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• Radiative captures have a strong astrophysical interest (cf. Barry Davids’s talk)

• Bremsstrahlung
-to describe the radiative transitions between unstable states

-to describe the t(d , nγ)α radiative transfer reaction (perspective to diagnose
plasmas in fusion experiments from this reaction and recent experiment at Ohio
university)
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Outline

Bremsstrahlung

• microscopic cluster approach: application to αα and αN systems

• No-Core Shell Model/Resonating-Group Method approach: application to αp
(preliminary)

Radiative capture

• No-Core Shell Model/Resonating-Group Method approach: application to
3H(α, γ)7Li and 3He(α, γ)7Be (preliminary)



Nucleus-nucleus bremsstrahlung

• =photon emission induced by a collision between two nuclei
=radiative transitions between continuum states

• A part of the kinetic energy between the nuclei is converted to a photon during this
process.



Why studying the α + α system?

• At low energy, the α+ α scattering is well described by (relatively) simple models,
as cluster models.
Since the electromagnetic forces are much weaker than the nuclear ones, the electromagnetic emission

process can be seen as a small perturbation of the elastic scattering⇒ necessity to have a fair description of

the elastic scattering

• Recent measurements of "4+-to-2+" gamma transitions in 8Be from the
α(α, ααγ) performed at Mumbai (India).
[V. M. Datar et al., PRL 94 (2005) 122502] [V. M. Datar et al., PRL 111 (2013) 062502]

• (Older) experimental differential bremsstrahlung cross sections also available for
the α+ α system.

• Why studying the α+ α system?
1. We trust in our models for describing the α + α collision
2. Comparison between theory and experiment is possible
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Why a cluster approach?

• Provide a reasonable description of αα elastic data

• Ab initio approaches are not yet able to describe the αα
collision!

• Microscopic cluster calculation is a very useful preliminary
step to an ab initio calculation because

− some ab initio techniques are extensions of the (old) cluster
techniques:

I No-Core Shell Model/Resonating-Group Method (NCSM/RGM) and No-Core Shell Model with
Continuum (NCSMC)

I Fermionic Molecular Dynamics (FMD)/RGM
I Correlated Gaussian (CG)/RGM (⇒ good way to learn)

− provides some guidance (what partial wave is important?
what type of configuration/clustering is important?
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Method

• Obtaining the elastic wave functions
− Microscopic cluster approach with an effective nucleon-nucleon (NN) interaction

− RGM or Generator coordinate method (GCM) and the microscopic R-matrix method

(MRM)

− α + α phase shifts

• From the elastic wave functions to the bremsstrahlung cross
sections
− Divergence problem in the continuum-to-continuum transitions

− Electric transition multipole operators in the Siegert and non-Siegert approaches

− Application to the α + α system and comparison with experiments



Starting point: microscopic approach

• A pointlike nucleons interacting via inter-nucleon potentials

• Pauli-antisymmetrization between nucleons taken into account

• all physical quantities are derived from the internal many-body Schrödinger
equation

HΨ =

 A∑
i=1

p2
i

2mN
+

A∑
i>j=1

vij − Tc.m.

Ψ = ET Ψ,

where

• p2
i /2mN is the kinetic energy of nucleon i

• vij is a two-body interaction between nucleons i and j

• Tc.m. is the kinetic energy of the center of mass



Nucleon-nucleon interaction

• The NN interaction is divided in two parts:

v12 = vN
12 + vC

12.

• nuclear part vN
12=Minnesota potential

− well adapted to cluster wave function
− central potential with spin-isospin dependence (one parameter)
− (+spin-orbit potential with isospin dependence) (one parameter)

[D. R. Thompson and M. LeMere and Y. C. Tang, Nucl. Phys. A 286 (1977) 53]

• Coulomb part (vC
12)



Resonating-Group Method

• The α cluster is described by a Slater determinant in the harmonic-oscillator shell
model

Φα = A|(0s)4p ↑ p ↓ n ↑ n ↓〉 = φαϕcm

• The RGM wave function is expanded as

Ψ` = AφαφαY`(Ω12)
u`(r12)

r12

• Inserting the RGM wave function in Schrödinger equation⇒∫ ∞
0

r2[H`(r , r ′)− EN`(r , r ′)]
u`(r)

r
dr

where

H`(r , r ′) = 〈φαφαY`(Ω12)
δ(r − r12)

rr12
|H` − Eα − Eα|AφαφαY`(Ω12)

δ(r ′ − r12)

r ′r12
〉

N`(r , r ′) = 〈φαφαY`(Ω12)
δ(r − r12)

rr12
|AφαφαY`(Ω12)

δ(r ′ − r12)

r ′r12
〉

• Solving the RGM equation by expanding u` with the microscopic R-matrix.
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Microscopic R-matrix

0 a ρ

Internal region External region

Microscopic description

u`(r) =
∑

n A`nfn(r)

-Antisymmetrization between
clusters neglected

-Only Coulomb interaction
between c.m. clusters

[D. Baye, P.-H. Heenen, and M. Libert-Heinemann, Nucl. Phys. A 291 (1977) 230]

[M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, and D. Baye, Nucl. Phys. A 640, 37 (1998)]

[P. Descouvemont and D. Baye, Rep. Prog. Phys. 73 (2010) 036301]



Microscopic R-matrix in equations

• RGM equation (formally)
H`u`(r) = Eu`(r)

where the potential is energy-dependent and non-local!

• replaced by Bloch-Schrödinger equation on internal region

(H` + L− E)uint
` (r) = Luext

` (r)

and
uint
` (a) = uext

` (a)

where Bloch operator makes H` + L Hermitian over the internal region and
enforces the continuity of the derivative of u` at r = a

L ∝ δ(r − a)

(
d
dr
−

B
r

)
• Convenient as well for scattering state (E input, B=0), bound state as resonances

(E unknown, B energy-dependent⇒ iterations (≈10))

• Enable accurate determination of effective range parameters and zero-energy
S-factor. [D. Baye and E. Brainis, PRC 61 (2000) 025801] [O. L. Ramírez Suárez and J-M.
Sparenberg, PRC 88 (2013) 014601]



α + α phase shifts
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Bremsstrahlung cross sections

• The bremsstrahlung cross sections are obtained from the reduced matrix
elements of the electromagnetic transition multipole operators between the
collision wave functions at initial colliding energy Ei and final energy Ef

〈Ψlf (Ef )||Mσ
λ||Ψli (Ei )〉

where σ = E or M and λ is the order of the transition

• The photon energy is approximately given by

Eγ ≈ Ei − Ef

• For the α+ α bremsstrahlung, the E2 transitions are dominant at low photon
energy (E1 forbidden and M1 forbidden at the long-wavelength approximation).



Divergence problem

• In most microscopic applications, the electric operators are defined by

ME
λµ = e

A∑
j=1

(
1
2
− tj3

)
|r j − Rc.m.|λYµλ (Ωr j−Rc.m. )

which corresponds to the Siegert form of the electric multipole transition operator
at the long-wavelength approximation.

• However, in the study of the continuum-continuum transitions, this form leads to
divergent matrix elements. Indeed,

ME
λµ −→ρ→∞ e

[
Z1(A2/A)λ + Z2(−A1/A)λ

]
ρλYµλ (Ωρ)

and on the external region,

〈Ψlf (Ef )||ME
λ||Ψli (Ei )〉ext ∝∫∞

a [Flf (ρ) cos δlf + Glf (ρ) sin δlf ]︸ ︷︷ ︸
non−decreasing oscillating function

ρλ [Fli (ρ) cos δli + Gli (ρ) sin δli ]︸ ︷︷ ︸
non−decreasing oscillating function

dρ

• ⇒ divergence!



Electric transition multipole operators

• The electric transition multipole operators are defined by

ME
λµ = (−i)σ

√
λ

λ+ 1
(2λ+ 1)!!

kλγ c

∫
J(r) · AE

λµ(r)dr ,

where J is the intrinsic nuclear current density and

AE
λµ(r) =

i

kγ
√
λ(λ+ 1)

(
k2
γr + ∇

∂

∂r
r
)

jλ(kγ r)Yλµ(Ω)

• The nuclear current is caused by the motion of the nucleons and
also by the motion of the mesons which are responsible for the internucleon
interaction
• Two difficulties: J depends on the considered NN potential (More complex is the

NN potential, more complex is the current) and it is not defined unequivocally
• These difficulties can be bypassed at low-photon energies by using an extended

Siegert theorem, which enables us to reduce the nuclear current
dependence.
[K.-M. Schmitt, P. Wilhelm, H. Arenhovel, A. Cambi, B. Mosconi, and P. Ricci, Phys. Rev. C 41, 841 (1990)]

[JDE, D. Baye, Phys. Rev. C 88 (2013) 024602] [JDE, Phys. Rev. C 89 (2014) 024617] [JDE, D. Baye, Phys.

Rev. C 90, (2014) 034611]



Extended Siegert theorem

Ingredients
• separation of AE

λµ in a gradient term (dominant at low photon energy) and a rest
• Continuity equation which links current and charge densities

∇ · J(r) +
i
~

[H, ρ(r)] = 0

Derivation

ME
λµ ∝

∫
J(r) · AE

λµ(r)dr

∝
∫

J(r) ·∇Φλµ(r)dr +

∫
J(r) · AE′

λµ(r)dr

∝ −
∫

∇J(r)Φλµ(r)dr +

∫
J(r) · AE′

λµ(r)dr

∝
i
~

∫
[H, ρ(r)]Φλµ(r)dr +

∫
J(r) · AE′

λµ(r)dr

• Operator evaluated between eigenstates of the Hamiltonian⇒

M
E(S)
λµ ∝ −i

Eγ
~

∫
ρ(r)Φλµ(r)dr +

∫
J(r) · AE′

λµ(r)dr



Extended Siegert theorem

• ME
λµ and M

E(S)
λµ lead to the same results if consistent current and charge densities

and exact eigenstates of the Hamiltonian are used.

• The dominant part of M̃E(S)
λµ at low photon energy depends on the charge density.

• The operator ME(S)
λµ should be preferred in microscopic calculations because

1. it leads to easier calculations than ME
λµ (if some reasonable approximation is done)

2. derivatives of the wave functions, which are known less accurately than the wave
function itself, are avoided (if some reasonable approximation is done)

3. the charge density is less sensitive to the meson-exchange currents than the current
density



Back to the divergence problem

ME
λµ −→

ρ→∞
oscillating function divided by ρ2

M
E(S)
λµ −→

ρ→∞
oscillating function divided by ρ

• ⇒ no divergence problem even for continuum-continuum transition!

Main reason: the long-wavelength approximation is not
done!



Comparison with experiments
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In the so-called Harvard geometry, the photon is undetected.



Harvard geometry
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• α + α bremsstrahlung cross sections in the Siegert (full lines) and non-Siegert (dashed lines) approaches

• Experimental data from [B. Frois, J. Birchall, C. R. Lamontagne, U. von Moellendorff, R. Roy, and R. J.

Slobodrian Phys. Rev. C 8 (1973) 2132] [U. Peyer, J. Hall, R. Muller, M. Suter, and W. Wolfli. Phys. Lett. 41B

(1972) 151]

• Figure from [JDE, D Baye, Phys. Rev. C 88 (2013) 024602]



Integrated cross sections

• The bremsstrahlung cross sections integrated over the angles and the photon
energy have been measured for two colliding energies Ei

σ(Emin,Emax) =

∫ Emax

Emin

dσ
dEγ

dEγ .

Ei (MeV) Emin (MeV) Emax (MeV) Siegert non-Siegert Exp.
10.85 5.0 12.5 200 (178) 219 (199) 165±54
12.95 7.0 14.5 44 (12) 53 (24) 39±26

• Theoretical and experimental cross sections σ(Emin,Emax) in nb for two initial
energies. In parentheses, cross sections considering only 4+ to 2+ transitions are
given.

• Experimental data from [V. M. Datar et al., Phys. Rev. Lett. 94, (2005) 122502]

• Table from [JDE, D Baye, Phys. Rev. C 88 (2013) 024602]



Integrated cross sections

0

50

100

150

200

8 9 10 11 12 13 14

σ
(n
b
)

(a)

Ei (MeV)

0

50

100

150

200

8 9 10 11 12 13 14

σ
(n
b
)

(b)

Ei (MeV)

Cross sections σ(Emin,Emax) as a function of the initial energy Ei for (a)
[Emin,Emax] = [5.0, 12.5] MeV and (b) [Emin,Emax] = [7.0, 14.5] MeV in the Siegert (full
lines) and non-Siegert (dashed lines) approaches.
Experimental data from [V. M. Datar et al., Phys. Rev. Lett. 94, (2005) 122502]

Figure from [JDE, D Baye, Phys. Rev. C 88 (2013) 024602]



Integrated cross sections
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Figure from [JDE, D Baye, Journal of Physics: Conf. Ser. 569 (2014) 012074]
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Cross sections σ(Emin,Emax) as a function of the initial energy Ei for
[Emin,Emax] = [3.4, 10.5] MeV in the Siegert (full lines) and non-Siegert (dashed lines)
approaches.
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Figure from [JDE, D Baye, Journal of Physics: Conf. Ser. 569 (2014) 012074]
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Cross sections σ(Emin,Emax) as a function of the initial energy Ei for (a)
[Emin,Emax] = [5.3, 14] MeV in the Siegert (full lines) and non-Siegert (dashed lines)
approaches.
Experimental data from [V. M. Datar et al., Phys. Rev. Lett. 111 (2013) 062502]

Figure from [JDE, D Baye, Journal of Physics: Conf. Ser. 569 (2014) 012074]



Comparison with experiments

• Good description of elastic scattering with the microscopic cluster approach

• Good agreement between theory and experiment for the differential α+ α
bremsstrahlung cross sections in the Harvard geometry (but large error bars).

• Good agreement between theory and experiment for the integrated α+ α
bremsstrahlung cross sections from [Dat05](but large error bars)

• Bad agreement between theory and experiment for the integrated α+ α
bremsstrahlung cross sections from [Dat13] (small error bars)

• Differences between Siegert and non-Siegert approaches are rather small for the
considered energies and configurations (→ α+ α system is well described by a
cluster wave function)

• Importance to compare theoretical and experimental integrated bremsstrahlung
cross sections for the same photon-energy range is emphasized

• OPEN QUESTIONS: Are experimental error bars too optimistic? Does the cluster
model really fail to reproduce the experimental bremsstrahlung cross sections? Is
there some mismatch between the physical quantities which are measured and
the ones which are calculated?



α+N bremsstrahlung

Motivation

• Direct comparison between theory and experiment possible for the α+ p
bremsstrahlung

• α+ n bremsstrahlung describes the final channel of t(d , γn)α

• α+N systems well described by microscopic cluster models and ab initio
approach*!
*G. Hupin, S. Quaglioni, P. Navrátil, PRC 90 (2014) 061601(R)
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α + N bremsstrahlung
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[JDE, Phys. Rev. C 89 (2014) 024617]

• Peak at the final energy corresponding approx. to the 3/2− resonance



α + N bremsstrahlung
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• Peak at the final energy corresponding approx. to the 3/2− resonance



Effective charge

• The ratio of the orders of magnitude of the electric transition contributions can be
explained by comparing the effective charges defined by

Z (λ)
eff = Z1

(
A2

A

)λ
+ Z2

(
−A1

A

)λ
• In first approximation, the ratio between the contributions of a given electric

transition for the α+ p and α+ n bremsstrahlung cross sections is given by the
square of the ratio between the effective charges

dσ(αp,Eλ)

dσ(αn,Eλ)
≈

Z (λ)
eff,αp

Z (λ)
eff,αn

2



Coplanar configuration
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In the so-called Harvard geometry, the photon is undetected.



α(N, αN)γ bremsstrahlung

0

10

20

30

40

4 8 12 16

d2 σ
/d

Ω
1d

Ω
2

(µ
b/

sr
2 )

Ei (MeV)

α + p(E1 + E2) (a)

0

10

20

30

40

4 8 12 16
d2 σ

/d
Ω

1d
Ω

2
(µ

b/
sr

2 )
Ei (MeV)

α + n (E1 + E2) (b)

Experimental data from [W. Wölfli, J. Hall, and R. Müller, Phys. Rev. Lett. 27 (1971) 271]

Figure from [JDE, Phys. Rev. C 89 (2014) 024617]



Towards an ab initio approach

Motivation

• More fundamental

• No parameter adjusted specifically on the studied collision.

• Good description of the αN elastic scattering with NCSMC

• Not restricted to cluster systems (d and t target/projectile can be
considered)

Cluster to ab initio

• Effective interaction→ realistic/chiral EFT interaction

• (0s)4 cluster→ NCSM cluster+NCSM A-body state

• one channel→ multi-channel (open+closed)

• Microscopic R-matrix on a Lagrange mesh→ Microscopic R-matrix on a Lagrange
mesh
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Unitary transformation

• NCSM unadapted to (bare) realistic potential (convergence too slow)

• Solution: modify the model space by a Unitay operator Φ→ UΦ

• Calculating the matrix elements by applying the transformations to the operators

(〈Φ|U†)O(U|Φ〉) = 〈Φ|(U†OU)|Φ〉

• In practice, U†OU is often truncated.

• Implementations: UCOM, SRG,...

• Linked with Couple Cluster, Complex Scaling Method,...



NCSM/RGM (very preliminary!)

  

J. Dohet-Eraly, S. Quaglioni, P. Navrátil, G. Hupin, arXiv:1501.02744.
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Radiative captures

Motivation: the nuclear reaction in stars

• Radiative captures play an important role in the synthesis of elements in the stars

• Rates of these reactions are essential for describing quantitatively the evolution of

the stars

• Radiative capture processes take place at low energies, out of reach of the

experiments

• ⇒ NUCLEAR MODELS ARE NEEDED



Motivation:pp-chains

• Among the nuclear reactions which take place in the stars, the pp-chains play a
central role. Indeed, they are the first reactions which synthesize nuclear elements
since they do not require any catalyst.

p + p → 2H + e+ + νe

2H + p → 3He + γ

3He + 3He→ α+ p + p 3He + α→ 7Be + γ

7Be + e− → 7Li + νe
7Be + p → 8B + γ

7Li + p → α+ α 8B→ α+ α+ e+ + νe

Branch I Branch II Branch III
≈ 69% ≈ 30.9% ≈ 0.1%

• The relative rates of the 3He(α, γ)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.



Bound state with NCSMC

• In the NCSMC, the A-nucleon wave function is expanded as

|ΨJπT
A 〉 =

∑
λ

cλ |AλJπT 〉︸ ︷︷ ︸
NCSM

+
∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Aν |ΦJπT

νr 〉︸ ︷︷ ︸
NCSM/RGM

|AλJπT 〉 = approximate eigenstates of the A-nucleon Schrödinger equation
obtained within the No-Core Shell Model.

|ΦJπT
νr 〉 =

[(
|A1α1Iπ1

1 T1〉|A2α2Iπ2
2 T2〉

)IT Y`(Ω12)
] δ(r − r12)

rr12

= Cluster states where the clusters are approximate eigenstates

(ground state and excited states) of the A1- or A2- nucleon

Schrödinger equation within the No-Core Shell Model

*S. Baroni, P. Navratil, and S. Quaglioni, Phys. Rev. Lett 110, 022505 (2013); Phys. Rev. C 87, 034326 (2013)



Scattering state with NCSMC

• In the NCSMC, the A-nucleon wave function is expanded as

|ΨJπT
A 〉 =

∑
λ

cλ |AλJπT 〉︸ ︷︷ ︸
NCSM

+
∑
ν

∫
dr r2 γ

JπT
ν (r)

r
Aν |ΦJπT

νr 〉︸ ︷︷ ︸
NCSM/RGM

|AλJπT 〉 = These states are essential to improve the quality of the wave function
at short inter-cluster distances.

|ΦJπT
νr 〉 =

[(
|A1α1Iπ1

1 T1〉|A2α2Iπ2
2 T2〉

)IT Y`(Ω12)
] δ(r − r12)

rr12

= Cluster states where the clusters are approximate eigenstates

(ground state and excited states) of the A1- or A2- nucleon

Schrödinger equation within the No-Core Shell Model

*S. Baroni, P. Navratil, and S. Quaglioni, Phys. Rev. Lett 110, 022505 (2013); Phys. Rev. C 87, 034326 (2013)



α +3 He

• NCSMC calculations with SRG N3LO NN potenital (λ = 2.1 fm−1)
• Preliminary: Nmax = 12;~Ω = 20 MeV
• 3He, α ground state
• 8 eigenstates with negative parity of 7Be
• 6 eigenstates with positive parity of 7Be
• Eth(7Be) = −1.70 MeV ; Eexp(7Be) = −1.59 MeV



α +3 H

• NCSMC calculations with SRG N3LO NN potenital (λ = 2.1 fm−1)
• Preliminary: Nmax = 12;~Ω = 20 MeV
• 3H, α ground state
• 8 eigenstates with negative parity of 7Li

• 6 eigenstates with positive parity of 7Li

• Eth(7Li) = −2.62 MeV ; Eexp(7Li) = −2.47 MeV



3He(α, γ)7Be
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3He(α, γ)7Be
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3He(α, γ)7Be
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7Be and 7Li properties

E(MeV) λ (fm−1)
7Be 3/2− -1.70 2.1

-1.59 exp
-1.33 2.2

1/2− -1.44 2.1
-1.16 exp
-1.08 2.2

7Li 3/2− -2.62 2.1
-2.47 exp
-2.24 2.2

1/2− -2.34 2.1
-1.99 exp
-1.97 2.2



3H(α, γ)7Li
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3H(α, γ)7Li
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3H(α, γ)7Li
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Conclusion

• The NCSMC enables us to describe the bound states and the scattering states
within the same framework.

• Hence, the radiative capture processes can be described in a rigorous way.
• The approach is applied to the 7-nucleon system:
− the 7Be and 7Li ground states
− the α +3 He and α +3 H elastic scattering
− and the 3He(α, γ)7Be and 3H(α, γ)7Li radiative captures

are studied.

• The results are qualitatively in agreement with the experiments.

• A quantitative comparison requires to increase the size of the NCSMC basis and
to include three-nucleon forces.

• The accuracy could be improved by considering the full E1 operator (especially for
the highest photon energies, which are considered).



Summary

Bremsstrahlung

• Microscopic cluster model of bremsstrahlung was developed

• Divergence problem is solved by an extended Siegert theorem

• Applied to αα bremsstrahlung. Discrepancies with the most recent experimental
data

• Applied to αN bremsstrahlung.

• Development of an ab initio NCSMC approach of bremsstralung in progress

• Prospect:apply to N(α,Nγ)α and t(d , nγ)α

Radiative captures

• ab initio NCSMC approach is developed

• Restricted currently to 2-nucleon forces

• Applied to 3He(α, γ)7Be and 3H(α, γ)7Li
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