2015) Bernard, Hoja , Meissner & Rusetsky (2012) RB & Davoudi (2012)

3/2 particles in a box:

Hansen & Sharpe (2014-2015) RB & Davoudi (2013) Polejaeva & Rusetsky (2012)

1-to-3, 2-to-3, 3-to-3 transitions:

In need of a thesis project?

Collaborators

formalism LQCD calculations [HadSpec]

Walker-Loud

 RB, Hansen & Walker-Loud (PRD, 2014) RB & Hansen (PRD accepted, Feb 2015) RB & Hansen (arXiv, Sept 2015)

 Wilson, RB, Dudek, Edwards & Thomas (PRD accepted, 2015) RB, Dudek, Edwards, Shultz, Thomas & Wilson (PRL accepted, 2015)