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The variational Monte Carlo method (even useful by itself)

Variational Monte Carlo (VMC) is built on a sophisticated Ansatz for the wave
function, built on shell-model-like structure modified by operator correlations:

ΨT = [3-body operator functions]× [2-body operator functions]

× [scalar functions]× [shell-model-like orbital/spin/isospin structure]

Two-body correlations solve sets of differential equations built on the potential,
three-body based on 1st-order perturbation

Each piece contains adjustable parameters

We evaluate ET =
〈ΨT |H|ΨT 〉
〈ΨT |ΨT 〉

, a variational bound on ground state energy

for given Jπ and isospin

We change the parameters by hand, re-compute ET , and minimize ET to
obtain improving approximations to the ground state and its energy



Green’s function Monte Carlo

Green’s function Monte Carlo (GFMC) is an
operator method that projects the true ground
state out of the VMC wave function

Ψ(τ) = exp
[
−
(
H − Ẽ

)
τ
]

ΨT

As τ →∞, Ψ(τ) approaches the ground state

The operator exp
[
−
(
H − Ẽ

)
∆τ

]
is written as an

integral over a Green’s function

Integration is by Monte Carlo, sending many samples of ΨT on random walks
through particle configurations (with path constraint)

We have examined many bound and narrow states using this method

Energies of broad states (100s of keV) do not converge
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GFMC Calculations

From a very thorough review by Carlson et al. at arXiv:1412.3081



Quantum Monte Carlo: Il buono

Our main advantage & disadvantage is that there is no expansion in spatial
basis functions∗

We can incorporate hard-core interactions & long-range asymptotics relatively
easily (not always as precisely as we’d like)

We can in principle compute anything on the real E axis (not poles)

NNN force terms are computationally tractable in at least the lower p-shell



Quantum Monte Carlo: Il Cattivo e/o Brutto

We’re in trouble if we run into a case where we can’t make a good variational
guess (intruder states?)

We only get one state at a time, not several states from Lanczos diagonalization

We need a local or nearly-local Hamiltonian for GFMC, though this has recently
come under control for chiral interactions

GFMC/VMC calculations grow rapidly with A, so they may not go past A = 12

Auxiliary field diffusion Monte Carlo (AFDMC) can handle larger systems, but
has its own limitations



Beyond bound & narrow: A quantum Monte Carlo approach to scattering

Quantum Monte Carlo methods are (mostly) variational – they produce the
lowest energy level satisfying the imposed constraints

Most direct application to scattering requires setting it up as an eigenvalue
problem with discrete states

Past applications (nuclear, atomic, solid state) have been “particle in a box” with
wave function constrained to zero at the box surface r12 = R0

After energy is computed, match onto

Ψ ∝
1

kr12
{Φc1Φc2YL}J [cos δJLFL(kr12) + sin δJLGL(kr12)] ,

so tan δJL = −FL(kR0)/GL(kR0)



Improving on the nodal boundary condition

There are drawbacks to the nodal boundary condition, the worst being that low
energy −→ an enormous box (long de Broglie wavelength)

An R-matrix boundary condition is better:

n̂ · ∇rΨ = γΨ , at r = R0

We can then fix R0 at some “small” value (beyond nuclear interaction and
nucleon exchanges)

γ is specified by construction in VMC or method of images in GFMC

We choose several γ to get states of different E(γ), match at surface to get
δ(E)

Generalizable to multiple open channels or higher energy with excited-state
methods (but not yet)



First exercise: 4He + n

s-waves turn out similarly for all interactions

Scattering lengths all consistent with 2.4 fm,
compared with 2.46 fm measured

3/2− (MeV) 1/2− (MeV)
Argonne v18 1.19− 0.77i 1.7− 2.2i
AV18+UIX 1.39− 0.75i 2.4− 2.5i
AV18+IL2 0.83− 0.35i 2.3− 2.6i
Experiment 0.798− 0.324i 2.07− 2.79i 0 1 2 3 4 50
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The numbers produced can also be
compared directly with cross sections

Alternatively, locations of poles off real axis
have to be fitted as you would do with
experimental data

All described in PRL 99, 022502 (2007)



Next steps for scattering

Things I would like to do or see done soon in QMC are:

• compute 5He parity violation (n spin rotation in 4He)

• complete p 3He & n 3H scattering calculations with GFMC

• unbound states previously treated as bound (“successfully” and not)

• resonant (and not) αα scattering and 8Be states

• continued learning on coupled channels, e.g. n+ 3He, p+ 3H, d+d

• electroweak captures with GFMC, including exchange current & relativistic
terms

• chiral potentials, not just AV18+UIX/IL7



Asymptotic normalization coefficients (ANCs)

At large cluster separations, correlations within nuclei have known shapes from
Schrödinger Eq. with at most Coulomb term

The many-body dynamics give the separation energy (hence η & k), and
normalization of CW−η,l+1/2(2kr)/r or C

√
k/πrKl+1/2(kr)



Asymptotic normalization coefficients (ANCs)

ANCs characterize the nuclear surface & can dominate some transfer or radiative-
capture reactions

ANCs are closely related to particle widths, at least for narrow states, because
−E −→ +E takes W −→ G+ iF ,

Extraction of outer parts of overlaps from QMC wave functions can be problematic

Good Monte Carlo sampling in the tails is tough, especially for small components

Putting correct asymptotics into ΨT without breaking something else can be
difficult – trouble for many observables, including ANCs

But can we get correct asymptotics out of VMC without putting it in?



Integral relation for the ANC

Yes – we can learn the ANC from an approximate wave function with a bad tail
(goes back to 1970s)

The Schrödinger equation

(H − E) ΨA = 0

may be separated into parts internal to ΨA−1 and parts involving the last
particle (distance rcc away) to yield

ΨA = − [Trel + VC +B]−1 (Urel − VC) ΨA

which implies

Clj =
2µ

k~2w
A
∫ M−η,l+1

2
(2krcc)

rcc
Ψ†A−1χ

†Y †lm(r̂cc) (Urel − VC) ΨAdR

M−η,l+1
2
(2kr) is the “other” Whittaker function, irregular at r →∞,

and R = (r1, r2, · · · , rA), with rcc = rA − 1
A−1

∑A−1
i=1 ri



ANCs from VMC wave functions

to

2.13

(full range to 2.0)

Small error bars are VMC statistics
This isn’t GFMC

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A ≤ 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4

Good agreement emerged once
experimental separation energies were
put into the calculation



Widths as squared ANCs of resonant states

Widths are proportional to ANCs of resonant states, Γ ' ~2k
µ |Clj|

2

I’ve chosen low-lying states in A ≤ 9 with width mainly/all in nucleon emission

Red: overlaps inconsistent with
resonance

Asterisk: uncomputed channels

Dynamic range of 0.0005 to
. 1.0 MeV, not otherwise
possible for QMC

Nollett, PRC 86, 044330 (2012)
Nollett & Wiringa, PRC 83, 041001

(2011)



Overlaps at all radii: not just asymptotics

The integral relations contain more information about the potential than does
the VMC wave function −→ better overlaps



What next?

α (& other cluster) widths & overlaps once the code is more-generally written

Tests against scattering calculations

GFMC and IL7 (better match to experimental thresholds)

Similar things are being done as pseudobound approaches to scattering δ(E)

(Horiuchi et al., Kievsky et al., etc.) – some of that can be adapted

Coupled-channel problems will require some way of extracting surface amplitudes
from GFMC, integrals are probably the way to do that

GFMC has trouble resolving ∆E . 100 keV, so integral relations on pseudobound
states will beat particle-in-a-box for widths of narrow states

A way to generate small parity impurities from P violating Hamiltonian terms?



Encapsulating ab initio information in ANCs (& similar operators?)

Important information in an ab initio model can often be represented as parameters
of a simpler model

You can get a long way with separation energies, scattering lengths, widths
and/or ANCs

This underlies the claims to measure ANCs in transfer reactions using non-ab
initio reaction theory

You can also set up a reasonably good direct capture model with a separation
energy, a scattering length or two, & some ANCs

Again, this depends a little on your goals & what precision you want



Ab initio ANCs in an EFT

Xilin Zhang incorporated my computed ANCs into halo EFT models of
7Be(p, γ)8B & 7Li(n, γ)8Li

The captured nucleon & target nucleus are set up as fundamental fields

The Langrangian is a power series expansion in a ratio of momentum scales
(separation momentum over core-excitation momentum)

Xilin has nice results at leading order – inputs are scattering lengths, separation
energies & ANCs

At next-to-leading order there are more parameters, but ignorance of them
appears unimportant for capture at threshold



Halo EFT

For 7Li(n, γ)8Li, we have fields for 7Li, 7Li∗, n, 8Li(2+), & 8Li(1+)

Our Lagrangian has kinetic and coupling terms, and interaction with photons

ANC fixes p-wave neutron-core-8Li coupling, scattering lengths fix s-wave couplings

Self-energy & photon interaction with multiple scattering:

π α π β

a
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8B is analogous, but we need to include multiple scattering with Coulomb
included, at all orders
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EFT+QMC results

Keeping in mind that these are leading-order calculations with 20–40% errors,
the published results are not bad

For 7Li(n, γ)8Li we reproduce branching ratios amazingly well

For 7Be(p, γ)8B we agree with low-energy data, but there are fewer measured
observables (7Be & 8B are both radioactive)
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Eclectic or fewer-body models

Incorporating ab initio information in leading-order halo EFT already seems
useful for particular observables at the 5% level

The hope (under investigation) is that in next order – or other systems – there
will continue to be couplings expressible as ab initio operators

It’s important to do end-to-end ab initio calculations of cross sections, but they
won’t always be the best use of ab initio techniques

For applications, a completely ab initio model without adjustable parameters
may be too good

For solar or big bang rates, we need something we can combine with data or
use in some way to weight data, not something that stands apart

A “fewer body” model with some ab initio & some schematic/empirical pieces
will be required or just more efficient sometimes


