Computations of medium-mass nuclei, nuclear interactions and saturation

Thomas Papenbrock

and

OAK RIDGE NATIONAL LABORATORY

Reactions and Structure of Exotic Nuclei

INT Seattle

March 2, 2015

Research partly funded by the US Department of Energy

Menu

• Development of interactions from chiral effective field theory

with A. Ekström, B. Carlsson, C. Forssén, G. Hagen, M. Hjorth-Jensen, G. R. Jansen, P. Navrátil, W. Nazarewicz, K. Wendt

- Extrapolations in finite model spaces with R. J. Furnstahl, G. Hagen, Sushant More, K. Wendt
- Effective (field) theory for deformed nuclei with E. A. (Toño) Coello Pérez and H. A. Weidenmüller

THE UNIVERSITY of TENNESSEE UT

KNOXVILLE Department of Physics & Astronomy COLLEGE OF ARTS & SCIENCES

LE ny ces

Chiral interactions fail to saturate accurately: too much binding and too small radii

A. Ekström, G. Jansen, K. Wendt et al, arXiv:1502.04682 (2015)

KNOXVILLE Department of Physics & Astronomy COLLEGE OF ARTS & SCIENCES

Chiral interaction NNLO_{sat}

- Simultaneous optimization of NN and NNN forces at NNLO
- Optimization includes (Λ =450 MeV, nonlocal regulators)
 - nucleon-nucleon scattering data (up to 35 MeV laboratory energy)
 - binding energies and radii of ²H, ³H, ³He, ⁴He, ¹⁴C, ¹⁶O
 - ground-state energies of ^{22,24,25}O

TABLE I. The values of the LECs for the NNLO_{sat} interaction. The c_i , \tilde{C}_i , and C_i are in units of GeV⁻¹, 10⁴ GeV⁻², and 10⁴ GeV⁻⁴, respectively.

LEC	Value	LEC	Value	LEC	Value
c_1	-1.12	<i>C</i> 3	-3.93	c_4	3.77
$\tilde{C}^{pp}_{{}^{1}S_{0}}$	-0.16	$\tilde{C}^{np}_{1S_0}$	-0.16	$\tilde{C}^{nn}_{{}^{1}S_{0}}$	-0.16
C_{1S_0}	2.54	C_{3S_1}	1.00	\tilde{C}_{3S_1}	-0.18
C_{1P_1}	0.56	C_{3P_0}	1.40	C_{3P_1}	-1.14
$C_{3S_1-3D_1}$	0.60	C_{3P_2}	-0.80	c_D	0.82
c_E	-0.04	-			

Low-energy coefficients within range of other chiral interactions.

A. Ekström, G. Jansen, K. Wendt et al, arXiv:1502.04682 (2015)

Department of Physics & Astronomy college of ARTS & SCIENCES

Results in NN sector

	$\mathrm{NNLO}_{\mathrm{sat}}$	$N^3 LO_{EM} [47]$	Exp.
a_{pp}^C	-7.8258	-7.8188	-7.8196(26)
r_{pp}^{C}	2.855	2.795	2.790(14)
a_{nn}	-18.929	-18.900	-18.9(4)
r_{nn}	2.911	2.838	2.75(11)
a_{np}	-23.728	-23.732	-23.740(20)
r_{np}	2.798	2.725	2.77(5)
E_D	2.22457	2.22458	2.224566
r_D	1.978	1.975	1.97535(85)
Q_D	0.270	0.275	0.2859(3)

THE UNIVERSITY of TENNESSEE

KNOXVILLE Department of Physics & Astronomy college of ARTS & SCIENCES

Results for nuclei employed in optimization

	$E_{\rm gs}$	Exp.	$r_{ m ch}$	Exp.
$^{3}\mathrm{H}$	8.52	8.482	1.78	1.7591(363)
$^{3}\mathrm{He}$	7.76	7.718	1.99	1.9661(30)
$^{4}\mathrm{He}$	28.43	28.296	1.70	1.6755(28)
$^{14}\mathrm{C}$	103.6	105.285	2.48	2.5025(87)
^{16}O	124.4	127.619	2.71	2.6991(52)
^{22}O	160.5	162.028(57)		
^{24}O	167.8	168.96(12)		
$^{25}\mathrm{O}$	167.1	168.18(10)		

KNOXVILLE Department of Physics & Astronomy college of ARTS & SCIENCES

Above 35 MeV, deviations probably at limit of one would expect at NNLO.

Charge density and excitations of ¹⁶O

KNOXVILLE Department of Physics & Astronomy college of arts & sciences

A. Ekström, G. Jansen, K. Wendt et al, arXiv:1502.04682 (2015)

Nuclear matter from NNLO_{sat}

Other interactions: Hagen et al (2014); Carbone et al (2013); Coraggio et al 2014; Hebeler et al 2011.

THE UNIVERSITY of TENNESSEE

KNOXVILLE Department of Physics & Astronomy COLLEGE OF ARTS & SCIENCES

Intermission

- Chiral interaction NNLO_{sat}
 - Simultaneous optimization of NN and NNN
 - Radii and binding energies of selected *p* and *sd* shell nuclei employed in optimization
- Spectra of *p* and *sd* shell nuclei comparable to other chiral interactions
- Radii and binding energy much improved
- Promising also for calcium isotopes

THE UNIVERSITY of TENNESSEE

Convergence in finite oscillator spaces

What is the equivalent of Lüscher's formula for the harmonic oscillator basis? [Lüscher, Comm. Math. Phys. 104, 177 (1986)]

Convergence in momentum space (UV) and in position space (IR) needed [Stetcu *et al.*, PLB (2007); Hagen *et al.*, PRC (2010); Jurgenson *et al.*, PRC (2011); Coon *et al.*, PRC (2012); König *et al.*, PRC (2014)]

For long wave lengths, a finite HO basis resembles a spherical box

The difference between the HO basis and a box of size L_2 can not be resolved at low momentum.

What (precisely) is the IR length L?

Key idea: compute eigenvalues of kinetic energy and compare with *corresponding* (hyper)spherical cavity to find L.

What is the corresponding cavity?

Single particle	A particles (product space)	A particles in No-core shell model
Diagonalize T _{kin} =p ²	Diagonalize A-body T _{kin}	Diagonalize A-body T _{kin}
3D spherical cavity	A fermions in 3D cavity	<i>3(A-1)</i> hyper-radial cavity

$$L_{2} = \sqrt{2(N+3/2+2)}b \quad L_{\text{eff}} = \left(\frac{\sum_{nl}\nu_{nl}a_{l,n}^{2}}{\sum_{nl}\nu_{nl}\kappa_{l,n}^{2}}\right)^{1/2} L_{\text{eff}} = b\frac{X_{1,\mathcal{L}}}{\sqrt{T_{1,\mathcal{L}}(N_{\text{max}}^{\text{tot}})}}$$

More, Ekström, Furnstahl, Hagen, TP, PRC 87, 044326 (2013) Furnstahl, Hagen, TP, Wendt, J. Phys. G 42, 034032 (2015) Wendt, Forssén, TP, Sääf, in preparation

For precise a value of UV cutoff, see [König, Bogner, Furnstahl, More, TP (2014)]

IR physics of NCSM equivalent to hyper-radial well

K. Wendt, C. Forssén, TP, D. Sääf, in preparation

KNOXVILLE Department of Physics & Astronomy COLLEGE OF ARTS & SCIENCES

IR length L_{eff} for the NCSM

THE UNIVERSITY of TENNESSEE

K. Wendt, C. Forssén, TP, D. Sääf, in preparation

KNOXVILLE Department of Physics & Astronomy college of ARTS & SCIENCES Deformation of atomic nuclei: emergent symmetry breaking

Electromagnetic transitions in deformed nuclei

"Complete" spectrum of ¹⁶⁸ Er [Davidson et al., J. Phys. G 7, 455 (1981)]

(1890) (8* yy-band Key features of geometric collective model β"-barld ✓ Rotational bands on top of vibrational band heads ✓ Strong in-band E2 transitions ✓ Weaker inter-band E2 transitions v-banc ✓ Spectra are reproduced rather well Λ Ω breakdown × Inter-band transitions are factors 2-10 too strong [Garrett, J. Phys. G 27 (2001) R1; Rowe & Wood g. s.-band "Fundamentals of Nuclear Models" (2010)]

Separation of scale: $\xi << \Omega << \Lambda$

Consistent coupling of EM fields addresses this problem

Some results from the EFT approach

• Quantized vibrations are Nambu-Goldstone modes of emergent breaking of SO(3) symmetry in finite systems [TP & Weidenmüller 2014]

- Adiabatic Bohr Hamiltonian reproduced at NLO [TP 2011]
- NNLO corrections differ from Bohr Hamiltonian; yield small changes in moments of inertia proportional to number of vibrational quanta [Zhang and TP 2013]
- Gauging of EFT yields correct description of weak inter-band transitions and theoretical uncertainty estimates [E. A. Coello Pérez and TP 2015]

Effective theory of ground-state rotational band equivalent to particle on a sphere because the coset $SO(3)/SO(2) \sim S^2$ is the two-sphere.

Gauging $\hat{\mathbf{I}} \rightarrow \hat{\mathbf{I}} - q\mathbf{e}_r \times \mathbf{A}$ instead of using quadrupole operator. Non-minimal couplings enter at higher order.

Quadrupole transitions in well-deformed nuclei

Transitions $I_i \rightarrow I_i - 2$ in ground-state band; result as [Mikhailov (1964,1966)]

Rigid rotor has constant Q_{if}. More precise data needed for comparison at NLO. E. A. Coello Pérez and TP, arXiv:1502.04405 (2015)

Quadrupole transitions in ¹⁵²Sm and N₂

Transitions $I_i \rightarrow I_i - 2$ in ground-state band

E. A. Coello Pérez and TP, arXiv:1502.04405 (2015)

KNOXVILLE Department of Physics & Astronomy college of Arts & sciences

THEUNIVERSITY of TENNESSEE

154	Sm
-----	----

$i \rightarrow f$	$B(E2)_{\rm exp}$	$B(E2)_{\rm ET}$	$B(E2)_{\rm CBS}$	$B(E2)_{\rm BH}$
$2_g^+ \rightarrow 0_g^+$	0.863(5)	0.863^{a}	0.853	0.863
$4^+_g \rightarrow 2^+_g$	1.201(29)	1.233(41)	1.231	1.234
$6^+_g \to 4^+_g$	1.417(39)	1.358(101)	1.378	1.355
$8^+_g \to 6^+_g$	1.564(83)	1.421(189)	1.471	1.424
$2^+_{\gamma} \rightarrow 0^+_g$	0.0093(10)	0.0110(28)		0.0492
$2^+_{\gamma} \rightarrow 2^+_g$	0.0157(15)	0.0157^{a}		0.0703
$2^+_{\gamma} \to 4^+_g$	0.0018(2)	0.0008(2)		0.0050
$2^+_\beta \to 0^+_g$	0.0016(2)	0.0025(6)	0.0024	0.0319
$2^+_\beta \to 2^+_q$	0.0035(4)	0.0035^{a}	0.0069	0.0456
$2^{\tilde{+}}_{\beta} \to 4^{\tilde{+}}_{g}$	0.0065(7)	0.0063(16)	0.0348	0.0821

In-band transitions are LO, inter-band transitions are NLO. Effective theory is more complicated than Bohr Hamiltonian both in Hamiltonian and E2 transition operator. Approach correctly predicts strengths of inter-band transitions with natural LECs.

E. A. Coello Pérez and TP, arXiv:1502.04405 (2015)

Summary

NNLOsat from simultaneous optimization of NN and NNN forces with input from p shell and sd shell nuclei

Improved understanding of finite model spaces via precise identification of IR length

Developed EFT for heavy deformed nuclei; correctly describes weak inter-band transitions

THE UNIVERSITY of TENNESSEE

KNOXVILLE Department of Physics & Astronomy college of ARTS & SCIENCES