

INT Workshop INT-15-58W **Reactions and Structure of Exotic Nuclei** March 2–13, 2015

Quasi-Free Knockout Reaction Studies at RIBF

Tomohiro Uesaka (RIKEN Nishina Center)

Quasifree Scattering (QFS)

QFS is a powerful and clean experimental probe to nuclear structure, particularly in RI-beam experiments.

1. Experimental Arrangements for QFS studies RI Beam Factory SAMURAI Special Targets

2. QFS as a probe to nuclear structure Single-particle spectroscopy : spectroscopic factor. . . Nuclear excitation driver : MINOS & fission barrier Nuclear Correlation : α Knockout & dineutron

3. Summary

Experimental Arrangements for QFS exp.

RI Beam Factory at RIKEN

Beam Intensities at present

Special Targets for QFS studies at RIBF

proton

150 mm

A. Obertelli and T. Uesaka, EPJA 47 (2011) 105.

SAMURAI

RI beam

from **BigRIPS**

rotate

5m

Proton

10m

Heavy Ion

- Neutron Detectors
- Large Vacuum Chamber
- **Rotational Stage**

Invariant Mass Measurement Missing Mass Measurement

SAMURAI (2012~)

Experimental programs @RIBF

Single-particle state spectroscopy

(p,2p)/(p,pn) knock-out for neutron-rich He, Li, C isotopes T. Kobayashi et al.,
(p,2p) knockout for Oxygen isotopes with pol. target T. Ueseke, S. Kewese, J. Teng et al.

T. Uesaka, S. Kawase, L. Tang et al.,

Reaction driver

MINOS-DALI2 (SEASTAR) Campaign
P. Doornenbal, A. Obertelli et al., 2⁺ spectroscopy
MINOS-SAMURAI
Y. Kondo et al., Spectroscopy of ²⁸O
(p,2p) delayed fission of neutron-rich Pb, Bi, Po isotopes
D. Muecher et al.,

Correlation in nuclei

Two neutron momentum correlation in Borromean nuclei

Y. Kubota, A. Corsi et al.

Alpha cluster states in neutron-rich Be isotopes via (p,pa) reaction

D. Beaumel et al.

Experimental programs @RIBF

Single-particle state spectroscopy

(p,2p)/(p,pn) knock-out for neutron-rich He, Li, C isotopes T. Kobayashi et al.,
(p,2p) knockout for Oxygen isotopes with pol. target

T. Uesaka, S. Kawase, L. Tang et al.,

Reaction driver MINOS-DALI2 (SEASTAR) Campaign P. Doornenbal, A. Obertelli et al., 2⁺ spectroscopy MINOS-SAMURAI Y. Kondo et al., Spectroscopy of ²⁸O (p,2p) delayed fission of neutron-rich Pb, Bi, Po isotopes D. Muecher et al.,

Correlation in nuclei

Two neutron momentum correlation in Borromean nuclei
Y. Kubota, A. Corsi et al.
Alpha cluster states in neutron-rich Be isotopes via (p,pα) reaction
D. Beaumel et al.

QFS as a probe to nuclear structure

$$|\Phi
angle = \sum_{i,j} C_i |\phi; njl, S_N
angle_i |\Psi_j
angle$$

1) Selectively populate single-particle states medium-energy substitute of transfer reactions

QFS as a tool of hole-state spectroscopy

Jacob and Maris, Rev. Mod. Phys. 45 (1973) 6.

Nagasue, Noro et al.

@HIMAC

T. Kobayashi et al.,

Nucl. Phys. A 805 (2008) 431.

no B (\overline{B}) in FWD ~charged particle decay

Oxygen Isotopes (to start with)

Table 1: Experimental values of the spin-orbit splittings in ¹⁶O **Z=8:** proton magicity Proton Neutron $\Delta E_{1p_{1/2}-1p_{3/2}}$ 6.18 MeV 6.32 MeV ¹⁶O: most intensively studied nucleus 5.10 MeV 5.09 MeV $\Delta E_{1d_{3/2}-1d_{5/2}}$ Ando and Bando, PTP 66 (1981) 227. d3/2 240 Pieper and Pandharipande, PRL 70 (1993) 2541. \$1/2 220 d 5/2 000000 Within the reach of recent rigorous calculations 16O with realistic NN(+3N) interactions. P1/2 C. Barbieri, PLB 643, 268 (2006). ↑ ΔE_b G. Hagen et al., PRC 80, 021306(R) (2009). P3/2 S. Fujii et al. PRL 103, 182501 (2009). \$1/2

¹⁸O : Experiment at RCNP
^{14,22-24}O : Experiment at RIBF

 $^{14,22,24}O(\vec{p},2p)(a)$ RIBF

Analyses to improve resolution and determination of spectroscopic factor are in progress.

Experimental programs @RIBF

Single-particle state spectroscopy

(p,2p)/(p,pn) knock-out for neutron-rich He, Li, C isotopes T. Kobayashi et al.,
(p,2p) knockout for Oxygen isotopes with pol. target T. Uesaka, S. Kawase, L. Tang et al.,

Reaction driver MINOS-DALI2 (SEASTAR) Campaign P. Doornenbal, A. Obertelli et al., 2⁺ spectroscopy MINOS-SAMURAI Y. Kondo et al., Spectroscopy of ²⁸O (p,2p) delayed fission of neutron-rich Pb, Bi, Po isotopes D. Muecher et al.,

Correlation in nuclei

Two neutron momentum correlation in Borromean nuclei Y. Kubota, A. Corsi et al. Alpha cluster states in neutron-rich Be isotopes via (p,pα) reaction

D. Beaumel et al.

QFS as a probe to nuclear structure

$$|\Phi
angle = \sum_{i,j} C_i |\phi;njl,S_N
angle_i |\Psi_j
angle$$

1) Selectively populate single-particle states medium-energy substitute of transfer reactions

2) Efficiently produce excited state of a nucleus "nuclear reaction driver" large cross section, large luminosity (target thickness)

QFS in RI-Beam Experiments

- Large cross section practically N-N scattering $\sigma \sim N_{participant} \times 25 \text{ mb}$
 - $\# \sigma_{inela} < 1mb$

Large momentum transfer process

Recoil particles have large energies (> several tens of MeV) → thick target can be used.

• All the residual particles are detectable.

⇔ normal kinematics experiments where detection of heavy residual is not easy.

A project to pursue the highest efficiency in reaction experiments Proton-induced knockout reaction

15-cm liquid hydrogen target (1 mol target!!)

Irfu The Time Projection Chamber

4608 pads 18 rings × 256 segments

Ne + CH2 at 350 MeV/nucleon: Rvertex < 20 mm AND chi2 < 2.5

Micromegas detector

courtesy of Obertelli

Shell Evolution and Search for Two-plus Energies At the RIBF (SEASTAR) – a RIKEN Physics program

Spokespersons: P. Doornenbal (RIKEN), A. Obertelli (CEA, RIKEN)

Go far beyond the dripline

SAMURAI + MINOS (2014–) + NeuLAND (2015–2018)

Experimental programs @RIBF

Single-particle state spectroscopy

(p,2p)/(p,pn) knock-out for neutron-rich He, Li, C isotopes T. Kobayashi et al.,
(p,2p) knockout for Oxygen isotopes with pol. target T. Uesaka, S. Kawase, L. Tang et al.,

Reaction driver

MINOS-DALI2 (SEASTAR) Campaign
P. Doornenbal, A. Obertelli et al., 2⁺ spectroscopy
MINOS-SAMURAI
Y. Kondo et al., Spectroscopy of ²⁸O
(p,2p) delayed fission of neutron-rich Pb, Bi, Po isotopes
D. Muecher et al.,

Correlation in nuclei

Two neutron momentum correlation in Borromean nuclei

Y. Kubota, A. Corsi et al.

Alpha cluster states in neutron-rich Be isotopes via (p,pα) reaction D. Beaumel et al.

QFS as a probe to nuclear structure

$$|\Phi
angle = \sum_{i,j} C_i |\phi;njl,S_N
angle_i |\Psi_j
angle$$

1) Selectively populate single-particle states medium-energy substitute of transfer reactions

2) Efficiently produce excited state of a nucleus large cross section, large luminosity (target thickness)

3) Can be a probe to nuclear correlation

Two-neutron Correlation in Borromean Nuclei

Scattering angle in center of mass [degrees]

Nakamura et al.

What we have learned from the previous experiments

- Dineutron correlation exists.
- In ¹¹Li, contributions of s- and p-orbits are about half-and-half.

Is there any room for further studies?

- Dineutron correlation exists.
- In ¹¹Li, contributions of s- and p-orbits are half-and-half.
- What is the role played by higher multipole?

Aksyutina et al.

Interference between s, p, d, f...

Is there any room for further studies?

- Dineutron correlation exists.
- In ¹¹Li, contributions of s- and p-orbits are half-and-half.
- What is the role played by higher multipole? Interference between s, p, d, f. . .
- Does excited core play a role?

 $\left|\Phi_{g.s.}\right\rangle = \left|\operatorname{core}\right\rangle \otimes \left(\alpha \left|s_{1/2}^{2}\right\rangle + \beta \left|p_{1/2}^{2}\right\rangle + \gamma \left|d_{5/2}^{2}\right\rangle + \ldots\right) + \left|\operatorname{core}^{*}\right\rangle \otimes \left(\alpha' \left|s_{1/2}^{2}\right\rangle + \beta' \left|p_{1/2}^{2}\right\rangle + \gamma' \left|d_{5/2}^{2}\right\rangle + \ldots\right) + \ldots$

Struggle with Final State Interactions

We have to employ a reaction with minimum FSI.

In collaboration with Yuma Kikuchi and K. Ogata

Ground-state (Observable)

After (p,pn) reaction (Observable)

Signature seems to be weak \ldots . \leftarrow smeared out by k_{core-n} integration

In collaboration with Yuma Kikuchi and K. Ogata

Clearer signatures of dineutron correlations! Dineutron-like for small k_{core-n} ⇔ Cigar-like for large k_{core-n}

The cleanest and **the most complete** approach to the dineutron correlation

- ¹¹Li, ¹⁴Be, ¹⁷B(*p,pn*) neutron knockout reaction (at E/A~250 MeV) with high momentum transfer (q > 2 fm⁻¹) Free from three-body final state interaction
- Kinematically (too) complete experiment

Detect all the particles, including γ -ray

low experimental efficiency

→ remedied by high luminosity by use of high-intensity beams at RIBF and a thick liquid hydrogen target of MINOS!

Experimental setup for (p,pn)

Particle Identification

PID of fragment

Excited core in ¹⁴Be

• Does excited core play a role?

2702

2107

Case of ¹¹Li

In collaboration with Yuma Kikuchi and K. Ogata

Opening angle [deg]

Opening angle [deg]

Opening angle [deg]

Quasi-free scattering is a good tool to probe structure of unstable nuclei.

Single-particle spectroscopy : spectroscopic factor. .Nuclear excitation driver :MINOS & fission barrierNuclear Correlation :α Knockout & dineutron

(p,pn) reaction with a large momentum transfer

The cleanest and the most complete experiment to probe dineutron correlation

Minimization of 3-body FSI

γ-ray detection for tagging core excitation

High statistics enabled with RIBF \times MINOS