Nonlocal Dispersive Optical Model

Hossein Mahzoon Wim. Dickhoff Robert Charity Helber Dussan Seth Waldecker

Washington University in St. Louis March 2015

Table of contents

- Introduction to DOM
- Role of Nonlocality
- Results for ⁴⁰Ca and ⁴⁸Ca
- Spectral Functions

Hartree-Fock Potential

In general we want to solve a problem with Hamiltonian

$$H = T + V$$

The irreducible self energy can be written as:

$$\Sigma^*(y,x;E) = -i \int \frac{dE'}{2\pi} \sum_{x',y'} \langle yx'|V|xy' \rangle G(y',x';E') + Higher \ Orders(E)$$

The Hartree-Fock approximation means to eliminate "higher orders" which in general depend on energy.

Dispersion Relation

By evaluating the real part, let say at some energy \mathcal{E}_F , one can rewrite the dispersion relation as:

$$\operatorname{Re}\Sigma(x,y;E) = \Sigma_s(x,y) - \mathcal{P}\int_{\epsilon_T^+}^{\infty} \frac{dE'}{\pi} \frac{\operatorname{Im}\Sigma(x,y;E')}{E-E'} + \mathcal{P}\int_{-\infty}^{\epsilon_T^-} \frac{dE'}{\pi} \frac{\operatorname{Im}\Sigma(x,y;E')}{E-E'}$$

$$\operatorname{Re}\Sigma(x,y;\varepsilon_F) = \Sigma_s(x,y) - \mathcal{P}\int_{\epsilon_T^+}^{\infty} \frac{dE'}{\pi} \frac{\operatorname{Im}\Sigma(x,y;E')}{\varepsilon_F - E'} + \mathcal{P}\int_{-\infty}^{\epsilon_T^-} \frac{dE'}{\pi} \frac{\operatorname{Im}\Sigma(x,y;E')}{\varepsilon_F - E'}$$

$$\operatorname{Re}\Sigma(x,y;E) = \operatorname{Re}\Sigma(x,y;\varepsilon_F) - \mathcal{P}\int_{\varepsilon_T^+}^{\infty} \frac{dE'}{\pi} \operatorname{Im}\Sigma(x,y;E') \times \left[\frac{1}{E-E'} - \frac{1}{\varepsilon_F-E'}\right]$$

$$+\mathcal{P}\int_{-\infty}^{\varepsilon_T^-} \frac{dE'}{\pi} \mathrm{Im}\Sigma(x,y;E') \times \left[\frac{1}{E-E'} - \frac{1}{\varepsilon_F - E'}\right]$$

Effect of dispersion relation

C. Mahaux and R. Sartor, Adv. Nucl. Phys.

$$\begin{aligned} \text{Lehmann representation:} \\ G(\alpha,\beta;t-t') &= -\frac{i}{\hbar} \langle \Psi_0^N | \mathcal{T}[a_{\alpha_H}(t)a_{\beta_H}^{\dagger}(t')] | \Psi_0^N \rangle \\ G(\alpha,\beta;E) &= \sum_m \frac{\langle \Psi_0^N | a_\alpha | \Psi_m^{N+1} \rangle \langle \Psi_m^{N+1} | a_\beta^{\dagger} | \Psi_0^N \rangle}{E - (E_m^{N+1} - E_0^N) + i\eta} + \sum_n \frac{\langle \Psi_0^N | a_\beta^{\dagger} | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle}{E - (E_0^N - E_n^{N-1}) - i\eta} \end{aligned}$$

$$= \langle \Psi_{0}^{N} | a_{\alpha} \frac{1}{E - (\hat{H} - E_{0}^{N}) + i\eta} a_{\beta}^{\dagger} | \Psi_{0}^{N} \rangle + \langle \Psi_{0}^{N} | a_{\beta}^{\dagger} \frac{1}{E - (E_{0}^{N} - \hat{H}) - i\eta} a_{\alpha} | \Psi_{0}^{N} \rangle$$

$$G(\alpha,\beta;E) = G^{(0)}(\alpha,\beta;E) + \sum_{\gamma,\delta} G(\alpha,\gamma;E) \Sigma^*(\gamma,\delta;E) G^{(0)}(\delta,\beta;E) \qquad \begin{array}{l} \text{Dyson} \\ \text{equation} \end{array}$$

Local DOM Potential

 $\mathcal{U} = \mathcal{V} + i\mathcal{W}$

$$\mathcal{W}(r,E) = -\mathcal{W}_{v}(r,E)f(r,r_{v},a_{v}) + 4a_{s}W_{s}(E)\frac{d}{dr}f(r,r_{s},a_{s}) + \mathcal{W}_{so}(r,E)$$
$$\mathcal{V}(r,E) = \mathcal{V}_{HF}(r,E) + \Delta\mathcal{V}(r,E)$$
$$\Delta\mathcal{V}(r,E) = \frac{1}{\pi}\mathcal{P}\int\mathcal{W}(r,,E')\left(\frac{1}{E'-E} - \frac{1}{E'-\varepsilon_{F}}\right)dE'$$
$$\mathcal{V}_{HF}(r,E) = -V_{HF}^{Vol}(E)f(r,r_{HF},a_{HF}) + 4V_{HF}^{Sur}\frac{d}{dr}f(r,r_{HF},a_{HF}) + V_{c}(r) + \mathcal{V}_{so}(r,E)$$

Where

$$f(r, r_i, a_i) = \frac{1}{1 + e^{\frac{r - r_i A^{1/3}}{a_i}}}$$

PHYSICAL REVIEW C 82, 054306 (2010)

Nonlocal extension of the dispersive optical model to describe data below the Fermi energy

W. H. Dickhoff,¹ D. Van Neck,² S. J. Waldecker,¹ R. J. Charity,³ and L. G. Sobotka^{1,3}

 ¹Department of Physics, Washington University, St. Louis, Missouri 63130, USA
²Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium
³Department of Chemistry, Washington University, St. Louis, Missouri 63130, USA (Received 1 October 2010; published 10 November 2010)

Role of Nonlocality

Phys. Rev. C 84, 044319 (2011)

Phys. Rev. C 84, 034616 (2011)

Nonlocal DOM

• For Example:

$$\operatorname{Im} \Sigma(\mathbf{r} \cdot \mathbf{r}' \cdot E) = \operatorname{Im} \Sigma^{\mathsf{nl}}(\mathbf{r} \cdot \mathbf{r}'; E) + \delta(\mathbf{r} - \mathbf{r}') \mathcal{W}^{\mathsf{so}}(r; E)$$

$$\operatorname{Im} \Sigma^{\mathsf{nl}}(\mathsf{r} \, \cdot \, \mathsf{r}'; E) = -W^{\mathsf{vol}}_{\mathsf{0}\pm}(E) f\left(\tilde{r}; r_{\pm}^{\mathsf{vol}}; a_{\pm}^{\mathsf{vol}}\right) H\left(\mathsf{s}; \boldsymbol{\beta}_{\mathsf{vol}}^{\pm}\right)$$

_

$$+4a_{\pm}^{\mathsf{sur}}W_{\pm}^{\mathsf{sur}}(E)H\left(\mathsf{s};\boldsymbol{\beta}_{\mathsf{sur}}^{\pm}\right)\frac{d}{d\tilde{r}}f(\tilde{r}^{\varsigma}r_{\pm}^{\mathsf{sur}}a^{\mathsf{sur}})^{\varsigma}$$

⁴⁰Ca Cross section

PRL **112**, 162503(2014)

⁴⁰Ca Cross sections and analyzing power

The hole spectral function for high momenta

Data:(dotted-line) D. Rohe, Habilitationsschrift (University of Basel, Basel,2004)

Nonlocal-DOM:(dasheddotted)

$$S_h(E_m, p_m) = \sum_n \delta(E_m - E_0^N - E_n^{N-1}) |\langle \Psi_n^{N-1} | a_{p_m} | \Psi_0^N \rangle|^2$$

⁴⁰Ca Charge Density

Local DOM

NonLocal DOM

PRC 82, 054306(2010)

PRL **112**, 162503(2014)

⁴⁸Ca Cross section

• Including Asymmetry terms proportional to $\frac{N-Z}{A}$

• All the parameters kept fixed except the radii (comparing to ⁴⁰Ca)

⁴⁸Ca Cross sections

Nonlocal

local

⁴⁸Ca Cross sections

PRC 83, 064605 (2011)

PRL 112, 162503(2014)

Spectroscopic Factors

protons

	40Ca	48Ca
1s12	0.73	0.63
0d32	0.76	0.69
0f72	0.73	0.63

neutrons

	40Ca	48Ca
1s12	0.76	0.80
0d32	0.78	0.77
0f72	0.71	0.80

Weak charge

• The electron interacts with the nucleus by exchanging either a photon or Z0 boson.

• Z0 boson has a much larger coupling to the neutron than protons.

⁴⁸Ca Charge Density

Eur. Phys. J. A (2014) 50: 48J. Horowitz, K.S. Kumar, and R. Michaels

Spectral Function

$$S^{p}_{\ell j}(k,k';E) = \frac{i}{2\pi} \left[G^{p}_{\ell j}(k,k';E^{+}) - G^{p}_{\ell j}(k,k';E^{-}) \right]$$

$$G_{\ell j}^{p}(k,k';E^{\pm}) = \sum_{n} \frac{\phi_{\ell j}^{n+}(k) \left[\phi_{\ell j}^{n+}(k')\right]^{*}}{E - E_{n}^{*A+1} \pm i\eta} + \sum_{c} \int_{T_{c}}^{\infty} dE' \; \frac{\chi_{\ell j}^{cE'}(k) \left[\chi_{\ell j}^{cE'}(k')\right]^{*}}{E - E' \pm i\eta}$$

$$\phi_{\ell j}^{n+}(k) = \langle \Psi_0^A | a_{k\ell j} | \Psi_n^{A+1} \rangle \qquad \qquad \chi_{\ell j}^{cE}(k) = \langle \Psi_0^A | a_{k\ell j} | \Psi_{cE}^{A+1} \rangle$$

Spectral Function

$$S_{\ell j}^{p}(r,r';E) = \sum_{c} \chi_{\ell j}^{cE}(r) \left[\chi_{\ell j}^{cE}(r')\right]^{*} \qquad \frac{k^{2}}{2m} \phi_{\ell j}^{n}(k) + \int dq \ q^{2} \operatorname{Re} \Sigma_{\ell j}^{*}(k,q;\varepsilon_{n})\phi_{\ell j}^{n}(q) = \varepsilon_{n}\phi_{\ell j}^{n}(k)$$
$$S_{\ell j}^{n-}(E) = \int dr r^{2} \int dr' r'^{2} \phi_{\ell j}^{n-}(r) S_{\ell j}^{h}(r,r';E) \phi_{\ell j}^{n-}(r'),$$
$$S_{\ell j}^{n+}(E) = \int dr r^{2} \int dr' r'^{2} \phi_{\ell j}^{n-}(r) S_{\ell j}^{p}(r,r';E) \phi_{\ell j}^{n-}(r'),$$

In Practice $\to S_{\ell j}^{p}(k, k'; E) = \frac{i}{2\pi} \left[G_{\ell j}^{p}(k, k'; E^{+}) - G_{\ell j}^{p}(k, k'; E^{-}) \right]$ $S_{\ell j}^{p}(r, r'; E) = \frac{2}{\pi} \int dk k^{2} \int dk' k'^{2} j_{\ell}(kr) S_{\ell j}^{p}(k, k'; E) j_{\ell}(k'r'),$

Spectral Strength

Spectral Function

$$\chi_{\ell j}^{cE}(k) = \langle \Psi_0^A | a_{k\ell j} | \Psi_{cE}^{A+1} \rangle \qquad \chi_{\ell j}^{elE}(r) = \left[\frac{2mk_0}{\pi\hbar^2} \right]^{1/2} \left\{ j_\ell(k_0 r) + \int dk k^2 j_\ell(kr) G^{(0)}(k;E) \Sigma_{\ell j}(k,k_0;E) \right\}$$

PHYSICAL REVIEW C 90, 061603(R) (2014)

Spectral Function

Screened Coulomb

 $w_R(r) = w(r)e^{-(r/R)^n}$

Phys. Rev. C 41, 2615 (1990)

Conclusion :

- According to the results, Nonlocal DOM is a reliable candidate to study nuclear properties.

-Nonlocality and Dispersion corrections playing an important role to get the physics of the system correctly.