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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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What is meant by ab initio in nuclear physics? 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 
 

•  Degrees of freedom: NUCLEONS 
–  Nuclei made of nucleons 
–  Interacting by nucleon-nucleon and 

three-nucleon potentials 
 

•  Ab initio 
²    All nucleons are active 
²    Exact Pauli principle 
²    Realistic inter-nucleon interactions 

²  Accurate description of  NN (and 3N) data 

²    Controllable approximations 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or accurate 
meson-exchange 

potentials 



Chiral Effective Field Theory 
•  First principles for Nuclear Physics: 
      QCD  

–  Non-perturbative at low energies 
–  Lattice QCD in the future 

•  For now a good place to start: 
•  Inter-nucleon forces from chiral 

effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD (mu≈md≈0), 
spontaneously broken with pion as the 
Goldstone boson 

•  Degrees of freedom: nucleons + pions 
–  Systematic low-momentum expansion to 

a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 



The NN interaction from chiral EFT 

•  24 LECs fitted to the np scattering 
data and the deuteron properties 

–  Including ci LECs (i=1-4) from 
pion-nucleon Lagrangian  



Leading terms of the chiral NNN force 

From NN & 
pion-nucleon 

scattering 
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Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory
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The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.

DOI: 10.1103/PhysRevLett.103.102502 PACS numbers: 21.30."x, 21.45.Ff, 23.40."s, 27.10.+h

The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.
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NNN parameters determined  
from the 3H binding energy and half life  
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Many-Body methods H Ψ = E Ψ
NCSM, NCSM/RGM,  
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•  No-core shell model (NCSM) 
–  A-nucleon wave function expansion in 

the harmonic-oscillator (HO) basis 
–  short- and medium range correlations 
–  Bound-states, narrow resonances 

No-core shell model with continuum 
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Low-energy QCD 

Nuclear structure and reactions 

NN+3N interactions  
from chiral EFT 

…or accurate 
meson-exchange 

potentials 

Unitary/similarity 
transformations 

Identity or SRG 
or OLS or UCOM … 

Softens NN, induces 3N 

Many-Body methods H Ψ = E Ψ
NCSM, NCSM/RGM,  

CCM, GFMC, HH, 
Nuclear Lattice EFT… 



 Calculations with chiral 3N: SRG renormalization needed 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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NCSM calculations of 6He g.s. energy 
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6He SRG-N3LO NN 
Λ=2.02 fm-1 

•  Soft SRG evolved NN potential 
ü  Nmax convergence OK 
ü  Extrapolation feasible 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.

Dependence on: 

Basis size       – Nmax 
HO frequency – hΩ 



NCSM calculations of 6He and 7He g.s. energies 
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ü  Nmax convergence OK 
ü  Extrapolation feasible 

•  7He unbound  
•  Expt. Eth=+0.430(3) MeV: NCSM Eth≈ +1 MeV 
•  Expt. width 0.182(5) MeV: NCSM no information about the width 

 
7He unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.



Light & medium mass nuclei from first principles 

§  Nuclear structure and reaction theory for light nuclei cannot be uncoupled 
§  Well-bound nuclei, e.g. 12C, have low-lying cluster-dominated resonances 

§  Bound states of exotic nuclei, e.g. 11Be, manifest many-nucleon correlations  
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Â�J⇡T (A�a,a)

⇥⌅r



a
1v( )

a
2v( )

a
1ν + a2ν = A


r
v

φ
1ν

φ
2ν

a
3µ( )

a
2µ( )


rµ2


rµ1

a
1µ( )

φ
1µ

φ
2µ

φ
3µ

a
1µ + a2µ + a3µ = A

a
1κ = A( )

φ
1κ

ψ (A)
= cκ

κ

∑ φ
1κ



ξ
1κ{ }( )

+ Âν
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•  φ : antisymmetric cluster wave functions  
–  {ξ}: Translationally invariant internal coordinates 

   (Jacobi relative coordinates) 

–  These are known, they are an input 
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•  Αν, Αµ : intercluster antisymmetrizers  
–  Antisymmetrize the wave function for exchanges of nucleons between clusters 

–  Example: 
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µ

∑ φ
1µ



ξ
1µ{ }( )φ2µ



ξ
2µ{ }( )φ3µ



ξ
3µ{ }( )δ(


R
1
−

Rµ1)δ(


R
2
−

Rµ2 )





d

R
1
d

R
2

+ 

•  c, g and G: discrete and continuous 
linear variational amplitudes 

–  Unknowns to be determined 
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µ

∑ φ
1µ



ξ
1µ{ }( )φ2µ



ξ
2µ{ }( )φ3µ



ξ
3µ{ }( )δ(


R
1
−

Rµ1)δ(


R
2
−

Rµ2 )





d

R
1
d

R
2

+ 

•  Discrete and continuous set of basis functions 
–  Non-orthogonal 

–  Over-complete  
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•  No-core shell model (NCSM) 
–  A-nucleon wave function expansion in 

the harmonic-oscillator (HO) basis 
–  short- and medium range correlations 
–  Bound-states, narrow resonances 

No-core shell model with continuum 

21 
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•  No-core shell model (NCSM) 
–  A-nucleon wave function expansion in 

the harmonic-oscillator (HO) basis 
–  short- and medium range correlations 
–  Bound-states, narrow resonances 

No-core shell model with RGMnuum 

22 

1max += NN

•  NCSM with Resonating Group 
Method (NCSM/RGM) 
–  cluster expansion 
–  proper asymptotic behavior  
–  long-range correlations 
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•  No-core shell model (NCSM) 
–  A-nucleon wave function expansion in 

the harmonic-oscillator (HO) basis 
–  short- and medium range correlations 
–  Bound-states, narrow resonances 

No-core shell model with continuum 
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1max += NN

•  NCSM with Resonating Group 
Method (NCSM/RGM) 
–  cluster expansion 
–  proper asymptotic behavior  
–  long-range correlations 

Ψ (A) = cλ
λ

∑ ,λ + dr γ v (
r )∫ Âν

ν

∑ ,ν
A− a( )

a( )

r

Unknowns 

NCSM eigenstates 
NCSM/RGM 

channel states 

The most efficient: 
No-Core Shell Model with Continuum 

(NCSMC) 

S. Baroni, P. N., and S. Quaglioni,  
PRL 110, 022505 (2013); PRC 87, 034326 (2013). 



Coupled NCSMC equations 
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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   Separation into “internal” and “external” regions at the channel radius a 

 

 

–  This is achieved through the Bloch operator: 

–  System of Bloch-Schrödinger equations: 

–  Internal region: expansion on square-integrable Lagrange mesh basis 

–  External region: asymptotic form for large r 
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that

p-4He scattering within NCSMC 

p-4He scattering phase-shifts for NN+3N potential:  
Convergence 

Differential p-4He cross section with NN+3N potentials 

4He 
p 

Predictive power in the 3/2- resonance region: 
Applications to material science 
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FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.
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Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N )
interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions
for the 3N -force integration kernels, and discuss computational aspects of two alternative implementations. The
extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-
group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze
the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution
parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of
the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2−and 1/2− resonances and leads to
an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon
experimental data. We find remarkably good agreement with measured differential cross sections at various
energies below the d-3H threshold, while analyzing powers manifest larger deviations from experiment for
certain energies and angles.
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I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3–7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8–11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12–15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16–19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21–26] expansions in (A−a, a) binary-cluster
wave functions, where each cluster of nucleons is described

*hupin1@llnl.gov
†joachim.langhammer@physik.tu-darmstadt.de
‡navratil@triumf.ca
§quaglioni1@llnl.gov
∥angelo.calci@physik.tu-darmstadt.de
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within the ab initio NCSM [27–30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects

054622-10556-2813/2013/88(5)/054622(16) ©2013 American Physical Society
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I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3–7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8–11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12–15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16–19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21–26] expansions in (A−a, a) binary-cluster
wave functions, where each cluster of nucleons is described
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within the ab initio NCSM [27–30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects
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7He unbound 

2

Eg.s. [MeV] 4He 6He 7He

NCSM Nmax=12 -28.05 -28.63 -27.33

NCSM extrap. -28.22(1) -29.25(15) -28.27(25)

Expt. -28.30 -29.27 -28.84

TABLE I: Ground-state energies of 4,6,7He in MeV. An expo-
nential fit was employed for the extrapolations.

We begin by presenting NCSM calculations for 6He
and 7He that will serve as input for the subsequent
NCSM/RGM and NCSMC investigations of 7He. In
this work, we use the similarity-rnormalization-group
(SRG) evolved [30–33] chiral N3LO NN potential of
Refs. [34, 35]. For the time being, we omit both induced
and chiral initial three-nucleon forces, and our results de-
pend on the low-momentum SRG parameter Λ. However,
for Λ = 2.02 fm−1, we obtain realistic binding energies
for the lightest nuclei, e.g., 4He and, especially important
for the present investigation, 6He (see Table I). Conse-
quently, this choice of NN potential allows us to perform
qualitatively and quantitatively meaningful calculations
for 7He that can be compared to experiment. Except
where differently stated, all results shown in this work
have been obtained with an harmonic oscillator (HO)
Nmax=12 basis size and frequency !Ω=16 MeV.

The variational NCSM calculations converge rapidly
and can be easily extrapolated. At Nmax=12 (our 6,7He
limit for technical reasons), the dependence of the 6He
g.s. energy on the HO frequency is flat in the range
of !Ω ∼ 16−19 MeV. In general, when working within
an HO basis, lower frequencies are better suited for the
description of unbound systems. Therefore, we choose
!Ω=16 MeV for our subsequent calculations. Extrap-
olated g.s. energies with their error estimates and the
Nmax=12 results are given in Table I. Calculated 6He ex-
citation energies for basis sizes up to Nmax=12 are shown
in Fig. 1. The 6He is weakly bound with all excited states
unbound. Except for the lowest 2+ state, all 6He excited
states are either broad resonances or states in the con-
tinuum. We observe a good stability of the 2+1 state
with respect to the basis size of our NCSM calculations.
The higher excited states, however, drop in energy with
increasing Nmax with the most dramatic example being
the multi-!Ω 0+3 state. This spells a potential difficulty
for a NCSM/RGM calculations of 7He within a n+6He
cluster basis as, with increasing density of 6He states at
low energies, a truncation to just a few lowest eigenstates
becomes questionable.

For the 7He, the NCSM predicts the g.s. unbound in
agreement with experiment. However, the resonance en-
ergy with respect to the 6He+n threshold appears over-
estimated. Obviously, it is not clear that the ad hoc
exponential extrapolation is valid for unbound states. In
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FIG. 1: (color online). Dependence of 6He excitation energies
on the size of the basis Nmax.

addition, no information on the width of the resonance
can be obtained from the NCSM calculation. We can,
however, study the structure of the 7He NCSM eigen-
states by calculating their overlaps with 6He+n cluster
states, which are related to ḡλν (see Eq. (2)), and the
corresponding spectroscopic factors summarized in Ta-
ble II. Overall, we find a very good agreement with the
VMC/GFMC results as well as with the latest experi-
mental value for the g.s. [2]. Interesting features to no-
tice is the about equal spread of 1/2− between the 0+ and
2+2 states. We stress that in our present calculations, the
overlap functions and spectroscopic factors are not the
final products to be compared to experiment but, on the
contrary, inputs to more sophisticated NCSMC calcula-
tions.

7He Jπ 6He−n(lj) NCSM CK VMC GFMC Exp.

3/2−1 0+−p 3
2

0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [36]

0.37(7) [11]

3/2−1 2+1 −p 1
2

0.001 0.06 0.006

3/2−1 2+1 −p 3
2

1.97 1.15 2.02

3/2−1 2+2 −p 1
2

0.12 0.09

3/2−1 2+2 −p 3
2

0.42 0.30

1/2− 0+−p 1
2

0.94 0.69 0.91

1/2− 2+1 −p 3
2

0.34 0.60 0.26

1/2− 2+2 −p 3
2

0.93

TABLE II: NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [37] and VMC/GFMC [16, 38, 39] calculations
and experiment. The CK values should be still multiplied by
A/(A−1) to correct for the center of mass motion.
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Â�J⇡T (A�a,a)

⇥⌅r



NCSM with continuum: 7He       6He+n 

31 
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with three 6He states 

and ten 7He eigenstates 
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Experimental controversy:  
Existence of low-lying 1/2- state  
… not seen in these calculations 

4

Jπ experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [2] 0.71 0.30 1.39 0.46 1.30

5/2− 3.35(10) 1.99(17) [40] 3.13 1.07 4.00 1.75 4.56

1/2− 3.03(10) 2 [11] 2.39 2.89 2.66 3.02 3.26

3.53 10 [15]

1.0(1) 0.75(8) [5]

TABLE III: Experimental and theoretical resonance centroids
and widths in MeV for the 3/2− g.s. , 5/2− and 1/2− excited
states of 7He. See the text for more details.

shifts is maximal [41]. The resonance widths are then
computed from the phase shifts according to (see, e.g.,
Ref. [42])

Γ =
2

dδ(Ekin)/dEkin

∣

∣

∣

∣

Ekin=ER

. (4)

An alternative, less general, choice for the resonance en-
ergy ER could be the kinetic energy corresponding to a
phase shift of π/2 (thin dashed lines in Fig. 3). While
Eq. (4) is safely applicable to sharp resonances, broad
resonances would require an analysis of the scattering
matrix in the complex plane. As we are more interested
in a qualitative discussion of the results, we use here the
above extraction procedure for broad resonances as well.
The two alternative ways of choosing ER lead to basi-
cally identical results for the calculated 3/2−1 resonances,
however the same is not true for the broader 5/2− and
the very broad 1/2− resonances. The π/2 condition, par-
ticularly questionable for broad resonances, would result
in ER ∼ 3.7 MeV and Γ ∼ 2.4 MeV for the 5/2− and
ER ∼ 4 MeV (see Fig. 3) and Γ ∼ 13 MeV for the 1/2−

resonance, respectively.
The resonance position and width of our NCSMC 3/2−

g.s. slightly overestimate the measurements, whereas the
prediction for the 5/2− is lower compared to experi-
ment [3, 40], although our determination of the width
should be taken with some caution in this case. As for
the 1/2− resonance, the experimental situation is not
clear as discussed in the introduction and documented
in Table III. While the centroid energies of Refs. [11, 12]
and [15] are comparable, the widths are very different.
With our determination of ER and Γ, the NCSMC re-
sults are in fair agreement with the neutron pick-up and
proton-removal reactions experiments [11, 12] and defi-
nitely do not support the hypothesis of a low lying (ER∼1
MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [4–8]. In ad-
dition, our NCSMC calculations predict two broad 6P3/2

resonances (from the coupling to the two respective 6He
2+ states) at about 3.7 MeV and 6.5 MeV with widths of
2.8 and 4.3 MeV, respectively. The corresponding eigen-
phase shifts do not reach π/2, see Fig. 3. In experiment,

there is a resonance of undetermined spin and parity at
6.2(3) MeV with a width of 4(1) MeV [40]. Finally, it
should be noted that our calculated NCSMC ground state
resonance energy, 0.71 MeV, is lower but still compatible
with the extrapolated NCSM value of 0.98(29) MeV (see
Tables I and III).

In conclusion, we introduced a new unified approach to
nuclear bound and continuum states based on the cou-
pling of the no-core shell model with the no-core shell
model/resonating group method. We demonstrated the
potential of the NCSMC in calculations of 7He reso-
nances. Our calculations do not support the hypothesis
of a low lying 1/2− resonance in 7He.
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1ℓJπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum ℓ add up to give
the total spin of the system J⃗ = s⃗+ ℓ⃗ (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT ⟩ and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1⟩ to
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9Be is a stable nucleus 
… but all its excited states unbound  

A proper description requires to include 
effects of continuum 
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FIG. 1: (color online) Nmax dependence of NCSMC n-8Be
phase shifts and eigenphase shifts. The left- and right-
hand columns show the results for the NN+3N-induced and
NN+3N-full Hamiltonian, respectively. Remaining parame-
ters are !Ω = 20MeV, α = 0.0625 fm4, and E3max = 14.
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the NN+3N-full Hamiltonian at Nmax = 10 (11) for negative
(positive) parity. Remaining parameters are !Ω = 20MeV,
and E3max = 14.

TABLE I: Resonance energies relative to the n-8Be thresh-
old and corresponding width in MeV for NCSMC with the
NN+3N-full Hamiltonian with Λ3N = 400MeV/c extracted
as explained in the text in comparison to experiment [23].
For positive and negative parity the model-space truncation
Nmax = 11 and 12 is used, respectively.

NCSMC experiment
9Be states ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]

1
2
+ 0.012 0.09 0.019 0.22
5
2
+ 2.85 0.41 1.38 0.28
3
2
+ 3.39 0.17 3.03 0.74
9
2
+ 7.48 2.25 5.09 1.33
3
2
− -1.367 - -1.66 -
1
2
− 1.15 0.95 1.11 1.08
5
2
− 1.25 0.02 keV 0.76 0.78 keV
3
2
− 3.4 0.26 3.92 1.33
5
2
− 6.21 2.22 6.27 1.0
7
2
− 6.21 0.84 4.71 1.21
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FIG. 4: (color online) Negative (a) and positive (b) parity spectrum of
9Be relative to the n-8Be threshold as function of Nmax for the NCSM
(left-hand columns) and NCSMC (right-hand columns) compared to
experiment [23]. Remaining parameters are !Ω = 20MeV and α =
0.0625 fm4. See text for further explanations.

sponding widths Γ from the eigenphase shifts shown in Fig 2.
Following Refs. [20, 21], we extract the centroids from the
maximum of the derivative of the eigenphase shifts with re-
spect to the kinetic energy, i.e., ER is defined by the inflec-
tion point of the eigenphase shifts. The width follows from
Γ = 2/

(

dδ(Ekin)/dEkin
)

∣

∣

∣

Ekin=ER
with eigenphase shifts δ in units

of radians [43]. Besides resonances, the NCSMC approach
also yields information about bound states if we apply the R-
matrix approach with bound-state boundary conditions [44].
We find only one bound state, the 3

2
− ground state of 9Be

with energies −49.17MeV and −54.87MeV for the NN+3N-
induced and NN+3N-full Hamiltonians, respectively.
In Fig. 4(a) and (b) we show the energy spectrum of 9Be

relative to the n-8Be threshold computed with the NN+3N-
full Hamiltonian for negative and positive parity, respectively.
Each panel shows the convergence pattern of the energy lev-
els with respect to the model-space size Nmax for the NCSM,
i.e., without continuum degrees of freedom, and for the NC-
SMC, i.e., including continuum effects. For each Nmax the
corresponding 8Be ground-state energy is given by its NCSM

value, which is about −53.5MeV at Nmax = 12.
Comparing NCSM and NCSMC results for negative parity

at fixed Nmax, we find for all states significant contributions
from the continuum coupling. The sole exception is the 7

2
−

state, where the effects stay below 0.5MeV. The NCSMC re-
duces the energy differences to the n-8Be threshold compared
to the NCSM for all states and for all Nmax. Concerning the
dependence on the model-space size for NCSMC increasing
Nmax from 6 to 12 produces only small energy shifts, which
are slightly larger for the higher-excited states but remain well
below 0.5MeV. Hence, the NCSMC calculations are well con-
verged, as already observed for the eigenphase shifts in Fig. 2.
This is different for the NCSM energies, which show signif-
icantly larger changes hinting at less converged calculations.
This is of course expected, because all excited states of 9Be
are resonances and the NCSM basis of A-body HO Slater de-
terminants is not designed for a proper description of con-
tinuum states. Altogether, the NCSMC generally improves
the agreement with experiment, and we find excellent agree-
ment for the 12

− and second 5
2
− resonances beyond Nmax = 10.

Note that also the 9Be ground-state energy is lowered by about
0.5MeV due the model-space extension by n-8Be basis states
and its agreement with experiment is improved.
The most dramatic effects due to the continuum degrees

of freedom are found in the positive-parity states, as evident
from Fig. 4(b) by comparing the energies between the two ap-
proaches at fixed Nmax. Once again, the NCSMC reduces all
energy differences relative to the n-8Be threshold compared
to the NCSM, leading to an improved agreement with exper-
iment. The agreement is particularly striking for the S -wave
dominated 12

+ state, whose energy at Nmax = 7 is shifted by the
continuum degrees of freedom by about 5MeV right on top
of its experimental position slightly above threshold, and re-
mains practically constant when we increase the model-space
size further to Nmax = 11. Also the remaining NCSMC ener-
gies are much less affected by increasing Nmax than the NCSM
energies. We find the 32

+ resonance, which builds on top of the
2+ state of 8Be, dominated by the 4S 3

2
partial wave [42] and in

good agreement with experiment, while discrepancies remain
larger for the 5

2
+ and 9

2
+ resonances. Finally, we note that

contributions from the broad 4+ state of 8Be might improve
the description of the 92

+ resonance of 9Be.
In Fig. 5 we study the effects of the initial chiral 3N inter-

action on the 9Be energy levels by comparing the spectrum
to the one for the NN+3N-induced Hamiltonian including the
SRG-induced 3N interactions only. For negative parity, all
states, except the first 52

− resonance, are sensitive to the inclu-
sion of the initial chiral 3N interaction with effects of roughly
similar size for both the NCSM and the NCSMC: the inclu-
sion of the chiral 3N interaction increases the resonance en-
ergies relative to the threshold. Because the NCSM energy
differences for the NN+3N-induced Hamiltonian are typically
close to or above the experimental values, the agreement with
experiment deteriorates when the initial 3N interaction is in-
cluded. In contrast, the NCSMC energy differences for the
NN+3N-induced Hamiltonian are typically below the exper-

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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Continuum and three-nucleon force effects on 9Be energy levels
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We extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon
(3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects
of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction
observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the
9Be system for which all excited states lie above the n-8Be threshold. For all energy levels, the inclusion of
the continuum significantly improves the agreement with experiment, which was an issue in standard no-core
shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable
statements about the quality of the adopted 3N interaction from chiral effective field theory. In particular, we find
the 1

2
+

resonance energy, which is of astrophysical interest, in good agreement with experiment.

DOI: 10.1103/PhysRevC.91.021301 PACS number(s): 21.60.De, 21.10.−k, 24.10.−i, 27.20.+n

I. INTRODUCTION

In recent years the inclusion of three-nucleon (3N) interac-
tions into different ab initio approaches for nuclear structure
calculations was challenging but successfully completed with
a variety of interesting applications [1–16]. However, beyond
the few-body domain, the inclusion of 3N interactions in
ab initio studies of continuum effects in weakly bound systems
or nuclear reactions have been completed for the five-nucleon
system only, e.g., within the Green’s function Monte Carlo
(GFMC) approach [17] and the no-core shell model combined
with the resonating group method (NCSM/RGM) [18,19]. To
arrive at a more efficient unified ab initio theory applicable
to nuclear structure and reactions on equal footing, the
NCSM/RGM approach was recently generalized to the no-core
shell model with continuum (NCSMC) [20,21]. In Ref. [22],
the NCSMC was applied to p-4He scattering for the first time
including 3N interactions using an algorithm restricted to A=3
and A = 4 target nuclei. In this communication, we extend the
NCSMC formalism to include 3N interactions in a general
framework applicable to arbitrary p- and lower-sd shell target
nuclei. This is a major step towards a refined nuclear structure
and reaction theory that allows ab initio studies of observables
affected by continuum degrees of freedom starting from the
best Hamiltonians currently available. This is vital to provide
robust quantum chromodynamics (QCD)-based predictions
starting from chiral effective field theory interactions, e.g.,
for light exotic nuclei.

As a first application, we study the effects of the continuum
and of the 3N interaction on the energy levels of the 9Be
nucleus. This system is interesting because only its ground

*joachim.langhammer@physik.tu-darmstadt.de
†navratil@triumf.ca
‡Present address: Department of Physics, University of Notre Dame,

Notre Dame, IN 46556, USA.
§robert.roth@physik.tu-darmstadt.de

state is bound, while all excited states are unstable and
subject to neutron emission as the n-8Be threshold energy
is located experimentally at 1.665 MeV [23], being the lowest
neutron threshold of all stable nuclei. Therefore, it is appealing
to study the impact of the continuum on the excited-state
resonances with particular focus on the effects of the chiral 3N
interactions. Earlier studies of these energy levels within the
NCSM showed problems with the model-space convergence,
and, in particular the positive-parity states were found too high
in excitation energy compared to experiment [24,25]. Also the
splitting between the lowest 5/2− and 1/2− states is found
overestimated in no-core shell model (NCSM) calculations
using the INOY interaction model that includes 3N effects [24].
Moreover, GFMC calculations [26] show strong sensitivity of
the splitting with respect to 3N interactions. As including the
3N effects appeared to shift the splitting away from the ex-
periment, these studies seemed to highlight deficiencies of 3N
force models. Furthermore, 9Be is interesting for astrophysics,
because it provides seed material for the production of 12C in
the explosive nucleosynthesis of core-collapse supernovae via
the (ααn)9Be(αn)12C reaction, an alternative to the triple-α
reaction [25,27,28] bridging the A = 8 instability gap and
triggering the r process. In particular, the description of the
first 1

2
+

state of 9Be slightly above threshold poses a long
standing problem [25,27,29], relevant for the cross sections
and reaction rates.

II. THE NO-CORE SHELL MODEL WITH CONTINUUM
AND 3N FORCES

To arrive at the ab initio description of the 9Be nucleus
we generalize the NCSMC [20,21] to include 3N interactions.
In the following we highlight the quantities affected by the
inclusion of 3N interactions, while we refer to Ref. [21] for
details about the general formalism and the implementation
of the NCSMC. In the NCSMC the eigenstates of the A-body

0556-2813/2015/91(2)/021301(7) 021301-1 ©2015 American Physical Society
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Comparing the NCSM and NCSMC results for negative
parity at fixed Nmax, we find for all states significant contri-
butions from the additional continuum degrees of freedom ac-
counted for in the NCSMC. The sole exception is the 7

2
� state,

where the e↵ects stay below 0.5 MeV. The NCSMC reduces
the energy di↵erences to the n-8Be threshold compared to the
NCSM for all states and for all Nmax, respectively. Concerning
the dependence on the model-space size for NCSMC, we find
only small e↵ects from increasing Nmax from 6 to 12, which
are slightly larger for the higher-excited states but remain well
below 0.5 MeV. Hence, the NCSMC calculations are well con-
verged, as already observed for the eigenphase shifts in Fig. 2.
This is di↵erent for the NCSM energies, which show signif-
icantly larger changes hinting at less converged calculations.
This is of course expected, because all excited states of 9Be
are resonances and the NCSM basis of A-body HO Slater de-
terminants is not designed for a proper description of contin-
uum states. Altogether, the NCSMC generally improves the
agreement with experiment, and, in particular, and we find
excellent agreement for the 1

2
� and second 5

2
� resonances at

Nmax = 12. Note that also the energy of the bound 3
2
� ground

state is lowered by about 0.5 MeV due to continuum contribu-
tions and the agreement with experiment is improved.

The behavior of the positive-parity states of 9Be [Fig. 4(b)]
is similar: we find even more dramatic e↵ects due to the con-
tinuum degrees of freedom as evident from comparing the en-
ergies for fixed Nmax between the two approaches. Again, the
NCSMC reduces all energy di↵erences relative to the n-8Be
threshold compared to the NCSM, leading to an improved
agreement with experiment. The agreement is particularly
striking for the S -wave dominated 1

2
+ state, whose energy at

Nmax = 7 is shifted caused by the continuum degrees of free-
dom by about 5 MeV right on top of its experimental posi-
tion slightly above threshold, and remains practically constant
when we increase the model-space size further to Nmax = 11 in
the NCSMC. Also the remaining NCSMC energies are much
less a↵ected by increasing Nmax from 7 to 11 than the NCSM
energies, which exhibit significant changes. We find the 3

2
+

resonance dominated by the 4S 3
2

partial wave in good agree-
ment with experiment, while the discrepancies remain larger
for the 5

2
+ and 9

2
+ resonances. Finally, we note that contri-

butions from the broad 4+ state of 8Be might improve the 9
2
+

resonance of 9Be.
We add a comment on excitation energies that can be read

o↵ Fig. 4 by the energy di↵erences to the ground-state. The
excitation energy of the 5

2
� resonance and similarly all exci-

tation energies of the positive-parity states relative to the 1
2
+

state are in good agreement with experiment already at the
level of NCSM calculations. Hence, the main issue of the
NCSM is to produce the correct threshold energy.

In Fig. 5 we study the e↵ects of the initial chiral 3N inter-
action on the 9Be energy levels. Therefore, we compare the
spectrum to the one for the NN+3N-induced Hamiltonian in-
cluding the SRG-induced 3N interactions only, again for neg-
ative parity at Nmax = 12 and positive parity at Nmax = 11 in
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FIG. 5: (color online) Negative (a) and positive (b) parity spectrum
of 9Be relative to the n-8Be threshold at Nmax = 12 and 11, respec-
tively. Shown are NCSM (first two columns) and NCSMC (last two
columns) results compared to experiment [5]. First and last columns
contain the energies for the NN+3N-induced and the second and
fourth column for the NN+3N-full Hamiltonian, respectively. Re-
maining parameters identical to Fig. 4.

panels (a) and (b), respectively. Each panel shows in the first
column the NCSM results for the NN+3N-induced Hamilto-
nian and in the second column for the NN+3N-full Hamilto-
nian. The two last columns cover the NCSMC energies for
which the Hamiltonians are reversed (see column labels), and
the shaded area denotes the extracted widths. Again, we in-
clude experimental energies and widths in the middle.

For negative parity, all states, except the first 5
2
� resonance,

are sensitive to the inclusion of the initial chiral 3N interac-
tion with e↵ects of roughly similar size for both, the NCSM
and the NCSMC: the inclusion of the chiral 3N interaction in-
creases the resonance energies relative to the threshold. The
NCSM energy di↵erences for the NN+3N-induced Hamilto-
nian are typically close to or above the experimental energies,

NN NN+3N Expt. NN+3N NN 

9Be is a stable nucleus 
… but all its excited states unbound  

A proper description requires to include 
effects of continuum 

 
 

Three-nucleon interaction and continuum  
improve agreement with experiment  for 

negative parity states 
 
 

Continuum crucial for the description of 
positive-parity states 

NCSMC with chiral NN+3N: Structure of 9Be 

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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We extend the recently proposed ab initio no-core shell model with continuum to include three-nucleon
(3N) interactions beyond the few-body domain. The extended approach allows for the assessment of effects
of continuum degrees of freedom as well as of the 3N force in ab initio calculations of structure and reaction
observables of p- and lower-sd-shell nuclei. As a first application we concentrate on energy levels of the
9Be system for which all excited states lie above the n-8Be threshold. For all energy levels, the inclusion of
the continuum significantly improves the agreement with experiment, which was an issue in standard no-core
shell model calculations. Furthermore, we find the proper treatment of the continuum indispensable for reliable
statements about the quality of the adopted 3N interaction from chiral effective field theory. In particular, we find
the 1
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resonance energy, which is of astrophysical interest, in good agreement with experiment.
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I. INTRODUCTION

In recent years the inclusion of three-nucleon (3N) interac-
tions into different ab initio approaches for nuclear structure
calculations was challenging but successfully completed with
a variety of interesting applications [1–16]. However, beyond
the few-body domain, the inclusion of 3N interactions in
ab initio studies of continuum effects in weakly bound systems
or nuclear reactions have been completed for the five-nucleon
system only, e.g., within the Green’s function Monte Carlo
(GFMC) approach [17] and the no-core shell model combined
with the resonating group method (NCSM/RGM) [18,19]. To
arrive at a more efficient unified ab initio theory applicable
to nuclear structure and reactions on equal footing, the
NCSM/RGM approach was recently generalized to the no-core
shell model with continuum (NCSMC) [20,21]. In Ref. [22],
the NCSMC was applied to p-4He scattering for the first time
including 3N interactions using an algorithm restricted to A=3
and A = 4 target nuclei. In this communication, we extend the
NCSMC formalism to include 3N interactions in a general
framework applicable to arbitrary p- and lower-sd shell target
nuclei. This is a major step towards a refined nuclear structure
and reaction theory that allows ab initio studies of observables
affected by continuum degrees of freedom starting from the
best Hamiltonians currently available. This is vital to provide
robust quantum chromodynamics (QCD)-based predictions
starting from chiral effective field theory interactions, e.g.,
for light exotic nuclei.

As a first application, we study the effects of the continuum
and of the 3N interaction on the energy levels of the 9Be
nucleus. This system is interesting because only its ground
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state is bound, while all excited states are unstable and
subject to neutron emission as the n-8Be threshold energy
is located experimentally at 1.665 MeV [23], being the lowest
neutron threshold of all stable nuclei. Therefore, it is appealing
to study the impact of the continuum on the excited-state
resonances with particular focus on the effects of the chiral 3N
interactions. Earlier studies of these energy levels within the
NCSM showed problems with the model-space convergence,
and, in particular the positive-parity states were found too high
in excitation energy compared to experiment [24,25]. Also the
splitting between the lowest 5/2− and 1/2− states is found
overestimated in no-core shell model (NCSM) calculations
using the INOY interaction model that includes 3N effects [24].
Moreover, GFMC calculations [26] show strong sensitivity of
the splitting with respect to 3N interactions. As including the
3N effects appeared to shift the splitting away from the ex-
periment, these studies seemed to highlight deficiencies of 3N
force models. Furthermore, 9Be is interesting for astrophysics,
because it provides seed material for the production of 12C in
the explosive nucleosynthesis of core-collapse supernovae via
the (ααn)9Be(αn)12C reaction, an alternative to the triple-α
reaction [25,27,28] bridging the A = 8 instability gap and
triggering the r process. In particular, the description of the
first 1

2
+

state of 9Be slightly above threshold poses a long
standing problem [25,27,29], relevant for the cross sections
and reaction rates.

II. THE NO-CORE SHELL MODEL WITH CONTINUUM
AND 3N FORCES

To arrive at the ab initio description of the 9Be nucleus
we generalize the NCSMC [20,21] to include 3N interactions.
In the following we highlight the quantities affected by the
inclusion of 3N interactions, while we refer to Ref. [21] for
details about the general formalism and the implementation
of the NCSMC. In the NCSMC the eigenstates of the A-body
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh

034326-5

UNIFIED AB INITIO APPROACH TO BOUND AND . . . PHYSICAL REVIEW C 87, 034326 (2013)

in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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in the Hamiltonian kernel. Detailed expressions for these
form factors are given in the Appendix. The calculation of
⟨AλJ πT |Âν$

J π T
νr ⟩ overlap matrix elements between NCSM

wave functions and binary-cluster states was also discussed in
Ref. [36]. We also note that by squaring the absolute value
of these matrix elements and integrating over r , one obtains
spectroscopic factors.

The NCSMC equations can be orthogonalized in a way
analogous to that presented for the NCSM/RGM in Sec. II B1.
To define the square and inverse square root of the NCSMC
norm in the r-space representation, we first rewrite Eq. (24)
as the convolution of the model-space norm kernel plus a
correction for the finite size of the HO model-space P ,

Nλλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − δνν ′Rnℓ(r)δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

N λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

, (27)

where the sum over the repeating indexes λ̃, ν̃, n, λ̃′, ν̃ ′, and
n′ is implied, the notation Rνr ν̃n stands for Rnℓ(r)δνν̃ , and the
model-space NCSMC norm is given by

N λ̃λ̃′

ν̃n ν̃ ′n′ =
(

δλ̃λ̃′ ḡλ̃ν̃ ′n′

ḡλ̃′ν̃n δν̃ν̃ ′δnn′

)

. (28)

Here, the model-space cluster form factor is related to the
r-space one through ḡλν(r) =

∑
n Rnl(r)ḡλνn (as demonstrated

in the Appendix). We note that, in principle, the norm kernels
(15) and (28) can become singular because of Pauli forbidden
states in the NCSM/RGM or because of linear dependencies
owing to the overcompleteness of the NCSMC basis. In
that case, one simply removes explicitly the norm kernel
eigenvectors corresponding to the singular eigenvalues to
facilitate the inversion and the orthogonalization process. The
square and inverse square roots of N can then be defined as

(N± 1
2 )λλ′

νrν ′r ′ =
(

0 0

0 δνν ′
δ(r−r ′)

rr ′ − Rnℓ(r)δνν ′δnn′Rn′ℓ′(r ′)

)

+
(

δλλ̃ 0

0 Rνr ν̃n

)

(N± 1
2 )λ̃λ̃′

ν̃n ν̃ ′n′

(
δλ̃′λ′ 0

0 Rν ′r ′ ν̃ ′n′

)

.

(29)

Inserting the identity N− 1
2 N+ 1

2 in both left- and right-hand
sides of Eq. (22) and multiplying by N− 1

2 from the left one
obtains the orthogonalized NCSMC equations

H

(
c̄
χ̄

)
= E

(
c̄
χ̄

)
, (30)

where the orthogonalized Hamiltonian is given by

H = N− 1
2

(
HNCSM h̄

h̄ H

)

N− 1
2 , (31)

and the orthogonal wave functions by
(

c̄
χ̄

)
= N+ 1

2

(
c
χ

)
. (32)

Finally, the ansatz (21) in terms of the orthogonalized NCSMC
wave function takes the form

∣∣(J π T
A

〉
=

∑

λ

|AλJ πT ⟩
[ ∑

λ′

(N− 1
2 )λλ′

c̄λ′

+
∑

ν ′

∫
dr ′ r ′2(N− 1

2 )λν ′r ′
χ̄ν ′(r ′)

r ′

]

+
∑

νν ′

∫
dr r2

∫
dr ′ r ′2Âν

∣∣$J π T
νr

〉
N− 1

2
νν ′ (r, r ′)

×
[ ∑

λ′

(N− 1
2 )λ

′

ν ′r ′ c̄λ′

+
∑

ν ′′

∫
dr ′′ r ′′2(N− 1

2 )ν ′r ′ν ′′r ′′
χ̄ν ′′(r ′′)

r ′′

]
. (33)

2. Solving the NCSMC equations

At large intercluster distances r , the clusters are assumed
to interact through the Coulomb interaction only. Hence, the
NCSMC equations are solved dividing the space into an
internal region, r ! r0, and an external region, r > r0, and
applying the coupled-channel microscopic R-matrix method
on a Lagrange mesh [37]. The separation radius r = r0
must be large enough to ensure that the wave function of
the A-body states |AλJ πT ⟩ vanishes when approaching the
external region, where the asymptotic behavior of the NCSMC
solutions is described entirely by the radial wave functions

uJ π T
ν (r) = CJ π T

ν Wℓ(ην, κνr), (34)

and

uJ π T
ν (r) = i

2
v

− 1
2

ν

[
δνiH

−
ℓ (ην, κνr) − SJ π T

νi H+
ℓ (ην, κνr)

]

(35)

for bound and scattering states, respectively. Here, Wl(ην, κνr)
are Whittaker functions and H±

l (ην, κνr) are the incoming and
outgoing Coulomb functions, with vν the speed, κν the wave
number, and ην the Sommerfeld parameter of the final state
being studied. Asymptotic normalization constant for bound
states and scattering matrix between initial (i) and final (ν)
scattering states are denoted, respectively, with CJ π T

ν and SJ π T
νi .

The functions uJ π T
ν (r) stand for either the nonorthogonalized

wave function χν(r) or for the orthogonalized χ̄ν(r) according
to which set of equations, Eq. (22) or (30), is being considered.

One of the advantages of the microscopic R-matrix method
is that the wave function in the internal region can be ex-
panded on a set of square-integrable functions. A particularly
convenient choice when dealing with nonlocal potentials, as
in our case, is the set of Lagrange functions fn(r) associated
with the shifted Legendre polynomials and defined on the mesh
points rn ∈ (0, r0) [37], labeled by the index 1 ! n ! N . When
the Gauss quadrature approximation is adopted, the Lagrange
functions are orthogonal to each other. In addition, thanks to
the Gauss quadrature approximation and the properties of the
Lagrange functions, matrix elements of nonlocal potentials are
proportional to the values of the nonlocal potentials at the mesh
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Astrophysical reaction rate for

9
Be formation within a three-body approach
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I. J. Thompson
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(Dated: September 22, 2014)

The structure of the Borromean nucleus 9Be (↵+↵+n) is addressed within a three-body approach
using the analytical transformed harmonic oscillator method. The three-body formalism provides
an accurate description of the radiative capture reaction rate for the entire temperature range
relevant in Astrophysics. At high temperatures, results match the calculations based on two-step
sequential processes. At low temperatures, where the particles have no access to intermediate two-
body resonances, the three-body direct capture leads to reaction rates larger than the sequential
processes. These results support the reliability of the method for systems with several charged
particles.

PACS numbers: 21.45.-v, 26.20.-f, 26.30.-k,27.20.+n

I. INTRODUCTION

The origin of elements in the Universe is an important
topic in Nuclear Astrophysics [1]. The formation of heavy
nuclei from light elements needs to overcome the insta-
bility gaps at mass numbers A = 5 and A = 8 [2]. At
the helium burning stage of stars, the triple-↵ reaction
for the formation of 12C is the main nucleosynthesis pro-
cess. However, in neutron rich environments, the reac-
tion ↵(↵n, �)9Be followed by 9Be(↵, n)12C may dominate
over, depending on the astrophysical conditions [3]. The
relevance of this process has been linked to the nucleosyn-
thesis by rapid neutron capture (or r process) in type II
supernovae [3–6], so establishing an accurate rate for the
formation of 9Be is essential for the r-process abundance
predictions [7, 8].

The radiative three-body capture processes are essen-
tial in overcoming the A = 5, 8 gaps [2, 9], but tradi-
tionally they have been described as two-step sequential
reactions [1, 3, 10–13]. When at least one of the two-
body subsystems shows a low-lying narrow resonance,
the sequential picture provides a rather accurate de-
scription of these reactions for high-temperature environ-
ments, where the intermediate states can be populated.
However, at low temperatures the particles may have no
energy to populate intermediate resonances, and there-
fore the direct three-body capture plays an important
role [14–16]. Moreover, the intermediate configurations
may not be present or show a too quick decay. So, a
complete three-body formulation is needed to describe
properly the reaction rates of such nuclei in the entire
temperature range.

The complete computation of three-body reactions in
the whole energy range requires a narrow grid of contin-
uum states right above the breakup threshold [14], which

⇤ jcasal@us.es

is a di�cult task. The asymptotic behavior of contin-
uum states for systems with several charged particles is
not known in general, and very involved procedures are
needed to deal with this problem [16–18]. In a recent
work [19, 20] we presented a pseudostate (PS) method
based on an analytical local scale transformation (LST)
of the harmonic oscillator (HO) basis, the transformed
harmonic oscillator (THO) method. We generalized the
analytical THO method for three-body systems and suc-
cessfully applied to the Borromean nucleus 6He (↵+n+n)
system. PS methods consist in diagonalizing the Hamil-
tonian in a complete set of square-integrable functions,
a procedure which does not require going through the
continuum wave functions, and the previous knowledge
of the asymptotic behavior is not needed. Furthermore,
in the analytical THO method, the parameters of the
transformation govern the radial extension of the THO
basis. This provides the advantage of allowing the con-
struction of an optimal basis for each observable of inter-
est [19, 21, 22]. The analytical THO basis can describe
very accurately the strength functions in the low-energy
range, providing a good description of the radiative cap-
ture reactions.

In the present work we apply the analytical THO
method to the Borromean nucleus 9Be, whose astrophys-
ical relevance has been pointed out. The purpose of this
paper is to show the reliability of the method when ap-
plied to systems with more than one charged particle,
and to confirm the importance of the direct three-body
capture at low temperature. The full three-body formal-
ism allows the treatment of the direct and sequential,
resonant and non-resonant processes in the same footage.
Thus these processes do not need to be treated separately
when estimating the total contribution to the astrophys-
ical reaction rate [16, 23].

The paper is structured as follows. In Sec. II the
three-body formalism is presented. The analytical THO
method and the expression for the radiative capture re-
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sense, our model provides the first full three-body cal-
culation of the 9Be photodissociation cross section in the
whole energy range. We underestimate the experimental
data for the 1/2+ contribution (in particular compared
to 2012 data), but it shows the right low-energy behavior
and the corresponding tail of the resonance. The smaller
height is not crucial when computing the reaction rate,
an observable that ranges over many orders of magnitude
as a function of the temperature, especially at the lowest
temperatures where the rate is strongly governed by the
cross section behaviour up to 0.1-0.2 MeV only.

We reproduce very well the narrow 5/2� resonance,
although we know from sequential models that this
contribution has a small influence on the total reac-
tion rate [5, 6]. This contribution is not computed in
Refs. [14, 15, 49]. Concerning the 5/2+ broad resonance,
our three-body estimations agree better with Sumiyoshi
et al. [3] than with those from the more recent experi-
ment of Arnold et al. [6], in which a rather narrow peak
is obtained. For that reason we fix the position of the
5/2+ resonance to Sumiyoshi et al. data. In the calcula-
tions by de Diego et al., the 5/2+ resonance is adjusted
to the energy given by Sumiyoshi et al., however due to
the smoothing procedure the maximum is shifted to lower
energy.

The 3/2+ resonance plays a minor role and its contri-
bution a↵ects only in the high energy region. At these
energies, our calculations agree better with both sets of
experimental data than those by de Diego et al. The
overall di↵erence between both calculations could be as-
sociated to the di↵erent discretization methods and dif-
ferent two-body potentials. We have also estimated the
M1 contribution to the 1/2� states, which has a small
e↵ect on the cross section, as shown in Fig. 6.

As we can see in Fig. 7, although the overall behavior is
very similar in both sets of experimental data, there are
important discrepancies between them. The accuracy of
these experiments could then be questioned, since exper-
imental normalization factors may lead to very di↵erent
results. In Refs. [3] and [6], for instance, the energy and
width of the 1/2+ resonance are found to be the same,
but with di↵erent gamma widths by a factor of 1.3. This
results in a di↵erent height for the resonant peak. For
that reason it is not trivial to find an explanation to the
di↵erences between theory and experiment. We must
also consider that three-body models are an approxima-
tion to the actual many-body problem, and consequently
there might be e↵ects on the cross section that we are
not considering explicitly, e.g. dynamical e↵ects within
the clusters, full antisymetrization problems, etc. Both
calculations (this work and Refs. [15, 49]) are systemati-
cally above the data at energies larger than 2 MeV, but
at this level it is not possible to determine if this dif-
ference is related to many-body corrections or a possible
normalization uncertainty. In any case, the final reaction
rate at low temperature depends mainly on the photodis-
sociation cross section at the lowest energies (0-0.2MeV)
and the total strength, so diferences in the height, shape,
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FIG. 7. (Color online) Total photodissociation from our three-
body calculation (solid line) compared with the results from
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experimental data of Refs. [3] (triangles) and [6] (circles).
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etc of the specific structures are not crucial.

F. Reaction rate

We compute the rate of the radiative capture reaction
↵ + ↵ + n ! 9Be + � from the photodissociation cross
section, according to Eq. (7). In Fig. 8 we show the con-
tributions from the 1/2+ (solid line), 3/2+ (dotted line),
5/2+ (dashed line), 5/2� (dot dashed) and 1/2� (double
dot dashed) states to the reaction rate. We can see that
the 1/2+ states dominates over all other contributions,
especially in the low-temperature tail of the reaction rate.
The other contributions become relevant at temperatures
above 3 GK.
In Table III we present the total reaction rate, the sum
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TABLE I: Resonance energies relative to the n-8Be thresh-
old and corresponding width in MeV for NCSMC with the
NN+3N-full Hamiltonian with Λ3N = 400MeV/c extracted
as explained in the text in comparison to experiment [23].
For positive and negative parity the model-space truncation
Nmax = 11 and 12 is used, respectively.

NCSMC experiment
9Be states ER [MeV] Γ [MeV] ER [MeV] Γ [MeV]

1
2
+ 0.012 0.09 0.019 0.22
5
2
+ 2.85 0.41 1.38 0.28
3
2
+ 3.39 0.17 3.03 0.74
9
2
+ 7.48 2.25 5.09 1.33
3
2
− -1.367 - -1.66 -
1
2
− 1.15 0.95 1.11 1.08
5
2
− 1.25 0.02 keV 0.76 0.78 keV
3
2
− 3.4 0.26 3.92 1.33
5
2
− 6.21 2.22 6.27 1.0
7
2
− 6.21 0.84 4.71 1.21
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The deuteron-projectile formalism:  
Three-nucleon interaction 
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3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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FIG. 3. (Color online) S-, 3P0- and D-wave d-4He phase shifts
computed with the NN-only, NN+3N-ind and NN+3N
Hamiltonians (lines) compared to those extracted from R-
matrix analyses of data [27, 28] (symbols). More details in
the text.

convergence for the HO expansions at Nmax = 11. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present in
the chiral Hamiltonian (NN+3N). In Fig. 3 we compare
our computed d-4He S-, 3P0- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [27, 28]. The
results based on the two-body part of the evolved NN
force (NN -only) resemble those obtained with a softer
potential [14]. Once the SRG unitary equivalence is re-
stored via the induced 3N force, the resonance centroids
are systematically shifted to higher energies. By con-
trast, the agreement with data is much improved in the
NN+3N case and, in particular, the splitting between
the 3D3 and 3D2 partial waves is comparable to the mea-
sured one.

In Fig. 4, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 3 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths
of the NCSMC resonances, which tend to become nar-
rower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
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FIG. 4. (Color online) Ground-state energy and low-lying 6Li
positive-parity T = 0 resonance parameters extracted [36]
from the phase shifts of Fig. 3 (NCSMC) compared to the
evaluated centroids and widths (indicated by Γ) of Ref. [1]
(Expt.). Also shown on the left-hand-side are the best
(Nmax = 12) and extrapolated [37] NCSM energy levels. The
zero energy is set to the respective computed (experimental)
d+4He breakup thresholds.

with the NN+3N Hamiltonian working within the NC-
SMC, i.e. by including the continuum degrees of freedom.
Compared to the best (Nmax = 12) NCSM values, all
resonances are shifted to lower energies commensurately
with their distance from the d+4He breakup threshold.
For the 3+, which is a narrow resonance, the effect is
not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2)
asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Indicated
in parenthesis is the Nmax value of the respective calculation.
The error estimates quoted in the extrapolated (∞) NCSM
results include uncertainties due to the SRG evolution of the
Hamiltonian and !Ω dependence [13].

Ground-State Eg.s. C0 C2 C2/C0

Properties [MeV] [fm−1/2] [fm−1/2]

NCSM (10) -30.84 − − −

NCSM (12) -31.52 − − −

NCSM (∞) [37] -32.2(3) − − −

NCSMC (10) -32.01 2.695 -0.074 -0.027

Expt.[1, 39, 40] -31.99 2.91(9) -0.077(18) -0.025(6)(10)

Expt. [38, 41] − 2.93(15) − 0.0003(9)

Unified description of 6Li structure and d+4He dynamics 

6Li vs. (4He+d)+6Li calculation

4He+d

§  Continuum and three-nucleon force effects on d+4He and 6Li 
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HO expansions at N
max

=11. For the HO frequency we
adopt the same value of ~⌦=20 MeV used to describe
p-4He scattering [? ].

We start by quantifying the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present
in the chiral Hamiltonian (NN+3N). In Fig. 3 we com-
pare our computed d-4He phase shifts with those of the
R-matrix analyses of Refs. [13, 14]. The results based on
the two-body part only of the evolved NN force (NN -
only) compare well with those of Ref. [5] (obtained with
a softer potential) and, apart from the splitting between
the 3D

3

and 3D
2

, with experiment. Once the SRG uni-
tary equivalence is restored via the induced 3N force, the
centroids of the resonances are systematically shifted to
higher energies. By contrast, the agreement with data is
much improved in the NN+3N case and, in particular,
the amplitude of the splitting between the 3D

3

and 3D
2

partial waves is comparable to the measured one.

TABLE I. Comparison between NCSM and NCSMC g.s. en-
ergies of 6Li using the NN+3N -ind and NN+3N Hamilto-
nians and the experimental value [1, 22].

Eg.s. [MeV] NN + 3N -ind NN + 3N

NCSM (N
max

= 12) -27.27 -31.52

NCSM (extrapolation1) -28.02(2) -32.19(0)

NCSMC -28.17 -32.01

Expt. -31.99

1 Extrapolated energy E1 is obtained from fitting the NCSM

The role of the initial 3N force in recovering the ob-
served low-energy spectrum of 6Li is also emphasized in
Fig. 4, where the resonance centroids and widths ex-
tracted from the scattering phase shifts of Fig. 3 (shown
on the right) are compared with experiment as well as
with the eigenenergies predicted by a six-body diagonal-
ization of the Hamiltonian in a basis of N

max

=10 square
integrable functions of the NCSM (shown on the left). In
terms of excitation energies relative to the g.s., both in
the NCSMC and NCSM calculations the chiral 3N force
a↵ects mainly the splitting between the 3+ and 2+ states,
and to a lesser extent the position of the first excited
state. Sensitivity to the chiral 3N force is also seen in the
widths of the NCSMC resonances, which tend to become
narrower (in closer agreement with experiment) when
this force is present in the initial Hamiltonian. Over-
all, the closest agreement with the observed spectrum is
obtained with the NN+3N Hamiltonian working within
the NCSMC, i.e. by including the continuum degrees of
freedom. This shifts all resonances to lower energies com-
mensurately with their distance from the d+4He breakup
threshold. For the 3+, which is a narrow resonance, the
e↵ect is not su�cient to correct the slight overestimation
in excitation energy already observed in the NCSM calcu-
lation, pointing to remaining deficiencies in the adopted
3N force model.
As highlighted in Fig. 4, the inclusion of the d+4He

binary-cluster states of Eq. (2) results also in additional

energies of N
max

=6 to 12 at ~⌦=20 MeV with the formula
E(N

max

)=E1+a exp(�bN
max

).
2 Centroids ER and widths � are obtained as the values of the
c.m. kinetic energy for which the first derivative �0(E

kin

) of the
phase shifts shown in Fig. 3 is maximal and �=2/�0(ER).
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FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.

Computing support for this work came from the
LLNL institutional Computing Grand Challenge pro-
gram. Prepared in part by LLNL under Contract DE-
AC52-07NA27344. This material is based upon work
supported by the U.S. Department of Energy, O�ce of
Science, O�ce of Nuclear Physics, under Work Proposal
Number SCW1158, and by the NSERC Grant Number
401945-2011. TRIUMF receives funding via a contribu-
tion through the Canadian National Research Council.

4

1 2 5 10
E

α
[MeV]

2.0×10
2

5.0×10
2

1.0×10
3

[m
b/
sr
]

Besenbacher et al. 

Browning et al.

Kellock et al.

Nagata et al.

Quillet et al. (data)
Quillet et al. (fit)
NCSMC Nmax=11

1 2 5 10
E
d
[MeV]

1.0×10
2

2.0×10
2

5.0×10
2

1.0×10
3

[m
b/
sr
]

NCSMC Nmax=11 (164)

Galonsky et al. (168)
Mani et al. (165)
Mani et al. (163)

3
+

2
+

1
+

FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.
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AC52-07NA27344. This material is based upon work
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Science, O�ce of Nuclear Physics, under Work Proposal
Number SCW1158, and by the NSERC Grant Number
401945-2011. TRIUMF receives funding via a contribu-
tion through the Canadian National Research Council.
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HO expansions at N
max

=11. For the HO frequency we
adopt the same value of ~⌦=20 MeV used to describe
p-4He scattering [? ].

We start by quantifying the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present
in the chiral Hamiltonian (NN+3N). In Fig. 3 we com-
pare our computed d-4He phase shifts with those of the
R-matrix analyses of Refs. [13, 14]. The results based on
the two-body part only of the evolved NN force (NN -
only) compare well with those of Ref. [5] (obtained with
a softer potential) and, apart from the splitting between
the 3D

3

and 3D
2

, with experiment. Once the SRG uni-
tary equivalence is restored via the induced 3N force, the
centroids of the resonances are systematically shifted to
higher energies. By contrast, the agreement with data is
much improved in the NN+3N case and, in particular,
the amplitude of the splitting between the 3D

3

and 3D
2

partial waves is comparable to the measured one.

TABLE I. Comparison between NCSM and NCSMC g.s. en-
ergies of 6Li using the NN+3N -ind and NN+3N Hamilto-
nians and the experimental value [1, 22].

Eg.s. [MeV] NN + 3N -ind NN + 3N

NCSM (N
max

= 12) -27.27 -31.52

NCSM (extrapolation1) -28.02(2) -32.19(0)

NCSMC -28.17 -32.01

Expt. -31.99

1 Extrapolated energy E1 is obtained from fitting the NCSM

The role of the initial 3N force in recovering the ob-
served low-energy spectrum of 6Li is also emphasized in
Fig. 4, where the resonance centroids and widths ex-
tracted from the scattering phase shifts of Fig. 3 (shown
on the right) are compared with experiment as well as
with the eigenenergies predicted by a six-body diagonal-
ization of the Hamiltonian in a basis of N

max

=10 square
integrable functions of the NCSM (shown on the left). In
terms of excitation energies relative to the g.s., both in
the NCSMC and NCSM calculations the chiral 3N force
a↵ects mainly the splitting between the 3+ and 2+ states,
and to a lesser extent the position of the first excited
state. Sensitivity to the chiral 3N force is also seen in the
widths of the NCSMC resonances, which tend to become
narrower (in closer agreement with experiment) when
this force is present in the initial Hamiltonian. Over-
all, the closest agreement with the observed spectrum is
obtained with the NN+3N Hamiltonian working within
the NCSMC, i.e. by including the continuum degrees of
freedom. This shifts all resonances to lower energies com-
mensurately with their distance from the d+4He breakup
threshold. For the 3+, which is a narrow resonance, the
e↵ect is not su�cient to correct the slight overestimation
in excitation energy already observed in the NCSM calcu-
lation, pointing to remaining deficiencies in the adopted
3N force model.
As highlighted in Fig. 4, the inclusion of the d+4He

binary-cluster states of Eq. (2) results also in additional

energies of N
max

=6 to 12 at ~⌦=20 MeV with the formula
E(N

max

)=E1+a exp(�bN
max

).
2 Centroids ER and widths � are obtained as the values of the
c.m. kinetic energy for which the first derivative �0(E

kin

) of the
phase shifts shown in Fig. 3 is maximal and �=2/�0(ER).
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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HO expansions at N
max

=11. For the HO frequency we
adopt the same value of ~⌦=20 MeV used to describe
p-4He scattering [? ].

We start by quantifying the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present
in the chiral Hamiltonian (NN+3N). In Fig. 3 we com-
pare our computed d-4He phase shifts with those of the
R-matrix analyses of Refs. [13, 14]. The results based on
the two-body part only of the evolved NN force (NN -
only) compare well with those of Ref. [5] (obtained with
a softer potential) and, apart from the splitting between
the 3D

3

and 3D
2

, with experiment. Once the SRG uni-
tary equivalence is restored via the induced 3N force, the
centroids of the resonances are systematically shifted to
higher energies. By contrast, the agreement with data is
much improved in the NN+3N case and, in particular,
the amplitude of the splitting between the 3D

3

and 3D
2

partial waves is comparable to the measured one.

TABLE I. Comparison between NCSM and NCSMC g.s. en-
ergies of 6Li using the NN+3N -ind and NN+3N Hamilto-
nians and the experimental value [1, 22].

Eg.s. [MeV] NN + 3N -ind NN + 3N

NCSM (N
max

= 12) -27.27 -31.52

NCSM (extrapolation1) -28.02(2) -32.19(0)

NCSMC -28.17 -32.01

Expt. -31.99

1 Extrapolated energy E1 is obtained from fitting the NCSM

The role of the initial 3N force in recovering the ob-
served low-energy spectrum of 6Li is also emphasized in
Fig. 4, where the resonance centroids and widths ex-
tracted from the scattering phase shifts of Fig. 3 (shown
on the right) are compared with experiment as well as
with the eigenenergies predicted by a six-body diagonal-
ization of the Hamiltonian in a basis of N

max

=10 square
integrable functions of the NCSM (shown on the left). In
terms of excitation energies relative to the g.s., both in
the NCSMC and NCSM calculations the chiral 3N force
a↵ects mainly the splitting between the 3+ and 2+ states,
and to a lesser extent the position of the first excited
state. Sensitivity to the chiral 3N force is also seen in the
widths of the NCSMC resonances, which tend to become
narrower (in closer agreement with experiment) when
this force is present in the initial Hamiltonian. Over-
all, the closest agreement with the observed spectrum is
obtained with the NN+3N Hamiltonian working within
the NCSMC, i.e. by including the continuum degrees of
freedom. This shifts all resonances to lower energies com-
mensurately with their distance from the d+4He breakup
threshold. For the 3+, which is a narrow resonance, the
e↵ect is not su�cient to correct the slight overestimation
in excitation energy already observed in the NCSM calcu-
lation, pointing to remaining deficiencies in the adopted
3N force model.
As highlighted in Fig. 4, the inclusion of the d+4He

binary-cluster states of Eq. (2) results also in additional

energies of N
max

=6 to 12 at ~⌦=20 MeV with the formula
E(N

max

)=E1+a exp(�bN
max

).
2 Centroids ER and widths � are obtained as the values of the
c.m. kinetic energy for which the first derivative �0(E

kin

) of the
phase shifts shown in Fig. 3 is maximal and �=2/�0(ER).
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HO expansions at N
max

=11. For the HO frequency we
adopt the same value of ~⌦=20 MeV used to describe
p-4He scattering [? ].

We start by quantifying the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present
in the chiral Hamiltonian (NN+3N). In Fig. 3 we com-
pare our computed d-4He phase shifts with those of the
R-matrix analyses of Refs. [13, 14]. The results based on
the two-body part only of the evolved NN force (NN -
only) compare well with those of Ref. [5] (obtained with
a softer potential) and, apart from the splitting between
the 3D

3

and 3D
2

, with experiment. Once the SRG uni-
tary equivalence is restored via the induced 3N force, the
centroids of the resonances are systematically shifted to
higher energies. By contrast, the agreement with data is
much improved in the NN+3N case and, in particular,
the amplitude of the splitting between the 3D

3

and 3D
2

partial waves is comparable to the measured one.

TABLE I. Comparison between NCSM and NCSMC g.s. en-
ergies of 6Li using the NN+3N -ind and NN+3N Hamilto-
nians and the experimental value [1, 22].

Eg.s. [MeV] NN + 3N -ind NN + 3N

NCSM (N
max

= 12) -27.27 -31.52

NCSM (extrapolation1) -28.02(2) -32.19(0)

NCSMC -28.17 -32.01

Expt. -31.99

1 Extrapolated energy E1 is obtained from fitting the NCSM

The role of the initial 3N force in recovering the ob-
served low-energy spectrum of 6Li is also emphasized in
Fig. 4, where the resonance centroids and widths ex-
tracted from the scattering phase shifts of Fig. 3 (shown
on the right) are compared with experiment as well as
with the eigenenergies predicted by a six-body diagonal-
ization of the Hamiltonian in a basis of N

max

=10 square
integrable functions of the NCSM (shown on the left). In
terms of excitation energies relative to the g.s., both in
the NCSMC and NCSM calculations the chiral 3N force
a↵ects mainly the splitting between the 3+ and 2+ states,
and to a lesser extent the position of the first excited
state. Sensitivity to the chiral 3N force is also seen in the
widths of the NCSMC resonances, which tend to become
narrower (in closer agreement with experiment) when
this force is present in the initial Hamiltonian. Over-
all, the closest agreement with the observed spectrum is
obtained with the NN+3N Hamiltonian working within
the NCSMC, i.e. by including the continuum degrees of
freedom. This shifts all resonances to lower energies com-
mensurately with their distance from the d+4He breakup
threshold. For the 3+, which is a narrow resonance, the
e↵ect is not su�cient to correct the slight overestimation
in excitation energy already observed in the NCSM calcu-
lation, pointing to remaining deficiencies in the adopted
3N force model.
As highlighted in Fig. 4, the inclusion of the d+4He

binary-cluster states of Eq. (2) results also in additional

energies of N
max

=6 to 12 at ~⌦=20 MeV with the formula
E(N

max

)=E1+a exp(�bN
max

).
2 Centroids ER and widths � are obtained as the values of the
c.m. kinetic energy for which the first derivative �0(E

kin

) of the
phase shifts shown in Fig. 3 is maximal and �=2/�0(ER).

3

Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to

-2

0

2

4

6

E
ki
n 
[M

eV
]

Γ = 1.3

NN+3N

2
+

3
+

1
+

1
+

Γ = 0.024

Γ = 1.5

0.7117

2.8377

4.17

-1.4743
g.s.

NN+3N-ind
Expt.

1.05
Γ = 0.07

2.90
Γ = 1.18

4.27
Γ = 3.42

-1.49
g.s.

2.10

Γ = 1.51

4.22

Γ = 3.68

Γ = 0.53

3.13

g.s.
-0.76

NN+3NNN+3N-ind

4.99(22)

3.24(9)

0.99(9)

-1.58(4)
g.s.
-0.94

1.52

4.12

g.s.

0.19

5.74

3.14

g.s.

NCSM (extrapolated)

NCSMC
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the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to

-2

0

2

4

6

E
ki
n 
[M

eV
]

Γ = 1.3

NN+3N

2
+

3
+

1
+

1
+

Γ = 0.024

Γ = 1.5

0.7117

2.8377

4.17

-1.4743
g.s.

NN+3N-ind
Expt.

1.05
Γ = 0.07

2.90
Γ = 1.18

4.27
Γ = 3.42

-1.49
g.s.

2.10

Γ = 1.51

4.22

Γ = 3.68

Γ = 0.53

3.13

g.s.
-0.76

NN+3NNN+3N-ind

4.99(22)

3.24(9)

0.99(9)

-1.58(4)
g.s.
-0.94

1.52

4.12

g.s.

0.19

5.74

3.14

g.s.

NCSM (extrapolated)

NCSMC

FIG. 3. (Color online) Ground-state energy and low-lying 6Li
positive-parity T=0 resonance parameters extracted [36] from
the phase shifts of Fig. 2 (NCSMC) compared to the evalu-
ated centroids and widths (indicated by Γ) of Ref. [1] (Expt.).
Also shown on the left-hand-side are the best (Nmax=12) and
extrapolated [37] NCSM energy levels. The zero energy is set
to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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K. Schwarz, F. Schümann, P. Senger, O. Sorlin, V. Tatis-
cheff, J. P. Thibaud, E. Vangioni, a. Wagner, and
W. Walus, Phys. Rev. C 82, 065803 (2010).

[5] A. M. Mukhamedzhanov, L. D. Blokhintsev, and B. F.
Irgaziev, Phys. Rev. C 83, 055805 (2011).

[6] M. Anders, D. Trezzi, R. Menegazzo, M. Aliotta,
A. Bellini, D. Bemmerer, C. Broggini, A. Caciolli,
P. Corvisiero, H. Costantini, T. Davinson, Z. Elekes,
M. Erhard, A. Formicola, Z. Fülöp, G. Gervino,
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T. Szücs, Phys. Rev. Lett. 113, 042501 (2014).

[7] A. J. Kellock and J. E. E. Baglin, Nucl. Instr. and Meth.
B 79, 493 (1993).

[8] V. Quillet, F. Abel, and M. Schott, Nucl. Instr. and
Meth. B 83, 47 (1993).

[9] J. F. Browning, J. C. Banks, W. R. Wampler, and B. L.
Doyle, Nucl. Instr. and Meth. B 219-220, 317 (2004).

[10] S. Pieper, V. R. Pandharipande, R. B. Wiringa, and
J. Carlson, Phys. Rev. C 64, 014001 (2001).
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•  Limited information about the 
structure of proton rich 11N – mirror 
nucleus of 11Be halo nucleus 

•  Incomplete knowledge of 10C 
unbound excited states 

•  Importance of 3N force effects and 
continuum  

p+10C scattering: structure of 11N resonances 
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•  New experiment at ISAC TRIUMF with reaccelerated 10C 
–  The first ever 10C beam at TRIUMF 
–  Angular distributions measured at ECM ~ 4.1 MeV and 4.4 MeV 
–  Data analysis under way 

10C(p,p) @ IRIS with solid H2 target  
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10C(p,p)   @ IRIS  with solid H2 target
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chiral NN+3N 
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•  NCSMC calculations including chiral 3N (N3LO NN+N2LO 3NF400) 
–   p-10C  +  11N 

•  10C: 0+, 2+, 2+ NCSM eigenstates 
•  11N: 6 π = -1 and 3 π = +1 NCSM eigenstates 
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•  NCSMC calculations including chiral 3N (N3LO NN+N2LO 3NF400) 
–   p-10C  +  11N 

•  10C: 0+, 2+, 2+ NCSM eigenstates 
•  11N: 6 π = -1 and 3 π = +1 NCSM eigenstates 
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With the 3N the 2P1/2 and 2P3/2 resonances broader and shifted to higher 
energy in a better agreement with experiment 
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11N from chiral NN+3N within NCSMC 
–  Preliminary 
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Table 11.45 from (2012KE01): Energy levels of 11N

Eres (MeV± keV) Ex (MeV± keV) Jπ; T Γ (keV) Decay Reactions
1.49 ± 60 0 1

2

+; 3

2
830 ± 30 p 1, 2, 3, 6

2.22 ± 30 0.73 ± 70
1

2

−

600 ± 100 p 1, 2, 3, 5, 6
3.06 ± 80 (1.57 ± 80) < 100 p 3
3.69 ± 30 2.20 ± 70

5

2

+
540 ± 40 p 1, 3, 5, 6

4.35 ± 30 2.86 ± 70
3

2

−

340 ± 40 p 1, 3, 5, 6
5.12 ± 80 (3.63 ± 100) (5

2

−) < 220 p 5
5.91 ± 30 4.42 ± 70 (5

2

−) p 3, 5, 6
6.57 ± 100 5.08 ± 120 (3

2

−) 100 ± 60 p 3, 6

1

11N Expt. (TUNL evaluation) 

Jπ    T       Eres [MeV]  Ex [MeV]  Γ [keV] 
 
1/2+  3/2       1.35        0            “4100” 
1/2-   3/2       1.94        0.59          580   
3/2-   3/2       4.69        3.34          280 
5/2+  3/2       4.75        3.40        1790 
3/2+  3/2        4.95       3.60        “4760” 
5/2-   3/2       5.95        4.60          470 
3/2-   3/2       7.68        6.33          620 
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tion for the 6He + n threshold energy is within ∼ 1 MeV
from the experimental value when a low-momentum res-
olution λ = 2.02 fm−1 is used. This allows us to per-
form qualitatively and quantitatively meaningful calcu-
lations and to discuss the physics involved in the scat-
tering process. All calculations shown in this work are
done with λ = 2.02 fm−1 two-body low-momentum inter-
actions, while the implementation of 3NF is in progress
[Ref.] and its inclusion is left for the future. At variance
with effective interactions that change as a function of
the model-space size (i.e., through the Lee-Suzuki renor-
malization, [Ref.]), the SRG potential enters unaltered
all the calculations. This makes the theories variational.

The NCSM/RGM and the NCSMC phase shifts for
the 7He negative-parity states up to J = 5/2 and for
the Jπ = 1/2+ state are shown in Fig. 2. We adopt
the standard notation 2s+1ℓJπ for the channel quantum
numbers, where the total spin s of the two clusters and
the relative orbital angular momentum ℓ add up to give
the total spin of the system J⃗ = s⃗+ ℓ⃗ (cf. Eq. 2). All the
phase shifts in Fig. 2 have been obtained using the lowest
three 6He states (i.e., the 0+ ground state and the two
lowest 2+ excited states). The NCSMC basis includes
also the lowest six (four) 7He negative- (positive-) parity
eigenstates. The neutron kinetic energy corresponding
to a phase shift of π/2 is taken as the resonance centroid
and it is plotted in Fig. 1, while the resonance width is
computed as [Ref.]

Γ =
2

∂δ(Ekin)/∂Ekin

∣

∣

∣

∣

Ekin=ER

(38)

evaluated at the resonance centroid ER and with the
phase shift in radians. Computed centroids and widths
are reported in Tab. I, together with the available ex-
perimental data. While the above procedure to extract
centroid energy and resonance width is safely applicable
to sharp resonances, broad resonances would require an
analysis of the scattering matrix in the complex plane.
As we are more interested in a qualitative discussion of
the results, we extend here the above extraction proce-
dure to broad resonances.

As expected for a variational theory, the introduction
of the additional A-body basis states |AλJπT ⟩ and the
coupling to the continuum lead to lower centroid values
for all 7He resonances when going from NCSM/RGM
to NCSMC. In particular, the 7He 3/2− ground state
and 5/2− excited state are sensitevely pushed toward the
6He + n threshold, getting closer to the experiment. The
resonance widths also shrink toward the observed data.

NCSM/RGM and NCSMC theories predict a 1/2− res-
onance above the 5/2− excited state, in contrast with the
NCSM. The latter, though, is not expected to provide a
reliable description for broad resonances, as this requires
a correct description of the coupling to the continuum.

The NCSM and the NCSM/RGM centroid energies for
the 3/2- and 5/2- resonances are just ! 200 keV apart,
while a significant energy shift is brought by the coupling
to the continuum, with a compression of the separation
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FIG. 2: NCSM/RGM (a) and NCSMC (b) 6He + n phase
shifts as a function of the kinetic energy of the impinging
neutron projectile. The phase shifts are taken from the diag-
onal matrix elements of the scattering matrix (see Sect. IID).
The dashed vertical area centered at 0.44 MeV indicates the
experimental centroid and width of the 7He ground state [29].
In all calculations the lowest three 6He states have been in-
cluded in the construcction of the basis states (cf. Eq. 2).

Jπ experiment NCSM NCSM/RGM NCSMC
E Γ Ref. E E Γ E Γ

3/2− 0.44(3) 0.16(3) [29] 1.30 1.42 0.52 0.75 0.31

5/2− 2.9(3) 2.2(3) [30] 4.56 4.58 3.06 3.69 2.57

1/2− 3.54 10 [42] 3.26 4.96 14.95 4.01 15.15

3.04 2 [38]

TABLE I: Experimental and theoretical values for the reso-
nance centroids and widths in MeV for the 3/2− ground state
and the 5/2− and 1/2− excited states of 7He.

energy of about 0.4 MeV, closer to the experimental find-
ings.

All these results show that the coupling to the contin-
uum is strong, which leads to an overcompleteness of the
NCSMC basis. This overcompleteness is at the heart of
the method, which is then able to get converged results
with fewer cluster states than the NCSM/RGM. The lat-
ter often requires many target states |A − a α1I

π1
1 T1⟩ to
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Table 11.45 from (2012KE01): Energy levels of 11N

Eres (MeV± keV) Ex (MeV± keV) Jπ; T Γ (keV) Decay Reactions
1.49 ± 60 0 1

2

+; 3

2
830 ± 30 p 1, 2, 3, 6

2.22 ± 30 0.73 ± 70
1

2

−

600 ± 100 p 1, 2, 3, 5, 6
3.06 ± 80 (1.57 ± 80) < 100 p 3
3.69 ± 30 2.20 ± 70

5

2

+
540 ± 40 p 1, 3, 5, 6

4.35 ± 30 2.86 ± 70
3

2

−

340 ± 40 p 1, 3, 5, 6
5.12 ± 80 (3.63 ± 100) (5

2

−) < 220 p 5
5.91 ± 30 4.42 ± 70 (5

2

−) p 3, 5, 6
6.57 ± 100 5.08 ± 120 (3

2

−) 100 ± 60 p 3, 6

1

11N Expt. (TUNL evaluation) 

Jπ    T       Eres [MeV]  Ex [MeV]  Γ [keV] 
 
1/2+  3/2       1.35        0            “4100” 
1/2-   3/2       1.94        0.59          580   
3/2-   3/2       4.69        3.34          280 
5/2+  3/2       4.75        3.40        1790 
3/2+  3/2        4.95       3.60        “4760” 
5/2-   3/2       5.95        4.60          470 
3/2-   3/2       7.68        6.33          620 

✓ 
✓ 

No candidate for 3.06 MeV resonance 
 

We predict only one 5/2- resonance below the 3/2-
2 

 
Calculations suggest that either 5.12 MeV or 5.91 

MeV resonance might be 3/2+ instead 
 

NCSMC resonance predictions more in line with 
assignments in 11Be  

è 

è 
è 



•  Starts from: 

 

•  Two-neutron halo nuclei 

 

•  Transfer reactions with three-body continuum final states 

Three-body clusters in ab initio NCSM/RGM 
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Three-body clusters in ab initio NCSM/RGM 

Lawrence Livermore National Laboratory LLNL-PRES-667406
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Schrödinger equation

Norm kernelHamiltonian Kernel



Three-body clusters in ab initio NCSM/RGM 

Lawrence Livermore National Laboratory LLNL-PRES-667406
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Hyperspherical coordinates:

After changing to hyperspherical coordinates and integrating in α,α':

Coupled-channel microscopic R-matrix method on a Lagrange mesh*

NCSM/RGM-3B

*M. Hesse, J.-M. Sparenberg 1, E Van Raemdonck, D. Baye. Nuclear Physics A 640 (1998) 37-51



Three-body clusters in ab initio NCSM/RGM 

Lawrence Livermore National Laboratory LLNL-PRES-667406
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 External region: known asymptotic behaviour (ρ > a)

Internal region: expansion on a basis  (ρ < a)  

* Bound state:

* Continuum state:



4He + n + n 

NCSM/RGM for three-body clusters: Structure of 6He 

Phaseshifts (preliminary results) 

0

60

120

180

240

δ
 (

d
eg

)

0 1 2 3 4 5 6
E

kin
 (MeV)

0

30

60

90

120

δ
 (

d
eg

)

2
2

+
2

1

+

1
1

-

(a)

(b)

6
He

SRG-N
3
LO NN

Λ = 1.5 fm
-1

1
+

1
2

-

0
+

0
1

-

0
2

-

2
-

mode suggested in Refs. [1,3]. In addition, our results do
not support the presence of a low-lying 0þ monopole
resonance above the 1þ state reported by previous theo-
retical investigations of the 4Heþ nþ n continuum, in
which the 4He was considered as an inert particle with no
structure. These three-body calculations, performed within
the hyperspherical-harmonics basis [8,9,20,27] and with
the complex scaling method [28,29], obtained a similar
sequence of 2þ1 , 2þ2 , 1þ, and 0þ2 levels, but different
resonance positions and widths. (Only the first two 2þ

resonances were shown in Ref. [20].) Microscopic 4Heþ
nþ n calculations based on schematic interactions were
later reported in Refs. [10,11] but showed only results for
the 2þ1 narrow resonance and do not comment on a 0þ

excited state.
In Fig. 2, the energy spectrum of states extracted from

the resonances of Fig. 1 is compared to the one recently
measured at GANIL [4]. Our results are consistent with the
presence of the second low-lying narrow 2þ resonance
observed for the first time in this experiment. A J ¼ 1
resonance was also measured at 4.3 MeV; however, the
parity of such a state is not yet determined, and it is not
possible to univocally identify it with the 1þ resonance
found at 2.77 MeV in the present calculations. At the same
time, the energy dependence of the 1− eigenphase shifts of
Fig. 1(b) does not favor the interpretation of this low-lying
state as a dipole mode. We also predict two broader
negative-parity states not observed.

A thorough study of the convergence of the results with
respect to all parameters defining the size of our model
space was performed. These are the maximum value Kmax
of the hyperangular momentum in the expansion (3), the
size Nmax of the HO basis used to calculate the g.s. of 4He
and the localized parts of Eqs. (5) and (6), and finally, the
size Next ≫ Nmax of the extended HO basis used to
represent a delta function in the core-halo distance entering
the portion of the Hamiltonian kernel that accounts for the
interaction between the halo neutrons (see Eq. (39) of
Ref. [14]). In each case, the number of integration points
and the hyper-radius a used to match internal and asymp-
totic solutions within the R-matrix method on the
Lagrange mesh were chosen large enough to reach stable,
a-independent results. All calculations were performed
with the same ℏΩ ¼ 14 MeV frequency adopted for the
study of the 6He g.s. [14].
We first set the extended HO basis size to the value

(Next ¼ 70) we found to be sufficient for the 0þ g.s. energy
[14] and established that expansion (3) converges at
Kmax ¼ 19=20 for all negative- or positive-parity channels
except the 0þ, requiring Kmax ¼ 28. Examples of the
convergence pattern with respect to the HO basis size
Nmax are shown in Fig. 3. In general, convergence is
satisfactory at Nmax ¼ 13. For the higher-lying resonances,
this value is not quite sufficient but already provides the
qualitative behavior to start discussing the continuum
structure of the system. Next, we study the dependence
on Next, which regulates the range of the potential kernel.
Not unexpectedly, an increase of Next requires at the same
time incrementing the matching hyper-radius a needed to
reach the asymptotic region (we used values of up to 60 fm)
and Kmax, for which we used values as high as 40 in the 0þ
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FIG. 2 (color online). Comparison of the spectrum obtained
within this work using the NCSM/RGM to the experimental
spectrum measured at the SPIRAL facility (GANIL) [4].
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FIG. 1 (color online). Calculated 4Heþ nþ n (a) positive- and
(b) negative-parity attractive eigenphase shifts as a function of the
kinetic energy Ekin with respect to the two-neutron emission
threshold. See the text for further details.
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The low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio
framework that encompasses the 4Heþ nþ n three-cluster dynamics characterizing its lowest decay
channel. This is achieved through an extension of the no-core shell model combined with the resonating-
group method, in which energy-independent nonlocal interactions among three nuclear fragments can be
calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio
many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-
body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange
mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the
known Jπ ¼ 2þ resonance as well as a result consistent with a new low-lying second 2þ resonance recently
observed at GANIL at 2.6 MeVabove the 6He ground state. We also find resonances in the 2−, 1þ, and 0−

channels, while no low-lying resonances are present in the 0þ and 1− channels.
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Introduction.—Nuclear systems near the drip lines, the
limits of the nuclear chart beyond which neutrons or
protons start dripping out of nuclei, offer an exciting
opportunity to advance our current understanding of the
interactions among nucleons, so far mostly based on the
study of stable nuclei. This is not a goal devoid of
challenges. Experimentally, the study of these rare nuclei
with atypical neutron-to-proton ratios is challenged by their
short half-lives and minute production cross sections. A
major stumbling block in nuclear theory has to deal with
the low breakup thresholds, which cause bound, resonant,
and scattering states to be strongly coupled. Particularly
arduous, in this respect, are those systems for which the
lowest threshold for particle emission is of the three-body
nature, such as 6He, which breaks into an α particle (4He
nucleus) and two neutrons at the excitation energy of
0.975 MeV. Aside from a narrow resonance characterized
by spin parity Jπ ¼ 2þ, located at 1.8 MeV above the
ground state (g.s.), the positions, spins, and parities of the
excited states of this nucleus are still under discussion.
Experimentally, the picture is not clear. Proton-neutron
exchange reactions between two fast colliding nuclei
produced resonantlike structures around 4 [1] and 5.6
[2] MeV of widths Γ ∼ 4 and 10.9 MeV, respectively, as
well as a broad asymmetric bump at ∼5 MeV [3], but
disagree on the nature of the underlying 6He excited
state(s). While the structures of Refs. [1,3] are explained
as dipole excitations compatible with oscillations of the
positively charged 4He core against the halo neutrons, that
of Ref. [2] is identified as a second 2þ state. More recently,
a much narrower 2þ (Γ ¼ 1.6 MeV) state and a J ¼ 1
resonance (Γ ∼ 2 MeV) of unassigned parity were popu-
lated at 2.6 and 5.3 MeV, respectively, with the two-neutron

transfer reaction 8Heðp; 3HÞ6He% [4]. On the theory side,
several predictions, all incomplete in different ways,
suggest a 2þ1 , 2

þ
2 , 1

þ, 0þ sequence of levels above the
first excited state but disagree on the positions and
widths. Those from six-body calculations with realistic
Hamiltonians [5–7] were obtained within a bound-state
approximation and cannot provide any information about
the widths of the levels. Vice versa, those from three-body
models [8,9], from microscopic three-cluster models
[10,11], or from calculations hinging on a shell-model
picture with an inert 4He core [12,13] can describe the
continuum but were obtained using schematic interactions
and a simplified description of the structure. In this Letter,
we present the first ab initio calculation of the 4Heþ nþ n
continuum starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
Formalism.—In the no-core shell model combined with

the resonating-group method (NCSM/RGM), A-body
bound and/or scattering states characterized by three-
cluster configurations are described by the wave function

jΨJπTi ¼
X

ν

ZZ
dxdyx2y2ÂνjΦJπT

νxy iGJπT
ν ðx; yÞ; ð1Þ

in terms of a set of unknown continuous amplitudes
GJπT

ν ðx; yÞ and (a1, a2, a3) ternary cluster channels

jΦJπT
νxy i

¼
h
ðja1α1I

π1
1 T1iðja2α2I

π2
2 T2ija3α3I

π3
3 T3iÞðs23T23ÞÞðSTÞ

×ðYlx
ðη̂23ÞYlyðη̂1;23ÞÞ

ðLÞ
iðJπTÞδðx−η23Þ

xη23

δðy−η1;23Þ
yη1;23

ð2Þ
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6He bound 0+ ground state 6He resonances and continuum 

Comparison to recent experiment 

5H ≈ 4He + n + n in progress NCSMC implementation in progress… 



Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to three-body clusters (6He ~ 4He+n+n): NCSMC in progress 

 

 

•  Ongoing projects: 
–  Transfer reactions: Talk by Francesco Raimondi on Tuesday 
–  Applications to capture reactions important for astrophysics: Talk by Jeremy 

Dohet-Eraly on Friday 
–  Bremsstrahlung: Talk by Jeremy Dohet-Eraly on Friday 

•  Outlook 
–  Alpha-clustering (4He projectile)  

•  12C and Hoyle state: 8Be+4He 
•  16O: 12C+4He 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  
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