Interplay of Direct, Pre-Equilibrium, and Compound Processes in Nuclear Reactions

INT 2015 Workshop Reactions & Structure of Exotic Nuclei Seattle, WA, March 2015

Lawrence Livermore
 National Laboratory

Jutta Escher Nuclear Data & Theory Group Lawrence Livermore National Laboratory

LLNL-PRES-667996

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Structure and reactions of unstable isotopes

… are important for addressing basic science questions and for applications.

Reaction cross sections are important for nuclear astrophysics, nuclear energy, and national security.

Challenge: Many important nuclear reaction cross sections cannot be measured directly

Needed:

- Reliable structure & reaction theory to predict cross sections
- Theory-experiment collaborations for indirect determination of desired cross sections -> Reaction-theory development to plan and interpret experiments.

This talk: Focus on challenges for determining

Modeling of astrophysical processes and general neutron-rich enviroments requires cross sections for exotic nuclei

Astrophysics: (n,γ) cross sections required for understanding synthesis of heavy elements via *r* process

National security: cross sections for many n-induced reactions on unstable isotopes required

Types of reactions: primarily compound reactions, but direct reactions may contribute as well

Theory: uncertainties in cross sections increase dramatically with distance from stability

Modeling of astrophysical processes and general neutron-rich enviroments requires cross sections for exotic nuclei

Astrophysics: (n,γ) cross sections required for understanding synthesis of heavy elements via *r* process

National security: cross sections for many n-induced reactions on unstable isotopes required

Types of reactions: primarily compound reactions, but direct reactions may contribute as well

Theory: uncertainties in cross sections increase dramatically with distance from stability

Impact of cross section uncertainties on predicted r-process abundances

>5% change in the overall abundance pattern caused by cross section variation

- by factor of 10/50/100-1000
- for dark/medium/light

blue cases.

Effect is compounded (>40%) when multiple rates are changed.

Surman et al, PRC (2009)

Where's the challenge in calculating ${}^{\text{A}}Z(n,y)$?

Anatomy of a capture reaction

n+target \rightarrow population of CN Subsequent decay by competition of γ emission, neutron evaporation

Theoretical description

Hauser-Feshbach (HF) formalism:

 $\sigma_{\alpha\gamma} = \sum_{J,\pi}\sigma_{\alpha}^{~\,CN}\left(E,J,\pi\right)\cdot G^{CN}\gamma(E,J,\pi)$

Cross section is a sum of products $\sigma_\alpha^{\ \rm CN}$: formation of CN, from optical model $\mathsf{G}^\mathsf{CN}\xspace_\gamma$: decay of CN, contains info on competing decay channels α = n+target

Challenge for calculations

Accurate description of competition requires:

- γ–ray strength function (γSF)
- level densities (LD) in $A, A+1Z$
- discrete low-lying levels with J^{π} , branching ratios – esp. important for isomers!
- optical model for n+target: in decent shape near stability
- width fluctuation corrections

Sensitivity of HF calculations to γSF and LD

For details see: R.D. Hoffman et al, UCRL-TR-222275 (2006)

Reasonable parameter variations lead to significant uncertainties. Extrapolations increase the uncertainties.

Strategies for constraining HF inputs

I. Determine ingredients γ**SF & LD**:

- Theory challenging, not all nuclei covered, but progress is being made
- Experiments need to 'de-convolute' γSF & LD, not all nuclei can be reached

II. Cross section constraints from neighbors:

- Measure (n, γ) cross sections in other nuclei & do regional fits
- Extrapolations required

III. Constraints from surrogate observables:

- Surrogate approach: use charged-particle transfer or inelastic scatering to create CN of interest and observe decay
- Use measurement to constrain calculation of desired cross section
- Theory needed to relate measurement to desired cross section
- Measure quantities in **actual nuclei of interest**

Surrogate Reactions 101

Compound reaction

 A reaction that proceeds in two stages: formation of a compoundnucleus (CN) and decay

Surrogate approach

 An indirect method for obtaining cross sections for compound-nucleus (CN) reactions

Using an intial direct reaction, a CN is formed and its decay is observed. Theory is used to extract the desired reaction.

Surrogate Reactions 101

History

- The surrogate method was introduced in the 1970s by Britt, Cramer, Wilhelmy, *et al*, to determine (n,f) cross sections.
- In the last 10 years, the method has been revived, primarily for (n,f).
- Most applications use approximate treatments, ignoring the difference in the reaction mechanisms that lead to the CN (aka Weisskopf-Ewing approximation)

J. Escher *et al*, RMP 84 (2012) 353

(n,f) cross sections from surrogate measurements

Previous work used a number of approximations

Prevailing assumptions

- 1. Weisskopf-Ewing approximation valid
- 2. No 'pre-equilibrium' contributions

Previous work used a number of approximations

Prevailing assumptions

- 1. Weisskopf-Ewing approximation valid
- 2. No 'pre-equilibrium' contributions

Current implementations of surrogate method are insufficient

Known limitations

- 1. WE approximation fails for (n, γ) and (n, p)
- 2. Limitations visible in low-E regime, e.g. in (n,f) reactions

J. Escher and F.S. Dietrich, PRC 81 (2010) 024612 N. Scielzo, J. Escher, et al., PRC 81 (2010) 034608

Suspect assumption

`Pre-equilibrium effects' are nonexistent or can be ignored

Need to move beyond 'Surrogates 101'

Surrogate Reactions – next level….

Objective

 Apply the surrogate method to wider range of reactions, such as (n, γ) and $(n, 2n)$

Needed:

Improved treatment of the reaction mechanisms:

- descriptions of the formation of the CN via transfer or inelastic scattering reactions
- descriptions of the competition between damping and 'pre-equilibrium' decay processes.

New strategy for using surrogate data.

Experiments to shed light on the processes.

Strategies for constraining HF inputs

I. Determine ingredients γ**SF & LD**:

- Theory challenging, not all nuclei covered, but progress is being made
- Experiments need to 'de-convolute' γSF & LD, not all nuclei can be reached

II. Cross section constraints from neighbors:

- Measure (n, γ) cross sections in other nuclei & do regional fits
- Extrapolations required

III. Constraints from surrogate observables:

- Surrogate approach: use charged-particle transfer or inelastic scatering to create CN of interest and observe decay
- Use measurement to constrain calculation of desired cross section
- Theory needed to relate measurement to desired cross section
- Measure quantities in **actual nuclei of interest**

Implementing a new strategy: Surrogate approach beyond WE

Desired reaction: 87Y(n,g)88Y

Hauser-Feshbach description of "desired" CN reaction

$$
\sigma_{(n,\gamma)} = \sum\nolimits_{J,\pi} \sigma_{n\text{+target}}^{\text{CN}}(E,J,\pi) \cdot G^{\text{CN}}_{\gamma}(E,J,\pi)
$$

Implementing a new strategy: Surrogate approach beyond WE

Surrogate experiment

- Produce CN ⁸⁸Y via alternative **p** + ⁸⁹Y -> **d** + ⁸⁸Y involving stable ⁸⁹Y
- Measure outgoing surrogate particle **d** in coincidence with observables indicative of relevant decay channel $\rightarrow P_{\delta y}(E)$

A Surrogate experiment gives $P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}^{CN}(E,J,\pi) \cdot G^{CN}_{\gamma}(E,J,\pi)$ Hauser-Feshbach description of "desired" CN reaction $\sigma_{\sf (n,\gamma)} = \sum_{\sf J,\pi} \sigma_{\sf n+target}^{\sf \;\;CN} \left(E,\sf J,\pi\right) \cdot {\sf G}^{\sf CN}_{\sf \;\; \gamma} (E,\sf J,\pi)$

Implementing a new strategy: Surrogate approach beyond WE

Surrogate experiment

- Produce CN ⁸⁸Y via alternative **p** + ⁸⁹Y -> **d** + ⁸⁸Y involving stable ⁸⁹Y
- Measure outgoing surrogate particle **d** in coincidence with observables indicative of relevant decay channel $\rightarrow P_{\delta y}(E)$

$89Y(p,d)^{88}Y$ experiment to constrain $87Y(n,y)$

Burke, Casperson, Scielzo et al.

Describing CN formation in ⁸⁹Y(p,d) reaction

89Y(p,d)88Y:

• Remove neutron from $89Y$ (n: $J^{\pi}=0^+$ \times p: J^{π} =1/2⁻). Treat proton hole as spectator.

Describing CN formation in ⁸⁹Y(p,d) reaction

Fragmentation of single-hole states:

89Y(p,d)88Y:

Modeling CN decay

Develop rough decay model for 88Y*:

- Literature values for energies + spins of low-lying states
- Literature values for branchings between low states
- LDs of Gilbert-Cameron form w/variable parameters
- γSF: various possibilities based on recent measurements & theory for the region

Example γSF:

Considering 5 shapes, w and w/o upturn and/or extra strength around 8 MeV.

Decay model gives $\mathsf{G}^\mathrm{CN}_{\gamma}(\mathsf{E},\mathsf{J},\pi)$ for range of LD and γSF parameters.

$$
\mathsf{P}_{(p,d\gamma)}(\mathsf{E})\!=\!\Sigma_{\mathsf{J},\pi}\,\mathsf{F}_{(p,d)}{}^{\text{CN}}(\mathsf{E},\!\mathsf{J},\!\pi)\!\cdot\! G^{\text{CN}}{}_{\gamma}(\mathsf{E},\!\mathsf{J},\!\pi)
$$

Fitting model parameters to multiple surrogate observables provides constraints on $\mathsf{G^{CN}}_\gamma(\mathsf{E},\mathsf{J},\pi)$.

Fitting decay model to surrogate data

Is there 'pre-equilibrium' decay in surrogate reactions? How can we deal with it?

CN formation via inelastic scattering

Experiment at LBNL:

90,91,92Zr(3He,3He') and $89Y(3He,3He')$

Describing CN formation via inelastic scattering

Structure theory for ⁹⁰Zr(³He,³He')

- QRPA with Skyrme SLy4
- (Alternative: RPA with Gogny D1N)
- Description of states to 30 MeV

Reaction theory for $90Zr(3He,3He')$

- DWBA description (Fresco code)
- Calculations up to $J=9$

Treatment of damping (CN formation)

- Phenomenological spreading width
- Accounts for higher-order couplings
- Energy-dependent width

Spin-parity distribution in CN

Determined from relative contributions of xsecs

Describing CN formation via inelastic scattering

Structure theory for ⁹⁰Zr(³He,³He')

- QRPA with Skyrme SLy4
- (Alternative: RPA with Gogny D1N)
- Description of states to 30 MeV

Reaction theory for ⁹⁰Zr(³He,³He')

- DWBA description (Fresco code)
- Calculations up to $J=9$

Treatment of damping (CN formation)

- Phenomenological spreading width
- Accounts for higher-order couplings
- Energy-dependent width

Spin-parity distribution in CN

Determined from relative contributions of xsecs

+ parity 0.5 1.5
2.5
3.5
4.5
5.5
5.5
7.5
8.5 0.25 0.2 Population
D.
L5 9.5
10.5 0.1 0.05 15 20 25 30 - parity 0.25 0.2 Population 0.15 0.1 0.05 90° 20 15 25 30 Excitation energy [MeV]

 E_{ex}

$91Zr(3He,3He')$

Comparison with experiment

Procedure:

- Calculate $F_\delta^{CN}(E,J,\pi)$
- Model CN decay
- Adjust HF parameters to reproduce measured $P_{\gamma}(E)$, here γ-transitions
- Use best-fit HF parameters to obtain $\mathsf{G^{CN}}_\chi$
- Calculate desired cross section

A Surrogate experiment gives $P_{\chi}(E) = \sum_{J,\pi} F_{\delta}^{CN}(E,J,\pi) \cdot G^{CN}{}_{\chi}(E,J,\pi)$

Hauser-Feshbach description of "desired" CN reaction

$$
\sigma_{\alpha\chi} = \sum_{J,\pi} \sigma_{\alpha}^{\text{CN}}(E,J,\pi) \cdot G^{\text{CN}}\chi(E,J,\pi)
$$

Comparison with experiment

Insights:

- Reproducing Surrogate coincidence probability requires 'pre-equilibrium' contribution
- Neutron emission prior to equilibration sets in around $E_n=7$ MeV
- Modeling this contribution is relevant for describing 2n emission
- γ-ray measurements provide useful information

Insights

- Cross section calculations for compound reactions: Require reliable structure input (which is often not available)
- Indirect cross section approaches: Require a solid understanding of the reaction processes involved
- Pickup reactions: A good description of the fragmentation of hole states is needed
- Inelastic scattering: To include pre-equilibrium decay in the description, (Q)RPA is not sufficient. An exciton description is useful, explicit coupling to the continuum would be a plus
- Stripping reactions: Will play a prominent role at FRIB and other RIB facilities. Breakup and breakup-fusion needs to be included in the description -> see G. Potel's talk
- Low level density situations: require additional thought, as the statistical assumptions are no longer valid.
- High-quality experimental data is needed to constrain the theory and to produce cross section results. Benchmarks are valuable.

Thanks to my Collaborators

Frank Dietrich, Daniel Gogny, Ian Thompson, Walid Younes (LLNL)

Experiment

J. Burke, R. Casperson, R. Hughes, J.J. Ressler, N.D. Scielzo (LLNL) C. Beausang, T. Ross (U Richmond) J. Cizewski et al (Rutgers)

TORUS: Theory of Reactions for Unstable iSotopes A Topical Collaboration for Nuclear Theory

Theory Theory **Theory** Theory Theory Theory Theory

TORUS collaborators Ian Thompson, LLNL Jutta Escher, LLNL Filomena Nunes, MSU L. Hlophe, OU V. Eremenko, OU Charlotte Elster, OU Goran Arbanas, ORNL

UNEDF SciDAC Collaboration

Universal Nuclear Energy Density Functional

SciDAC collaborators F.S. Dietrich and I.J. Thompson (LLNL) G. Nobre (BNL) J. Engel and J. Terasaki (UNC)

M. Dupuis (CEA)

Capture-y *<u>roiect</u>*

B. Sleaford and N. Summers (LLNL) R.B. Firestone, A. Hurst, S. Basunia, H. Choi (LBNL)