Microscopic nucleon-nucleus optical potentials for neutron-rich systems

Jeremy W. Holt Department of Physics University of Washington

INT workshop: Reactions and structure of exotic nuclei, 03/05/2015

OUTLINE

Physics motivations

- Neutron-capture rates in r-process nucleosynthesis
- Neutron star structure (inner crust)
- Charged-current weak reactions in newly formed neutron stars

Nucleon self energy in homogeneous matter

- Improvements in theory: perturbative chiral nuclear forces that reproduce saturation
- Benchmark to phenomenological potentials close to valley of stability
- Corrections to the Lane parametrizaton of the isospin asymmetry dependence

CHALLENGE 1: R-PROCESS NUCLEOSYNTHESIS

Astrophysical site?

Core-collapse supernovae

http://www.csm.ornl.gov

Neutron-star mergers

http://numrel.aei.mpg.de

Microscopic optical potential for neutron-rich systems

Masses of neutron-rich nuclei

Determine elemental abundance patterns along isotopic chains during equilibrium

$$\frac{Y(Z,A+1)}{Y(Z,A)} \sim \exp\left[\frac{S_n(Z,A+1) - S_n^0(T,\rho_n)}{kT}\right]$$

Beta-decay lifetimes

- Set timescale for formation of heavy elements from seed nuclei
- > Partly responsible for peaks at A = 130 and A = 195

Neutron-capture rates

- Relevant during late-time freeze-out phase of the r-process
- Sensitivity studies vary capture rates over 1–2 orders of magnitude

Surman et al., PRC (2009)

- Outer crust is a lattice of nuclei with gas of electrons
- Inner crust contains lattice of neutron-rich nuclei together with "dripped" neutrons
- \blacktriangleright Neutron drip density: $ho_{
 m drip} = 4 imes 10^{11} {
 m g/cm}^3$

Microscopic optical potential for neutron-rich systems

GLOBAL OPTICAL POTENTIALS (PHENOMENOLOGICAL)

$$\mathcal{U}(r, E) = -\mathcal{V}_V(r, E) - i\mathcal{W}_V(r, E) - i\mathcal{W}_D(r, E)$$

+
$$\mathcal{V}_{SO}(r, E).\mathbf{l}.\sigma + i\mathcal{W}_{SO}(r, E).\mathbf{l}.\sigma + \mathcal{V}_{C}(r),$$

$$\begin{aligned} \mathcal{V}_{V}(r,E) &= V_{V}(E)f(r,R_{V},a_{V}),\\ \mathcal{W}_{V}(r,E) &= W_{V}(E)f(r,R_{V},a_{V}),\\ \mathcal{W}_{D}(r,E) &= -4a_{D}W_{D}(E)\frac{d}{dr}f(r,R_{D},a_{D}),\\ \mathcal{V}_{SO}(r,E) &= V_{SO}(E)\left(\frac{\hbar}{m_{\pi}c}\right)^{2}\frac{1}{r}\frac{d}{dr}f(r,R_{SO},a_{SO}),\\ \mathcal{W}_{SO}(r,E) &= W_{SO}(E)\left(\frac{\hbar}{m_{\pi}c}\right)^{2}\frac{1}{r}\frac{d}{dr}f(r,R_{SO},a_{SO}).\end{aligned}$$

Koning & Delaroche, NPA (2003)

$$V_V(E) = v_1 \Big[1 - v_2 (E - E_f) + v_3 (E - E_f)^2 - v_4 (E - E_f)^3 \Big]$$

$$W_V(E) = w_1 \frac{(E - E_f)^2}{(E - E_f)^2 + (w_2)^2},$$

Energy dependence

Microscopic optical potential for neutron-rich systems

Isovector part of optical potential linear in the isospin asymmetry

Much less is known/predicted about isovector imaginary part

Microscopic optical potential for neutron-rich systems

MICROSCOPIC OPTICAL POTENTIALS (HOMOGENEOUS MATTER)

Identified with the on-shell nucleon self-energy $\Sigma(ec{r_1},ec{r_2},\omega)$ [Bell and Squires, PRL (1959)]

Hartree-Fock contribution (real, energy-independent):

$$\Sigma_{2N}^{(1)}(q;k_f) = \sum_1 \langle ec{q} \, ec{h}_1 s s_1 t t_1 | ec{V}_{2N} | ec{q} \, ec{h}_1 s s_1 t t_1
angle n_1$$

Second-order perturbative contibutions (complex, energy-dependent):

$$\Sigma_{2N}^{(2a)}(q,\omega;k_f) = \frac{1}{2} \sum_{123} \frac{|\langle \vec{p_1}\vec{p_3}s_1s_3t_1t_3 | \bar{V} | \vec{q}\,\vec{h}_2ss_2tt_2 \rangle|^2}{\omega + \epsilon_2 - \epsilon_1 - \epsilon_3 + i\eta} \bar{n}_1 n_2 \bar{n}_3 (2\pi)^3 \delta(\vec{p_1} + \vec{p_3} - \vec{q} - \vec{h}_2)$$

Benchmarks:

Depth and energy dependence of phenomenological volume parts (including isospin dependence)

MICROSCOPIC NUCLEAR PHYSICS FROM "NEXT-TO-FIRST PRINCIPLES"

Quark/gluon (high energy) dynamics

$${\cal L}=-rac{1}{4}G^a_{\mu
u}G^{\mu
u}_a+ar q_Li\gamma_\mu D^\mu q_L$$

 $+ \bar{q}_R i \gamma_\mu D^\mu q_R - \bar{q} \mathcal{M} q$

Approximate chiral symmetry (left- and righthanded quarks transform independently)

Nucleon/pion (low energy) dynamics

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{\pi\pi}^{(2)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{N N}^{(0)} + \mathcal{L}_{N N}^{(2)} + \cdots$$

Compatible with explicit and spontaneous chiral symmetry breaking

Microscopic optical potential for neutron-rich systems

SEPARATION OF SCALES + SYMMETRIES

CHIRAL EFFECTIVE FIELD THEORY

Microscopic optical potential for neutron-rich systems

SEPARATION OF SCALES + SYMMETRIES

CHIRAL EFFECTIVE FIELD THEORY

Microscopic optical potential for neutron-rich systems

SEPARATION OF SCALES + SYMMETRIES

CHIRAL EFFECTIVE FIELD THEORY

Microscopic optical potential for neutron-rich systems

SEPARATION OF SCALES + SYMMETRIES

CHIRAL EFFECTIVE FIELD THEORY

Microscopic optical potential for neutron-rich systems

SEPARATION OF SCALES + SYMMETRIES

CHIRAL EFFECTIVE FIELD THEORY

Microscopic optical potential for neutron-rich systems

STARTING POINT: MICROSCOPIC CHIRAL NUCLEAR FORCES

Regulating function

$$= \exp[-(p/\Lambda)^{2n} - (p'/\Lambda)^{2n}] \langle \vec{p}' | V | \vec{p} \rangle$$
sets resolution scale

Variations in regulator

Estimate of theoretical uncertainty

$$\left\{ egin{array}{lll} & \Lambda = 414 \, {
m MeV}, \, n = 10 \ & \Pi = 450 \, {
m MeV}, \, n = 3 \ & \Pi = 500 \, {
m MeV}, \, n = 2 \end{array}
ight\}$$

Coraggio, Holt, Itaco, Machleidt & Sammarruca, PRC (2013)

Low-momentum potentials: improved perturbative properties

SATURATION OF SYMMETRIC NUCLEAR MATTER

Microscopic optical potential for neutron-rich systems

Experiment (compound nucleus & multifragmentation) [J. B. Elliott et al., PRC (2013)

 $T_c = 17.9 \pm 0.4 \,\mathrm{MeV}$ $\rho_c = 0.06 \pm 0.02 \,\mathrm{fm}^{-3}$ $P_c = 0.31 \pm 0.07 \,\mathrm{MeV} \,\mathrm{fm}^{-3}$

1ST- AND 2ND-ORDER VOLUME CONTRIBUTIONS

Microscopic optical potential for neutron-rich systems

Nearly all momentum dependence comes from the two-pion-exchange 3NF

BENCHMARK: PHENOMENOLOGICAL OPTICAL POTENTIALS

Microscopic optical potential for neutron-rich systems

J. W. Holt, University of Washington

INDIVIDUAL CONTRIBUTIONS IN ASYMMETRIC MATTER

REAL AND IMAGINARY PROTON/NEUTRON POTENTIALS

- R-process from SNe requires large number of neutrons per seed nucleus
- Proton fraction of outflow set by competing charged-current reactions

$$\nu_e + n \longleftrightarrow e^- + p$$

 $\bar{\nu}_e + p \longleftrightarrow e^+ + n$

Robust r-process nucleosynthesis:

$$N_p \lesssim 0.4$$
 $\langle E_{ar{
u}_e}
angle - \langle E_{
u_e}
angle > 4(m_n-m_p)$

(Anti-)neutrino decoupling region sensitive to nuclear physics inputs: especially nucleon single-particle energies in the neutrinosphere

Microscopic optical potential for neutron-rich systems

Neutrino opacity

Charged-current

 $\nu_e + n \longleftrightarrow e^- + p$

Anti-neutrino opacity

Neutral-current $\bar{\nu}_e + n \longrightarrow \bar{\nu}_e + n$

Charged-current

Supernova simulations treat protons and neutrons as quasiparticles in the mean-field approximation

Mean field effects further widen the energy gap between protons and neutrons

Q-value for (anti-)neutrino absorption changes significantly

PHASE SPACE ANALYSIS

Charged-current reactions ($\nu_e n \rightarrow e^- p$) with $E_{\nu} = 10 \text{ MeV}, \ p_n = 100 \text{ MeV}$

Microscopic optical potential for neutron-rich systems

(1) Chiral NN potential at mean-field level

(2) Pseudo-potential (reproduces exact energy shift when used at the mean field level)

Microscopic optical potential for neutron-rich systems

J. W. Holt, University of Washington

FUTURE WORK

Nuclear equation of state for astrophysical simulations

- Clustering at low densities, match to virial EoS
- Extrapolate to high-density, high-temperature regime

Optical potentials for neutron-rich nuclei

- Derive spin-orbit terms
- Fold with theoretical/empirical density distributions

Neutrino reactions in proto-neutron stars

- Develop consistent equation of state
- Merge with numerical simulations of core-collapse supernovae

Microscopic optical potential for neutron-rich systems