Experimental Results on QFS in inverse kinematics

Stefanos Paschalis

Technical University of Darmstadt

R³B collaboration

Leyla Atar, Matthias Holl, Alina Movsesyan, Valerii Panin : Thanks for the slides!

March 2nd - 13th 2015, INT Workshop, Seattle, "Reactions and Structure of Exotic Nuclei"

Motivation

QFS in inverse kinematics as a tool to:

- > perform spectroscopic studies of exotic nuclei
- > populate systems beyond the neutron/proton driplines
- Study clustering in nuclei
- > probe correlations (short range)

Knockout reactions: a tool to probe nuclei far from stability

Knockout reactions on light nuclear targets have helped to map significant changes in the shell structure far from stability e.g. weakening of shell gaps, island of inversion, halo nuclei...

Interaction cross section \rightarrow Interaction radii

$$\sigma_{\text{reac}} = \pi (R_{\text{P}} + R_{\text{T}})^2$$
$$R_{\text{X}} = r_0 A_{\text{X}}^{1/3}$$

March 4th 2015 | Stefanos Paschalis | 3

Knockout reactions: a spectroscopic tool to study shell evolution far from stability

Knockout reactions on light nuclear targets have helped to map significant changes in the shell structure far from stability e.g. weakening of shell gaps, island of inversion, halo nuclei...

Spectrometer → momentum distributions and Mass ID γ-ray detector→ select final state

Momentum distributions \rightarrow orb. ang. mom. Partial cross sections \rightarrow spectr. factors

Knockout reactions: a spectroscopic tool to study shell evolution far from stability

Knockout reactions on light nuclear targets have helped to map significant changes in the shell structure far from stability e.g. weakening of shell gaps, island of inversion, halo nuclei...

Quenching of spectroscopic factors

Complementary spectroscopic tools

Knockout reactions on light nuclear targets Strong absorption → surface localized

Complementary spectroscopic tools

Knockout reactions on light nuclear targets Strong absorption \rightarrow surface localized

few hundred MeV/nucleon to minimize rescattering of outgoing nucleons

QFS reactions (p, 2p), (p, pn), (p, p α) etc. on a proton target in inverse kinematics Weaker absorption \rightarrow probing inner shells

- Evolution of shell structure
- Nucleon-Nucleon correlations
- (short-range, tensor, ...)
- Cluster structure
- States beyond the neutron dripline

Scattered nucleons → complete and redundant kinematical measurement

Scattered nucleons → complete and redundant kinematical measurement

Scattered nucleons → complete and redundant kinematical measurement

¹⁶O (p,2p) in normal kinematics
G. Jacob et al.,
RMP 1966 38 121
PLB 45 (1973) 181

Scattered nucleons → complete and redundant kinematical measurement

QFS calculations by C. A. Bertulani

March 4th 2015 | Stefanos Paschalis | 13

Experimental setup for QFS

hundreds of MeV/nucleon incoming beam

Experimental setup – SAMURAI @ RIBF

Experimental setup – HRS @ FRIB

Experimental setup – R³B @ GSI/FAIR

Target recoil detection setup

Target recoil detection setup

These setups provided good coverage but not good total energy measurement

Target recoil detection setup

Rich physics cases in available (p,2p and p,pn) QFS data sets obtained with R³B @ GSI

- ¹²C isotope: benchmark case
- **C** isotopic chain : Z = 6; N = 3 14
- **O** isotopic chain : Z = 8; N = 8 15
- Ni isotopic chain : Z = 28; N = 28 30, 39 44

Rich physics cases in available (p,2p and p,pn) QFS data sets obtained with R³B @ GSI

- ¹²C isotope: benchmark case C isotopic chain :
- \succ known up to the drip lines
- accessible to ab-initio theories

O isotopic chain :

.

.

"unexpected" end of drip line

Ni isotopic chain :

- → How magic is ${}^{68}Ni? N=40$ sub-shell closure
- \blacktriangleright Close to the "New" island of inversion (⁶⁴Cr, ⁶⁶Fe)
- Shell evolution towards ⁷⁸Ni

Rich physics cases in available (p,2p and p,pn) QFS data sets obtained with R³B @ GSI

Strong angular correlations of the two protons

Analysis by V. Panin

Strong angular correlations of the two protons

Kinematics are particularly important!

Kinematics are particularly important!

March 4th 2015 | Stefanos Paschalis | 27

 $^{12}C(p,2p)^{11}B^* \rightarrow (^{10}B + n), (^{10}Be + p), (^{7}Li + ^{4}He), ...$

Analysis by V. Panin

¹¹C(p,2p)¹⁰B

Analysis by M. Holl

Momentum distributions for ^AO(p,2p)^{A-1}N and (p,pn)^{A-1}O

Analysis by L. Atar, reaction theory by C. A. Bertulani

March 4th 2015 | Stefanos Paschalis | 31

Momentum distributions for ^AO(p,2p)^{A-1}N and (p,pn)^{A-1}O

Analysis by L. Atar, reaction theory by C. A. Bertulani

Gamma-ray spectra for ^AO(p,2p)^{A-1}N and (p,pn)^{A-1}O

Analysis by L. Atar

Inclusive (p,2p) and (p,pn) Ni

From what we have seen so far: theoretical calculations work better for light nuclei in terms of momentum width

Analysis by A. Movsesyan

Inclusive (p,2p) and (p,pn) Ni

Quenching of spectroscopic factors from inclusive p,2p

arXiv:0901.1920v1 [nucl-th] 14 Jan 2009 ^{C. Barbieri}

March 4th 2015 | Stefanos Paschalis | 39

Nuclei beyond the drip line @ R³B "First observation of ¹⁵Ne ground and excited states"

March 4th 2015 | Stefanos Paschalis | 40

F. Wamers et al., Phys. Rev. Lett. 112 (2014) 132502

Short-Range Correlations (SRC)

(ILB-SM)

1.0 0.8 Gade, PRL 93, 042501 (2004) Lee, PRC73, 044608 (2006)

- 60-70% of nucleons in nuclei are in single-particle mean-field orbitals
- The rest are in long- and short-range correlated pairs
 - Mainly SRC correlated pairs, and most of them are pn pairs

k (fm⁻¹)

Probes

Most of our knowledge about SRC has been obtained from electron scattering experiments on a fixed target at large momentum transfer, performed e.g. at JLab.

Some References: K. S. Egiyan *et al.*, Phys. Rev. C 68 (2003) 014313. K. S. Egiyan *et al.*, Phys. Rev. Lett. 96 (2006) 082501. R. Subedi *et al.*, Science 320 (2008) 1476. R. Shneor *et al.*, Phys. Rev. Lett. 99 (2007) 072501. M. M. Sargsian *et al.*, Phys. Rev. C 71 (2005) 044615. R. Schiavilla *et al.*, Phys. Rev. Lett. 98 (2007) 132501.

Radioactive beams \rightarrow require electron-ion scattering in a storage ring (e.g. ELISe project at FAIR).

Instead, use hadronic probes (proton target) \rightarrow study SRC in exotic nuclei.

- SRC in inverse kinematics with a hydrogen target \rightarrow access exotic nuclei.
- part of the QFS reactions for large momentum tranfser

Summary

- Quasi-free scattering
 - > QFS is successfully applied in inverse kinematics
 - ➢ Rich data sets covering a wide range of nuclei are under analysis
 - Rich future physics program: shell structure, cluster structure, unbound nuclei, N-N correlations
- R3B Setup @ GSI/FAIR ideal for such investigations
- reaction theory by C. Bertulani provides a good understanding of the data

Thank you for your attention!

Aksouh, F.; Al-Khalili, J.; Algora, A.; Alkhasov, G.; Altstadt, S.; Alvarez, H.; Atar, L.; Audouin, L.; Aumann, T.; Pellereau, E.; Martin, J.-F.; Gorbinet, T.; Seddon, D.; Kogimtzis, M.; Avdeichikov, V.; Barton, Ch.; Bayram, M.; Belier, G.; Bemmerer, D.;Bendel, M.; Benlliure, J.; Bertulani, C.; Bhattacharya, S.; Bhattacharya, Ch.; Le Bleis, T.; Boilley, D.; Boretzky, K.; Borge, M. J.; Botvina, A.; Boudard, A.; Boutoux, G.; Boehmer, M.; Caesar, C.; Calvino, F.; Casarejos, E.; Catford, W.; Cederkall, J.; Cederwall, B.; Chapman, R.; Charpy, A.; Chartier, M.; Chatillon, A.; Chen, R.; Christophe, M.; Chulkov, L.; Coleman-Smith, P.; Cortina, D.; Crespo, R.; Csatlos, M.; Cullen, D.; Czech, B.; Danilin, B.; Davinson, T.; Diaz, P.; Dillmann, I; Fernandez Dominguez, B; Ducret, J-E.; Duran, I.; Egelhof, P.; Elekes, Z.; Emling, H.; Enders, J.; Eremin, V.; Ershov, S. N.; Ershova, O.; Eronen, S.; Estrade, A.; Faestermann, T.; Fedorov, D.; Feldmeier, H.; Le Fevre, A.; Fomichev, A.; Forssen, C.; Freeman, S.; Freer, M.; Friese, J.; Fynbo, H.; Gacsi, Z.; Garrido, E.; Gasparic, I.; Gastineau, B.; Geissel, H.; Gelletly, W.; Genolini, B.; Gerl, J.; Gernhaeuser, R.; Golovkov, M.I; Golubev, P.I; Grant, A.; Grigorenko, L.; Grosse, E.; Gulvas, J.; Goebel, K.; Gorska, M.; Haas, O. S; Haiduc, M.; Hasegan, D.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Hoffmann, J; Holl, M.; Hunvadi, M.; Ignatov, A.; Ignatyuk, A. V.; Ilie, C. M.; Isaak, J.; Isaksson, L.; Jakobsson, B.; Jensen, A.; Johansen, J.; Johansson, H.; Johnson, R.; Jonson, B.; Junghans, A.; Jurado, B.; Jaehrling, S.; Kailas, S.; Kalantar, N.; Kalliopuska, J.; Kanungo, R.; Kelic-Heil, A.; Kezzar, K.; Khanzadeev, A.; Kissel, R.; Kisselev, O.; Klimkiewicz, A.; Kmiecik, M.; Koerper, D.; Kojouharov, I.; Korsheninnikov, A.; Korten, W.; Krasznahorkay, A.; Kratz, J. V.; Kresan, D.; Krivchitch, A.; Kroell, T.; Krupko, S.; Kruecken, R.; Kulessa, R.; Kurz, N.; Kuzmin, E.; Labiche, M.; Langanke, K.I-H.; Langer, C.; Lapoux, V.; Larsson, K.; Laurent, B.; Lazarus, I.; Le, X. Ch.; Leifels, Y.; Lemmon, R.; Lenske, H.; Lepine-Szily, A.; Leray, S.; Letts, S.; Li, S.; Liang, X.; Lindberg, S.; Lindsay, S.; Litvinov, Y.; Lukasik, J.; Loeher, B.; Mahata, K.; Maj, A.; Marganiec, J.; Meister, M.; Mittig, W.; Movsesyan, A.; Mutterer, M.; Muentz, C.; Nacher, E.; Najafi, A.; Nakamura, T.; Neff, T.; Nilsson, T.; Nociforo, C.; Nolan, P.; Nolen, J.; Nyman, G.; Obertelli, A.; Obradors, D.; Ogloblin, A.; Oi, M.; Palit, R.; Panin, V.; Paradela, C.; Paschalis, S.; Pawlowski, P.; Petri, M.; Pietralla, N.; Pietras, B.; Pietri, S.; Plag, R.; Podolvak, Z.; Pollacco, E.; Potlog, M.; Datta Pramanik, U.; Prasad, R.; Fraile Prieto, L. M.; Pucknell, V.; Galaviz -Redondo, D.; Regan, P.; Reifarth, R.; Reinhardt, T.; Reiter, P.; Rejmund, F.; Ricciardi, M. V.; Richter, A.; Rigollet, C.; Riisager, K.; Rodin, A.; Rossi, D.; Roussel-Chomaz, P.; Gonzalez Rozas, Y.; Rubio, B.; Roeder, M.; Saito, T.; Salsac, M.-D.; Rodriguez Sanchez, J. L.; Santosh, Ch.; Savajols, H.; Savran, D.; Scheit, H.; Schindler, F.; Schmidt, K.-H.; Schmitt, C.; Schnorrenberger, L; Schrieder, G.; Schrock, Ph.; Sharma, M. K.; Sherrill, B.; Shrivastava, A.; Shulgina, N.; Sidorchuk, S.; Silva, J.; Simenel, C.; Simon, H.; Simpson, J.; Singh, P. P.; Sonnabend, K.; Spohr, K.; Stanoiu, M.; Stevenson, P.; Strchan, J.; Streicher, B.; Stroth, J.; Syndikus, I.; Suemmerer, K.; Taieb, J.; Tain, J. L.; Tanihata, I.; Tashenov, S.; Tassan-Got, L.; Tengblad, O.; Teubig, P.; Thies, R.; Togano, Y.; Tostevin, J. A.; Trautmann, W.; Tuboltsev, Y.; Turrion, M.; Typel, S.; Udias-Moinelo, J.; Vaagen, J.; Velho, P.; Verbitskava, E.; Veselsky, M.; Wagner, A.; Walus, W.; Wamers, F.; Weick, H.; Wimmer, C.; Winfield, J.; Winkler, M.; Woods, Ph.; Xu, H.; Yakorev, D.; Zegers, R.; Zhang, Y.-H.; Zhukov, M.; Zieblinski, M.; Zilges, A.;