

Ab Initio Unified Approach to Nuclear Structure and Reactions

INT Workshop INT 15-58W

Reactions and Structure of Exotic Nuclei

March 2 – March 13, 2015

Petr Navratil | TRIUMF

Accelerating Science for Canada

Un accélérateur de la démarche scientifique canadienn

Outline

- What is meant by ab initio in nuclear physics
- Chiral nuclear forces
- Bound-state calculations: No-core shell model (NCSM)

- Including the continuum with the resonating group method
 - NCSM/RGM
 - NCSM with continuum

Outlook

What is meant by ab initio in nuclear physics?

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- Degrees of freedom: NUCLEONS
 - Nuclei made of nucleons
 - Interacting by nucleon-nucleon and three-nucleon potentials
 - Ab initio
 - ♦ All nucleons are active
 - ♦ Exact Pauli principle
 - ♦ Realistic inter-nucleon interactions
 - ♦ Accurate description of NN (and 3N) data
 - ♦ Controllable approximations

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

- First principles for Nuclear Physics:
 QCD
 - Non-perturbative at low energies
 - Lattice QCD in the future
- For now a good place to start:
- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy
 - Consistency
 - Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

The NN interaction from chiral EFT

PHYSICAL REVIEW C 68, 041001(R) (2003)

Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory

D. R. Entem^{1,2,*} and R. Machleidt^{1,†}

- 24 LECs fitted to the np scattering data and the deuteron properties
 - Including c_i LECs (i=1-4) from pion-nucleon Lagrangian

Leading terms of the chiral NNN force

ory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Ouaglioni and Petr Navrátil Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

From QCD to nuclei

NN+3N interactions from chiral EFT

...or accurate meson-exchange potentials

Many-Body methods

NCSM, NCSM/RGM, NCSMC, CCM, GFMC, HH, Nuclear Lattice EFT...

Nuclear structure and reactions

No-core shell model

No-core shell model (NCSM)

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^A = \sum_{N=0}^{N_{\text{max}}} \sum_i c_{Ni} \, \Phi_{Ni}^A$$

From QCD to nuclei

$$H|\Psi\rangle = E|\Psi\rangle$$

NN+3N interactions from chiral EFT

Unitary/similarity transformations

Many-Body methods

...or accurate meson-exchange potentials

Identity or SRG or OLS or UCOM ... Softens NN, induces 3N

NCSM, NCSM/RGM, CCM, GFMC, HH, Nuclear Lattice EFT...

Nuclear structure and reactions

Calculations with chiral 3N: SRG renormalization needed

PRL 103, 082501 (2009) PHYSICAL REVIEW LETTERS 21 AUGUST 2009

Evolution of Nuclear Many-Body Forces with the Similarity Renormalization Group

E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl

A=3 binding energy and half life constraint c_D =-0.2, c_E =-0.205, Λ =500 MeV

Chiral N³LO NN plus N²LO NNN potential

- Bare interaction (black line)
 - Strong short-range correlations
 - Large basis needed
- SRG evolved effective interaction (red line)
 - Unitary transformation

$$H_{\alpha} = U_{\alpha} H U_{\alpha}^{+} \Rightarrow \frac{dH_{\alpha}}{d\alpha} = \left[\left[T, H_{\alpha} \right], H_{\alpha} \right] \left(\alpha = \frac{1}{\lambda^{4}} \right)$$

- Two- plus three-body components, four-body omitted
- Softens the interaction
 - Smaller basis sufficient

NCSM calculations of ⁶He g.s. energy

Dependence on:

Basis size $-N_{max}$ HO frequency $-h\Omega$

- Soft SRG evolved NN potential
- √ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	$^4{ m He}$	⁶ He	
$NCSM N_{max} = 12$	-28.05	-28.63	
NCSM extrap.	-28.22(1)	-29.25(15)	
Expt.	-28.30	-29.27	

NCSM calculations of ⁶He and ⁷He g.s. energies

- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	⁷ He
$NCSM N_{max} = 12$	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. E_{th}=+0.430(3) MeV: NCSM E_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

Light & medium mass nuclei from first principles

- Nuclear structure and reaction theory for light nuclei cannot be uncoupled
 - Well-bound nuclei, e.g. ¹²C, have low-lying cluster-dominated resonances
 - Bound states of exotic nuclei, e.g. ¹¹Be, manifest many-nucleon correlations

Extending no-core shell model beyond bound states

Include more many nucleon correlations...

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r_{\nu}})$$

$$+ \sum_{\nu} \hat{A}_{\mu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r_{\nu}})$$

$$+ \sum_{\nu} \hat{A}_{\mu} \phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) G_{\mu}(\vec{r_{\mu 1}}, \vec{r_{\mu 2}})$$

$$+ \cdots$$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu} (\vec{r}_{\nu})$$

$$a_{1\nu} + a_{2\nu} = A$$

$$(a_{1\kappa} = A)$$

$$\phi_{1\kappa}$$

$$(a_{2\nu})$$

$$(a_{2\nu})$$

$$a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\mu} \hat{A}_{\mu} \phi_{1\mu} (\{\vec{\xi}_{1\mu}\}) \phi_{2\mu} (\{\vec{\xi}_{2\mu}\}) \phi_{3\mu} (\{\vec{\xi}_{3\mu}\}) G_{\mu} (\vec{r}_{\mu 1}, \vec{r}_{\mu 2})$$

$$+ \cdots$$

- ϕ : antisymmetric cluster wave functions
 - {ξ}: Translationally invariant internal coordinates
 (Jacobi relative coordinates)
 - These are known, they are an input

$$a_{1\mu} + a_{2\mu} + a_{3\mu} = A$$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$\phi_{1\kappa}$$

$$+ \sum_{\nu} \hat{A}_{\nu} \phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) g_{\nu}(\vec{r}_{\nu})$$

$$(a_{1\nu}) \qquad (a_{2\nu}) \qquad (a_{2\nu$$

• A_{ν} , A_{μ} : intercluster antisymmetrizers

- Antisymmetrize the wave function for exchanges of nucleons between clusters

 $a_{1\mu} + a_{2\mu} + a_{3\mu} = A$

- Example: $a_{1v} = A - 1, \ a_{2v} = 1 \implies \hat{A}_v = \frac{1}{\sqrt{A}} \left[1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right]$

- c, g and G: discrete and continuous linear variational amplitudes
 - Unknowns to be determined

$$a_{1\mu} + a_{2\mu} + a_{3\mu} = A$$

$$\psi^{(A)} = \sum_{\kappa} c_{\kappa} \phi_{1\kappa} \left(\left\{ \vec{\xi}_{1\kappa} \right\} \right)$$

$$\phi_{1\kappa}$$

$$a_{1\nu} + a_{2\nu} = A$$

$$+ \sum_{\nu} \int g_{\nu}(\vec{r}) \hat{A}_{\nu} \left[\phi_{1\nu} \left(\left\{ \vec{\xi}_{1\nu} \right\} \right) \phi_{2\nu} \left(\left\{ \vec{\xi}_{2\nu} \right\} \right) \delta(\vec{r} - \vec{r}_{\nu}) \right] d\vec{r}$$

$$\phi_{1\nu} \qquad \phi_{1\nu} \qquad \phi_{2\nu}$$

$$(a_{1\nu}) \qquad (a_{2\nu})$$

$$+ \sum_{\mu} \iint G_{\mu}(\vec{R}_{1}, \vec{R}_{2}) \hat{A}_{\mu} \left[\phi_{1\mu} \left(\left\{ \vec{\xi}_{1\mu} \right\} \right) \phi_{2\mu} \left(\left\{ \vec{\xi}_{2\mu} \right\} \right) \phi_{3\mu} \left(\left\{ \vec{\xi}_{3\mu} \right\} \right) \delta(\vec{R}_{1} - \vec{R}_{\mu 1}) \delta(\vec{R}_{2} - \vec{R}_{\mu 2}) \right] d\vec{R}_{1} d\vec{R}_{2}$$

- Discrete and continuous set of basis functions
 - Non-orthogonal
 - Over-complete

$$a_{1\mu} + a_{2\mu} + a_{3\mu} = A$$

No-core shell model

No-core shell model (NCSM)

- A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
- short- and medium range correlations
- Bound-states, narrow resonances

$$\Psi^A = \sum_{N=0}^{N_{\text{max}}} \sum_i c_{Ni} \, \Phi_{Ni}^A$$

No-core shell model with RGM

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion
 - proper asymptotic behavior
 - long-range correlations

$$\Psi^{(A)} = \sum_{v} \int d\vec{r} \, \gamma_{v}(\vec{r}) \, \hat{A}_{v} \begin{vmatrix} \vec{r} & \vec{r} \\ (A-a) & (a) \end{vmatrix}, v$$

No-core shell model with continuum

- No-core shell model (NCSM)
 - A-nucleon wave function expansion in the harmonic-oscillator (HO) basis
 - short- and medium range correlations
 - Bound-states, narrow resonances

- NCSM with Resonating Group Method (NCSM/RGM)
 - cluster expansion
 - proper asymptotic behavior
 - long-range correlations

S. Baroni, P. N., and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

The most efficient:

No-Core Shell Model with Continuum (NCSMC)

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

Norm kernel (Pauli principle)

Single-nucleon projectile

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ r' \\ \end{array} \right| \left(a' = 1 \right) \left| \begin{array}{c} 1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \\ \end{array} \right| \left(a = 1 \right) \left| \begin{array}{c} (A-1) \\ r \\ \end{array} \right|$$

Target wave functions expanded in the SD basis, the CM motion exactly removed

Microscopic R-matrix on a Lagrange mesh

Separation into "internal" and "external" regions at the channel radius a

- This is achieved through the Bloch operator: $L_c = \frac{\hbar^2}{2\mu_c} \delta(r a) \left(\frac{d}{dr} \frac{B_c}{r} \right)$
- System of Bloch-Schrödinger equations:

$$\left[\hat{T}_{rel}(r) + L_c + \overline{V}_{coul}(r) - (E - E_c)\right] \underbrace{u_c(r)}_{u_c(r)} + \sum_{c'} \int dr' \, r' W_{cc'}(r, r') \underbrace{u_{c'}(r')}_{u_{c'}(r')} = L_c \underbrace{u_c(r)}_{u_c(r)}$$

- Internal region: expansion on square-integrable Lagrange mesh basis
- External region: asymptotic form for large r

$$u_c(r) \sim C_c W(k_c r)$$
 or $u_c(r) \sim v_c^{-\frac{1}{2}} \big[\delta_{ci} I_c(k_c r) + U_{ci} O_c(k_c r) \big]$

Bound state Scattering state Scattering matrix

$$\left\{ax_n \in [0,a]\right\}$$

$$\int_0^1 g(x)dx \approx \sum_{n=1}^N \lambda_n g(x_n)$$

$$\int_0^a f_n(r) f_{n'}(r) dr \approx \delta_{nn'}$$

 $u_c(r) = \sum A_{cn} f_n(r)$

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential: Convergence

Differential *p*-⁴He cross section with NN+3N potentials

PHYSICAL REVIEW C 90, 061601(R) (2014)

Predictive theory for elastic scattering and recoil of protons from ⁴He

Guillaume Hupin, 1,* Sofia Quaglioni, 1,† and Petr Navrátil^{2,‡}

Including 3N interaction in the NCSM/RGM Single-nucleon projectile:

$$\left\langle \Phi_{v'r'}^{J^{\pi}T} \left| \hat{A}_{v'} V^{NNN} \hat{A}_{v} \right| \Phi_{vr}^{J^{\pi}T} \right\rangle = \left\langle \begin{array}{c} (A-1) \\ V^{NNN} \left(1 - \sum_{i=1}^{A-1} \hat{P}_{iA} \right) \\ (a=1) \end{array} \right| \begin{pmatrix} (A-1) \\ (a=1) \end{pmatrix}$$

$$\mathcal{V}_{\nu'\nu}^{NNN}(r,r') = \sum_{n'l'} R_{n'l'}(r') R_{nl}(r) \left[\frac{(A-1)(A-2)}{2} \left\langle \Phi_{\nu'n'}^{J^{\pi}T} | V_{A-2A-1A}(1-2P_{A-1A}) | \Phi_{\nu n}^{J^{\pi}T} \right\rangle \right]$$

$$- \frac{(A-1)(A-2)(A-3)}{2} \left\langle \Phi_{\nu'n'}^{J^{\pi}T} | P_{A-1A} V_{A-3A-2A-1} | \Phi_{\nu n}^{J^{\pi}T} \right\rangle \right] .$$

Direct potential: in the model space (interaction is localized!)

$$\propto \left\langle \psi_{\alpha_{1}^{\prime}}^{(A-1)} \middle| a_{i}^{\dagger} a_{j}^{\dagger} a_{l} a_{k} \middle| \psi_{\alpha_{1}}^{(A-1)} \right\rangle_{SD}$$

Exchange potential: in the model space (interaction is localized!)

$$\left\langle \propto \left\langle \psi_{\alpha_i'}^{(A-1)} \middle| a_h^{\dagger} a_i^{\dagger} a_j^{\dagger} a_m a_l a_k \middle| \psi_{\alpha_i}^{(A-1)} \right\rangle_{SD} \right\rangle$$

Including 3N interaction challenging: more than 2 body density required

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

n-⁴He scattering within NCSMC

n-4He scattering phase-shifts for chiral NN and NN+3N potential

Total *n*-4He cross section with NN and NN+3N potentials

3N force enhances $1/2^- \leftarrow \rightarrow 3/2^-$ splitting: Essential at low energies!

PHYSICAL REVIEW C 88, 054622 (2013)

Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces

Guillaume Hupin, 1,* Joachim Langhammer, 2,† Petr Navrátil, 3,‡ Sofia Quaglioni, 1,8 Angelo Calci, 2,|| and Robert Roth 2,5

NCSM calculations of ⁶He and ⁷He g.s. energies

- Soft SRG evolved NN potential
- ✓ N_{max} convergence OK
- Extrapolation feasible

$E_{\rm g.s.} [{ m MeV}]$	⁴ He	⁶ He	⁷ He
NCSM $N_{\rm max}$ =12	-28.05	-28.63	-27.33
NCSM extrap.	-28.22(1)	-29.25(15)	-28.27(25)
Expt.	-28.30	-29.27	-28.84

- ⁷He unbound
 - Expt. E_{th}=+0.430(3) MeV: NCSM E_{th}≈ +1 MeV
 - Expt. width 0.182(5) MeV: NCSM no information about the width

NCSM with continuum: ⁷He ↔ ⁶He+n

un	bοι	ınd

J^{π}	exj	experiment		NCSMC	
	E_R	Γ	Ref.	E_R	Γ
$3/2^{-}$	0.430(3)	0.182(5)	[2]	0.71	0.30
$5/2^{-}$	3.35(10)	1.99(17)	[40]	3.13	1.07
$1/2^{-}$	3.03(10)	2	[11]	2.39	2.89
	3.53	10	[15]		
	1.0(1)	0.75(8)	[5]		

[11] A. H. Wuosmaa et al., Phys. Rev. C 72, 061301 (2005).

NCSMC

with three ⁶He states and ten ⁷He eigenstates More **7-nucleon correlations** Fewer ⁶He-core states needed Experimental controversy:

Existence of low-lying 1/2- state
... not seen in these calculations

S. Baroni, P. N., and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

Structure of ⁹Be

⁹Be is a stable nucleus
... but all its excited states unbound
A proper description requires to include effects of continuum

The lowest threshold: n^{-8} Be $(n^{-\alpha})$

Optimal description: Square-integrable ⁹Be basis + n-⁸Be clusters

NCSMC with chiral NN+3N: Structure of 9Be

PHYSICAL REVIEW C 91, 021301(R) (2015)

Continuum and three-nucleon force effects on ⁹Be energy levels

Joachim Langhammer, ^{1,*} Petr Navrátil, ^{2,†} Sofia Quaglioni, ³ Guillaume Hupin, ^{3,‡} Angelo Calci, ^{1,2} and Robert Roth ^{1,8}

NCSMC with chiral NN+3N: Structure of 9Be

NN NN+3N Expt. NN+3N NN

⁹Be is a stable nucleus
... but all its excited states unbound
A proper description requires to include
effects of continuum

Three-nucleon interaction and continuum improve agreement with experiment for negative parity states

Continuum crucial for the description of positive-parity states

34

NCSMC wave function

$$\Psi^{(A)} = \sum_{\lambda} c_{\lambda} \left| \stackrel{(A)}{\bullet} , \lambda \right\rangle + \sum_{\nu} \int d\vec{r} \ \gamma_{\nu}(\vec{r}) \ \hat{A}_{\nu} \left| \stackrel{\vec{r}}{\bullet} , \nu \right\rangle$$

$$\begin{split} \left| \Psi_{A}^{J^{\pi}T} \right\rangle &= \sum_{\lambda} |A\lambda J^{\pi}T\rangle \Bigg[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda\lambda'} \bar{c}_{\lambda'} \ + \sum_{\nu'} \int dr' \ r'^2 (N^{-\frac{1}{2}})^{\lambda}_{\nu'r'} \frac{\bar{\chi}_{\nu'}(r')}{r'} \Bigg] \\ &+ \sum_{\nu\nu'} \int dr \ r^2 \int dr' \ r'^2 \hat{A}_{\nu} \left| \Phi_{\nu r}^{J^{\pi}T} \right\rangle \mathcal{N}_{\nu\nu'}^{-\frac{1}{2}}(r,r') \left[\sum_{\lambda'} (N^{-\frac{1}{2}})^{\lambda'}_{\nu'r'} \bar{c}_{\lambda'} \ + \sum_{\nu''} \int dr'' \ r''^2 (N^{-\frac{1}{2}})_{\nu'r'\nu''r''} \frac{\bar{\chi}_{\nu''}(r'')}{r''} \right]. \end{split}$$

Asymptotic behavior $r \rightarrow \infty$:

$$\overline{\chi}_{v}(r) \sim C_{v}W(k_{v}r) \qquad \overline{\chi}_{v}(r) \sim \mathbf{v}_{v}^{-\frac{1}{2}} \Big[\delta_{vi}I_{v}(k_{v}r) - U_{vi}O_{v}(k_{v}r) \Big]$$
 Bound state Scattering state Scattering matrix

-0.5550

 10 Be + d - t

Photo-disassociation of ⁹Be

Reaction $\alpha(\alpha n, \gamma)^9$ Be relevant for astrophysics: beginning of r-process Inverse process 9 Be(γ , α n) α measured in laboratory

E [MeV]

The deuteron-projectile formalism: Three-nucleon interaction

For *A*=6 use completeness

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

S- and D-wave asymptotic normalization constants

	NCSMC	Experiment			
$C_0 \ [\text{fm}^{-1/2}]$	2.695	2.91(9) [[39]	2.93(15)	[38]
$C_0 [\text{fm}^{-1/2}]$ $C_2 [\text{fm}^{-1/2}]$	-0.074	-0.077(18) [[39]		
C_2/C_0	-0.027	-0.025(6)(10) [[39]	0.0003(9)	[41]
02/00	0.0	0.000(0)(00)		0.0000(0)	[]

- [38] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, and E. V. Kuznetsova, Phys. Rev. C 48, 2390 (1993).
- [39] E. A. George and L. D. Knutson, Phys. Rev. C 59, 598 (1999).
- [41] K. D. Veal, C. R. Brune, W. H. Geist, H. J. Karwowski, E. J. Ludwig, A. J. Mendez, E. E. Bartosz, P. D. Cathers, T. L. Drummer, K. W. Kemper, A. M. Eiró, F. D. Santos, B. Kozlowska, H. J. Maier, and I. J. Thompson, Phys. Rev. Lett. 81, 1187 (1998).

- Limited information about the structure of proton rich ¹¹N – mirror nucleus of ¹¹Be halo nucleus
- Incomplete knowledge of ¹⁰C unbound excited states
- Importance of 3N force effects and continuum

¹⁰C(p,p) @ IRIS with solid H₂ target

- New experiment at ISAC TRIUMF with reaccelerated ¹⁰C
 - The first ever ¹⁰C beam at TRIUMF
 - Angular distributions measured at $E_{\rm CM}$ ~ 4.1 MeV and 4.4 MeV
 - Data analysis under way

Talk by Ritu Kanungo on Friday

- NCSMC calculations **including chiral 3N** (N³LO NN+N²LO 3NF400)
 - $p^{-10}C + {}^{11}N$
 - ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates
 - 11 N: 6 π = -1 and 3 π = +1 NCSM eigenstates

• NCSMC calculations **including chiral 3N** (N³LO NN+N²LO 3NF400)

$$- p^{-10}C + {}^{11}N$$

• ¹⁰C: 0⁺, 2⁺, 2⁺ NCSM eigenstates

+ +

• 11 N: 6 π = -1 and 3 π = +1 NCSM eigenstates

With the 3N the ${}^2P_{1/2}$ and ${}^2P_{3/2}$ resonances broader and shifted to higher energy in a better agreement with experiment

¹¹N from chiral NN+3N within NCSMC

¹¹N Expt. (TUNL evaluation)

Preliminary

	Jπ	Т	E _{res} [MeV]	E _x [MeV]	Γ [keV]
-	1/2 ⁺	3/2	1.35 1.94	0 0.59	"4100" 580
/	3/2-	3/2	4.69	3.34	280
	5/2+	3/2	4.75	3.40	1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2-	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

E_{res} (MeV \pm keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^{-}$	600 ± 100
3.06 ± 80	(1.57 ± 80)		< 100
3.69 ± 30	2.20 ± 70	$\frac{5}{2}$ +	540 ± 40
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40
5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220
5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$	
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60

$$\Gamma = \left. \frac{2}{\partial \delta(E_{kin})/\partial E_{kin}} \right|_{E_{kin} = E_F}$$

Negative parity 1/2- and 3/2- resonances in a good agreement with the current evaluation

Positive parity resonances too broad – N_{max} convergence

¹¹N from chiral NN+3N within NCSMC

¹¹N Expt. (TUNL evaluation)

Preliminary

	Jπ	Т	E _{res} [MeV]	E _x [MeV]	Γ [keV]
	1/2+	3/2	1.35	0	"4100"
√	1/2		1.94	0.59	580
✓	3/2-	3/2	4.69	3.34	280
	5/2+	3/2	4.75	3.40	1790
	3/2+	3/2	4.95	3.60	"4760"
	5/2-	3/2	5.95	4.60	470
	3/2-	3/2	7.68	6.33	620

$E_{\rm res}$ (MeV \pm keV)	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	Γ (keV)
1.49 ± 60	0	$\frac{1}{2}^+; \frac{3}{2}$	830 ± 30
2.22 ± 30	0.73 ± 70	$\frac{1}{2}^-$	600 ± 100
\rightarrow 3.06 ± 80	(1.57 ± 80)		< 100
3.69 ± 30	2.20 ± 70	$\frac{5}{2}^{+}$	540 ± 40
4.35 ± 30	2.86 ± 70	$\frac{3}{2}^{-}$	340 ± 40
→ 5.12 ± 80	(3.63 ± 100)	$(\frac{5}{2}^{-})$	< 220
→ 5.91 ± 30	4.42 ± 70	$(\frac{5}{2}^{-})$	
6.57 ± 100	5.08 ± 120	$(\frac{3}{2}^{-})$	100 ± 60

No candidate for 3.06 MeV resonance

We predict only one 5/2- resonance below the 3/2-2

Calculations suggest that either 5.12 MeV or 5.91 MeV resonance might be 3/2+ instead

NCSMC resonance predictions more in line with assignments in ¹¹Be

Starts from:

$$\Psi_{RGM}^{(A)} = \sum_{v_2} \int g_{v_2}(\vec{r}) \hat{A}_{v_2} \Big| \phi_{v_2 \vec{r}} \Big\rangle d\vec{r} + \sum_{v_3} \iint G_{v_3}(\vec{x}, \vec{y}) \; \hat{A}_{v_3} \Big| \Phi_{v_3 \vec{x} \vec{y}} \Big\rangle d\vec{x} d\vec{y}$$

$$\begin{array}{c} \text{2-body channels} \\ \psi_{\alpha_1}^{(A-a)} & \phi(\vec{r} - \vec{r}_{A-a,a}) \\ \end{array}$$

$$\begin{array}{c} \psi_{\alpha_2}^{(a)} & \phi(\vec{x} - \vec{r}_{a_2,a_3}) \\ \phi(\vec{y} - \vec{r}_{A-a_2,a_2,a_2}) & \phi(\vec{x} - \vec{r}_{a_2,a_3}) \\ \psi_{\beta_3}^{(a_3)} & \phi(\vec{x} - \vec{r}_{a_2,a_3}) \\ \end{array}$$

Two-neutron halo nuclei

Transfer reactions with three-body continuum final states

$$|\Psi^{J^{\pi}T}\rangle = \sum_{\nu} \int dx x^2 \int dy y^2 G_{\nu}^{J^{\pi}T}(x,y) \hat{A}_{\nu} |\mathbf{\Phi}_{\nu xy}^{J^{\pi}T}\rangle$$

Schrödinger equation
$$| \qquad | \qquad | \qquad | (\mathcal{H} - E) | \Psi^{J^{\pi}T} \rangle = 0$$

$$\sum \int dx dy x^2 y^2 \left[\mathcal{H}_{\nu'\nu}(x, y, x', y') - E \mathcal{N}_{\nu'\nu}(x, y, x', y') \right] G_{\nu}^{J^{\pi}T}(x, y) = 0$$

Hamiltonian Kernel Norm kernel

$$\langle \Phi_{\nu'x'y'}^{J^{\pi}T} | \hat{A}_{\nu'} \mathcal{H} \hat{A}_{\nu} | \Phi_{\nu xy}^{J^{\pi}T} \rangle \qquad \langle \Phi_{\nu'x'y'}^{J^{\pi}T} | \hat{A}^2 | \Phi_{\nu xy}^{J^{\pi}T} \rangle$$

$$\langle \Phi_{\nu'x'y'}^{J^{\pi}T} | \hat{A}^2 | \Phi_{\nu xy}^{J^{\pi}T} \rangle$$

Hyperspherical coordinates:

$$\rho = \sqrt{x^2 + y^2}, \quad \alpha = \arctan(x/y)$$

After changing to hyperspherical coordinates and integrating in α,α' :

$$\sum_{\nu k} \int d\rho \rho^5 \left[\bar{\mathcal{H}}_{\nu'\nu}^{k'k}(\rho',\rho) - E \frac{\delta(\rho-\rho')}{\rho^5} \delta_{\nu'\nu} \delta_{k'k} \right] C_{k\nu}^{J^{\pi}T}(\rho) = 0$$

Coupled-channel microscopic R-matrix method on a Lagrange mesh*

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51

Internal region: expansion on a basis $(\rho < a)$

$$C_{k\nu}(\rho) = \sum_{i} \beta_{k\nu i} f_i(\rho)$$

External region: known asymptotic behaviour ($\rho > a$)

* Bound state: $C_{k\nu}(\rho) = A_{k\nu} \sqrt{\kappa \rho} K_{k+2}(\kappa \rho)$

* Continuum state: $C_{k\nu}(\rho) = A_{k\nu} \left[H_k^-(\kappa \rho) \delta_{\nu,\nu'} \delta_{k,k'} - S_{\nu k,\nu' k'} H_k^+(\kappa \rho) \right]$

NCSM/RGM for three-body clusters: Structure of ⁶He

 4 He + n + n

PRL 113, 032503 (2014) PHYSICAL REVIEW LETTERS

**Week ending 18 JULY 2014

**The He + n + n Continuum within an Ab initio Framework

**Carolina Romero-Redondo, 1.* Sofia Quaglioni, 2.† Petr Navrátil, 1.‡ and Guillaume Hupin 2.8

**IRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
2**Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA

⁶He bound 0⁺ ground state

Comparison to recent experiment

NCSMC implementation in progress...

 5 H ≈ 4 He + n + n in progress

Conclusions and Outlook

- Ab initio calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters (6 He \sim 4 He+n+n): NCSMC in progress

Ongoing projects:

- Transfer reactions: Talk by Francesco Raimondi on Tuesday
- Applications to capture reactions important for astrophysics: Talk by Jeremy Dohet-Eraly on Friday
- Bremsstrahlung: Talk by Jeremy Dohet-Eraly on Friday

Outlook

- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - 16O: 12C+4He

NCSMC and NCSM/RGM collaborators

Sofia Quaglioni (LLNL)

Francesco Raimondi, Jeremy Dohet-Eraly, Angelo Calci (TRIUMF)

Joachim Langhammer, Robert Roth (TU Darmstadt)

Carolina Romero-Redondo, Michael Kruse (LLNL)

Guillaume Hupin (Notre Dame)

Simone Baroni (ULB)

Wataru Horiuchi (Hokkaido)