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§  Started in 1983 at 
Daresbury Laboratory 

§  First for 2-step transfer 
contributions to 17O*. 

§  Main paper in 1988: 
Computer Physics 
Reports, Vol 7, 167-212. 
Now has 930 citations. 

§  Source & docs available 
at www.fresco.org.uk,  
hosted at Univ. Surrey. 

§  Versions since 2006: 
‘public’ FRES (3.1), and 
‘Livermore’ FRXY (6l) ⚒ 

§  Textbook (CUP, 2009) 
“Nuclear Reactions for 
Astrophysics” with 
Filomena Nunes. 
Now sold 873 copies. 

§  Still being maintained, 
and developed, with 
queries answered. 
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2-step transfer contributions to 17O* 

Lilley et al, NPA 463, 710 (1987) 

J.S. Lilley et al. / Multistep effects 719 

where H~  -) and H~  +) are Coulomb functions with incoming and outgoing boundary 
conditions. 

(4.3) Er.p-r = E + QK -- ep-- e T 

for excited state energies ep, e T and Q-value QK in partition K and 

2mK E ] 1/2 
K o  = , (4 .4)  

where mK is the reduced mass in the channel with partition K. The U K ( R K )  are 
diagonal optical potentials, vr~,(RK) the local inelastic form factors of  multipolarity 
F, and V ~ , ( R K ,  RK,) are the transfer form factors. The inclusion of non-orthogonality 
terms modifies these equations as is described in ref. 20). 

The iterative solution of  the coupled equations proceeds by regarding the right- 
hand sides as source terms that are approximated by using the wave functions from 
the previous iteration. The first iteration therefore ignores these terms, and hence 
is just an elastic scattering calculation. The second iteration uses the source term 
with only the elastic channel ao to be non-zero, and hence is equivalent to a first-order 
DWBA calculation. Subsequent iterations are equivalent to higher-order Born 
approximations,  and continue until the S-matrix elements settle to a prescribed 
accuracy. Absolute accuracy criteria are used, to avoid spending too long settling 
the details of  weak channels. Sometimes the iterations diverge, for example,  when 
near resonances and this necessitates using Pad6 acceleration of  the S-matrix 
elements. This is equivalent to allowing explicitly for the complex poles which 
describe the resonances. 

The spins and energies of  the excited states in the 160, 170 and 180 partitions are 
shown in fig. 6 (certain states are not included as FRESCO is limited to a transferred 
angular momentum less than 7). The present calculations used a matching radius, 
Rm = 50 fm, and included partial waves up to L = 300. The 170 nucleus was treated 
as an 160 core plus a neutron in either the 0d5/2 or lsl/2 single-particle state. Hence, 
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Fig. 6. Channel  couplings used in the multistep CRC calculations of the 170-2°8pb interaction at 78 MeV. 

Lilley et al, PL 128B, 153 (1983) 

Volume 128B, number 3,4 PHYSICS LETTERS 25 August 1983 
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Fig. 2. Differential cross section measurements of the 2°8Pb 
(170, 170*(1/2+))208pb (upper) and the 2°8pb (lSo, 180*(2+)) 
208pb 0ower) reactions at 78 MeV incident energy. The curves 
are theoretical calculations. The dot-dashed curve includes 
Coulomb excitation and the nuclear core (160) excitation only. 
Adding the valence neutron interaction gives the short-dashed 
("direct only") curve. The effect of adding two-step transfer 
processes using the approximations of ref. [ 1 ] is given by the 
long-dashed curve; the solid curve is the result of a more rigor- 
ous calculation described in the text. 

ancy in this region would be difficult to reconcile since 
the forward-angle cross sections are determined mainly 
by the Coulomb amplitude, which is well known. The 
do t -dash  curve is calculated for the core contribution 
only (which includes Coulomb excitation) and is an 
inadequate fit at all but the most forward angles. The 
short-dashed curve (direct) includes both the real and 
imaginary contributions of  the valence neutrons as 
well as the core. The imaginary part of  the valence form 
factor is comparable with that of  the real part, and the 
data show that both must be included to achieve what 
is a much bette r representation of  the reaction. The im- 

portance of  the imaginary valence term was emphasised 
by the authors of  ref. [1]. 

Adding the contribution of  the two-step transfer 
mechanism gives the distribution shown by the longo 
dashed curve. In this 180 calculation, the two-step 
amplitudes have been corrected for the normalisation 
error noted at the end of ref. [ 1 ]. The interference min- 
imum now is reproduced both in position and depth, 
although there is some indication experimentally that 
the minimum is a little sharper than predicted. The 
yield at larger angles suggests that there may be a 
somewhat larger two-step component  than was calcu- 
lated, although this is by no means conclusive. Increas- 
ing the two-step contribution might improve the fit at 
back angles. On the other hand, it would decrease the 
forward angle cross sections and shift the interference 
minimum, all of  which could result in a worse overall 
fit. 

Further work is planned to extend the data to larger 
angles in the hope that this will help to distinguish be- 
tween effects of  a stronger nuclear inelastic amplitude 
and details of  the elastic scattering interaction. It 
should be remembered that the theoretical calculations 
shown here are in no way a fit to the present data, 
having been published before the measurements were 
taken. The overall agreement with experiment is very 
good indeed, and supports the conclusion of ref. [ 1 ] 
that the two-step amplitudes are not important for 
this particular reaction. 

The situation is quite different for the inelastic ex- 
citation of the 170 projectile. These data show a 
marked deviation from the direct prediction support- 
ing the expectation of  the authors of  ref. [ 1 ] that two- 
step effects should be important if not dominant in this 
example. The original prediction, including two-step 
effects, is shown as the long-dashed curve. It was noted 
in ref. [1] that these calculations contain certain ap- 
proximations which could alter them significantly. In- 
deed, the data are not well represented by this curve. 

New calculations of  the two-step amplitudes have 
been carried out which overcome many of the draw- 
backs of  the previous ones. They are made in full finite 
range and take proper account of  recoil and non- 
orthogonality effects. The result of  these latest calcu- 
lations is shown as the solid curve in the figure, and is 
in much better agreement with the measurements. 

The transfer calculations were performed with the 
code FRESCO [4]. This code is designed to solve 

155 
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§  Methods of Direct Reaction Theories,  
paper in “Scattering” ed. Pike & Sabatier (2001)  

§  User Guide: Appendix A  
of Nuclear Reactions for Astrophysics(2009) 

§  Coupled Channels Methods for Nuclear Physics,  
(1988)  

§  Input manual 
 See http://www.fresco.org.uk/documentation.htm  

Documentation 
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Basic Idea 
§  Reactions between two 

nuclei: entrance and exit 

§  Multiple mass partitions. 

§  Energy, spin and parity 
given for all initial and final 
states of all nuclei. 

§  Unlimited lists of potentials 
and couplings. 

§  Solve coupled equations 

§  Predict cm cross section 
distributions. 

§  Standard forms for  
•  optical potentials,  
•  bound states,  
•  inelastic, transfer and 

capture mechanisms,  
•  etc 

§  Written in Fortran 90 
•  Tested on wide range of 

compilers 
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The Coupled Equations 

102 Scattering theory

wave functions with some part of the Hamiltonian. These integral forms
for the S- or T-matrix elements should in principle yield identical results,
but are useful since they may suggest a new range of approximations that
may still be sufficiently accurate in the relevant physical respects.

3.3.1 Green’s function methods
Up to now we have solved only homogeneous Schrödinger equations like
[E � H] = 0. Sometimes we may need to solve inhomogeneous equa-
tions like [E � H] = ⌦ with outgoing boundary conditions, for some
radial functions ⌦(R) called source terms, as such equations arise as part
of a coupled-channels set. The inhomogenous equation may be solved by
differential methods as discussed in Chapter 6, but often it is useful to give
an integral expression for its solution, and it is especially useful that there
exist simple integrals giving directly the asymptotic outgoing amplitude of
the solution, namely its T-matrix element. This section shows how to use
Green’s function methods to solve the inhomogeneous differential equa-
tion.

Integral solutions of inhomogeneous equations

Consider the general problem of solving the coupled equations similar to
those of Eq. (3.2.52):

[TxL(R) + Vc(R) � Expt] ↵(R) +
X

↵0

h↵|V |↵0
i ↵0(R0) = 0. (3.3.1)

for some given total angular momentum and parity J⇡
tot and incoming chan-

nel ↵i that we assume are all fixed, and not always written among the in-
dices. Here we have separated out the point-Coulomb potential Vc(R) =
ZxpZxte2/R (if present), and put all the other couplings, local or non-local,
into the matrix elements of V .

The solutions must satisfy the standard outgoing boundary conditions
of Eq. (3.2.13) for the given ↵i. Suppose that all the  ↵0(R0) are known
for which h↵|V |↵0

i 6= 0, in which case we may solve the inhomogeneous
equation (3.3.1) for the wave function  ↵(R) using the known source term

⌦↵(R) =
X

↵0

h↵|V |↵0
i ↵0(R0). (3.3.2)

3.2 Multi-channel scattering 97

which gives a separate equation for each ↵0 combination of quantum num-
bers. The set of all the equations for various ↵0 is called the set of coupled
channels equations.

The Hamiltonian and energy matrix element was abbreviated by h↵0
|H�

E|↵i = (H�E)↵0↵. To evaluate all these, we note that

[H � E]|↵i = [H � E] |xpt : (LIp)Jp, It;Jtot⇡i

= [T̂x + Hx + Vx � E] |xpt : (LIp)Jp, It;Jtot⇡i

= [T̂x + ✏xp + ✏xp + Vx � E] |xpt : (LIp)Jp, It;Jtot⇡i

= [T̂x + Vx � Expt] |xpt : (LIp)Jp, It;Jtot⇡i, (3.2.45)

where Expt = E � ✏xp � ✏xp is the external kinetic energy for a given
excited-state pair xpt.

This means that the matrix elements h↵0
|H � E|↵i may be written in

two ways, one by replacing H either by T̂x + Hx + Vx for acting on the
right hand side, and the other by T̂x0 + Hx0 + Vx0 for acting on the left
side. The first option is called the prior form of the matrix element, and
the second the post form. Ideally, if all terms of the coupled equations are
included and the equations are solved accurately, both choices will give the
same results.18 The prior form of the matrix element is thus

(H�E)↵0↵ = Rx0
h↵0

|T̂x + Vx � Expt|↵iR
�1
x

= Rx0
h↵0

|↵iR�1
x [T̂xL � Expt] + Rx0

h↵0
|Vx|↵iR

�1
x

⌘ N̂↵0↵[T̂xL(Rx)� Expt] + V̂ prior
↵0↵ , (3.2.46)

where the partial-wave kinetic energy operator, the same as the one-channel
operator of Eq. (3.1.10), is

T̂xL(Rx) = �

~2

2µx


d2

dR2
x

�

Lx(Lx+1)
R2

x

�
, (3.2.47)

where Lx is the orbital angular momentum in channel ↵. The coupling
interactions between channels are either the prior or post matrix elements
defined as

V̂ prior
↵0↵ = Rx0

h↵0
|Vx|↵iR

�1
x (3.2.48)

V̂ post
↵0↵ = Rx0

h↵0
|Vx0

|↵iR�1
x (3.2.49)

18 On page 115 we will see that there is also a simpler first-order result, whereby that post and prior
forms necessarily give the same first-order transition amplitudes.

with 

satisfying the boundary conditions 

90 Scattering theory

Rn:

 J
tot

⇡
↵↵

i

(Rx) =
i
2

h
H�

L
i

(⌘↵, k↵Rx) �↵↵
i

�H+
L (⌘↵, k↵Rx) SJ

tot

⇡
↵↵

i

i
.(3.2.10)

The S matrix SJ
tot

⇡
↵↵

i

gives the amplitude of an outgoing wave in channel
↵ that arises from a incoming plane wave in channel ↵i, in addition to the
scattering from a diagonal point-Coulomb potential. For all the non-elastic
channels ↵ 6= ↵i we have

 J
tot

⇡
↵↵

i

(Rx) ↵ 6=↵
i= H+

L (⌘↵, k↵Rx)
1
2i

SJ
tot

⇡
↵↵

i

, (3.2.11)

which is to be proportional to a purely outgoing wave. When ↵ = ↵i,
Eq. (3.2.10) leads to a matching equation similar to Eq. (3.1.37) for the
elastic channel.

The cross sections, we saw in subsection 2.4.4, depend on the channel
velocity13 multiplying the square modulus of an amplitude. It is therefore
convenient to combine these velocity factors with the S matrix, by defining
(for each Jtot⇡)

S̃↵↵
i

=
r

v↵

v↵
i

S↵↵
i

(3.2.12)

where the velocities satisfy µ↵v↵ = ~k↵. The combination S matrix S̃↵↵
i

may now be used to find the multi-channel cross sections, and its ma-
trix elements may be more directly found from the boundary conditions
of Eq. (3.2.10) expressed as

 J
tot

⇡
↵↵

i

(Rx) =
i
2


H�

L
i

(⌘↵, k↵Rx) �↵↵
i

�H+
L (⌘↵, k↵Rx)

r
v↵

i

v↵
S̃

J
tot

⇡
↵↵

i

�
.

(3.2.13)
Both S↵↵

i

and S̃↵↵
i

can be regarded as complex numbers in matrices S
and S̃. The second (column) index in these matrices refers to the incoming
channel, and the first (row) index names the exit channel.

We can also define a partial-wave T matrix by S = I + 2iT where I is
the identity matrix,14 or

S↵↵
i

= �↵↵
i

+ 2iT↵↵
i

(3.2.14)
S̃↵↵

i

= �↵↵
i

+ 2iT̃↵↵
i

, (3.2.15)
13 Strictly a speed, but this is the most common terminology.
14 We will often write S = 1 + 2iT for simplicity.
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wave functions with some part of the Hamiltonian. These integral forms
for the S- or T-matrix elements should in principle yield identical results,
but are useful since they may suggest a new range of approximations that
may still be sufficiently accurate in the relevant physical respects.

3.3.1 Green’s function methods
Up to now we have solved only homogeneous Schrödinger equations like
[E � H] = 0. Sometimes we may need to solve inhomogeneous equa-
tions like [E � H] = ⌦ with outgoing boundary conditions, for some
radial functions ⌦(R) called source terms, as such equations arise as part
of a coupled-channels set. The inhomogenous equation may be solved by
differential methods as discussed in Chapter 6, but often it is useful to give
an integral expression for its solution, and it is especially useful that there
exist simple integrals giving directly the asymptotic outgoing amplitude of
the solution, namely its T-matrix element. This section shows how to use
Green’s function methods to solve the inhomogeneous differential equa-
tion.

Integral solutions of inhomogeneous equations

Consider the general problem of solving the coupled equations similar to
those of Eq. (3.2.52):

[TxL(R) + Vc(R) � Expt] ↵(R) +
X

↵0

h↵|V |↵0
i ↵0(R0) = 0. (3.3.1)

for some given total angular momentum and parity J⇡
tot and incoming chan-

nel ↵i that we assume are all fixed, and not always written among the in-
dices. Here we have separated out the point-Coulomb potential Vc(R) =
ZxpZxte2/R (if present), and put all the other couplings, local or non-local,
into the matrix elements of V .

The solutions must satisfy the standard outgoing boundary conditions
of Eq. (3.2.13) for the given ↵i. Suppose that all the  ↵0(R0) are known
for which h↵|V |↵0

i 6= 0, in which case we may solve the inhomogeneous
equation (3.3.1) for the wave function  ↵(R) using the known source term

⌦↵(R) =
X

↵0

h↵|V |↵0
i ↵0(R0). (3.3.2)

and 

either local R=R´, or non-local R≠R´ 

For each total spin Jtot and parity π
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Optical and Binding Potentials 
§  Central, spin-orbit 

and tensor forces. 

§  WS, Gaussian (etc) 
shapes, or read in. 

§  Deformation by 
rotational model, or 
by arbitrary strengths 

§  Linear energy 
interpolations. 

⚒ L-, J-, and parity-
dependent potentials. 

⚒ Effective masses m*(r)  

⚒ Lane isospin couplings 
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Coupling Mechanisms 
§  Inelastic 

•  Deformed optical potls. 
•  Single-particle excitations 

§  Transfers of a cluster 
•  Zero range, LEA. 
•  Finite range 
•  Non-orthogonality terms. 

§  Two-nucleon transfers  
•  From & to correlated 2N wfs 

from correlated 1N wfs, or 
read in from 3-body code.  

•  Sequential and Simultaneous 

§  Capture to γ channels 
•  Ek in Siegert approx. 
•  Mk magnetic transitions 
—  (both in localized approx.) 

§  R-matrix phenomenology 

§  General LSJ couplings 
•  Local or non-local 
•  Numerical forms read in 

⚒  General partial wave 
couplings 
•  Numerical local or nonlocal 
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Solving the Coupled Equations 
§  Numerov integration of 

equations with local 
couplings: ‘exact’ 

§  Iteration on non-local 
couplings (eg. transfers). 

§  Use Pade acceleration if n-
step DWBA diverges. 

§  Use James Christley’s 
coupled-Coulomb wave 
functions CRCWFN for 
long-range multipoles 

§  Isocentrifugal approx. 

§  R-matrix solutions: 
•  Expand on eigenstates of 

diagonal optical potls 
•  Need Buttle corrections. 
•  More stable numerically 

⚒  Lagrange-mesh method: 
•  From Daniel Baye (ULB) 
•  No Buttle correction needed 

⚒  MPI: to solve Jπ sets in 
parallel. 

⚒  OPENMP: to solve coupled 
equations for given Jπ. 
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Breakup: beyond 2-body channels  
§  CDCC:  

•  Use continuum single-
particle states 

•  Orthonormalized in 
segments. 

•  Post-processing by Jeff 
Tostevin for 
coincidence breakup 
cross sections.  

•  Converges ok (if no 
transfer bound states!) 

⚒ XCDCC 
•  Neil Summers 

extended CDCC 
method to deal with 
deformed core states in 
single-particle states. 

•  Example for breakup of  
11Be = 10Be(0+,2+) + n 
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Coherent multistep effects 

Nunes & Thompson, PRC 59, 2652 (1999) 
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Thompson, in Broglia et al (2013) 
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Input Formats         Output Formats 
§  OLD style #1: 

•  Card inputs cols 1—72 

§  NAMELIST style #2: 
•  Fortran var=value text 

§  CDCC style #3: 
•  Generate easily the 

NAMELIST sets of bins 
and couplings for 
CDCC calculations. 

§  Cross sections σ(θ) 

§  Amplitudes fmM:m’M’(θ) 

§  CDCC amplitudes for 
post-processing. 
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Sfresco: searching for χ2 minimums 
§  Define data with errors: 

•  Energy and/or angle data 
•  Polarization data 
•  Angle-integrated data 
•  Phase shifts in given channel 
•  Fitted bound state parameters 

§  Define parameters 
Initial values and limits of: 
•  Optical parameters 
•  Spectroscopic amplitudes 
•  R-matrix pole energies & widths 
•  Data normalizations 

§  Searching 
•  Interactive or given 

method 
•  Uses MINUIT 
•  Plot initial or final fits 
•  Trace χ2 progress 
•  Restart at any trial set. 
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Current Developments 
⚒  LLNL: 

•  General nonlocal potentials 
•  Effective masses m*(R) 
•  Lane couplings for IARs 
•  IAR non-orthogonality (p,p′) 
•  Semi-direct capture step 
•  Surface operator for transfer 

§  Jeff Tostevin: 
•  Breakup coincidence cross 

sections with core excitation 
in XCDCC 

•  Simple zero-range transfers 

§  Alex Brown 
•  Using shell-model two-

nucleon overlaps for 
transfers (seq+sim). 

§  Antonio Moro: 
•  Stabilizing the solutions 

from Numerov method 
•  More NN standard forms for 

tensor forces 
•  Deformations in optical 

potentials in transfer 
operator 
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Missing Capabilities 
§  Core transitions in 

electromagnetic particle 
steps. 

§  Perey-Buck nonlocality in 
optical potentials. 

§  Spin-dependence of 
optical potentials in 
transfer operators. 

§  Energy-dependence of 
optical potentials in 
transfer operators. 

§  Uniform treatment of 
antisymmetrization 
and identical particles 

§  Convergence problems: 
CDCC breakup with 
all-order couplings to 
transfer channels. 




