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Reactions and Structure employing the 
Dispersive Optical Model in a broader context

•Why Green’s functions? 

•Ab initio and 

•as a framework to analyze experimental data (and 
extrapolate and predict properties of exotic nuclei) 

--> dispersive optical model (DOM) 

• Focus on recent DOM —> DSM developments 

• Some surprises! 

• Conclusions
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What do nucleons do in the nucleus?
• Shell model from 1949 with residual interaction? Not enough! 

• Why do nuclei have the central density they have? Unanswered 

• Do they sit in independent-particle model orbits all the time? 

• Even electrons do other things some of the time! 

• Properly executed --> Green’s function answers a question from Sir Denys 
Wilkinson: “What does a nucleon do in the nucleus?”

⇥1s(p) =
23/2

�

1
(1 + p2)2

Hydrogen 1s wave function “seen” 
experimentally in (e,2e)  reaction 
Phys. Lett. 86A, 139 (1981)

But in other atoms slight deviations!
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Remarks

• Given a Hamiltonian, a perturbation expansion can be generated 
for the single-particle propagator 

• Dyson equation determines propagator in terms of nucleon self-
energy 

• Self-energy is causal and obeys dispersion relations relating its 
real and imaginary part 

• Data constrained self-energy acts as ideal interface between ab 
initio theory and experiment
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Propagator / Green’s function
• Lehmann representation 

• Any other single-particle basis can be used 

• Overlap functions                    --> numerator  

• Corresponding eigenvalues       --> denominator 

• Spectral function 

• Spectral strength in the continuum 

• Discrete transitions 

• Positive energy —> see later
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Propagator from Dyson Equation and “experiment”
Equivalent to …

Self-energy: non-local, energy-dependent potential 
With energy dependence: spectroscopic factors < 1 
⇒ as extracted from (e,e’p) reaction

Schrödinger-like equation with:

Dyson equation also yields                                                    for positive energies

Elastic scattering wave function for protons or neutrons 
Dyson equation therefore provides: 
Link between scattering and structure data from dispersion relations

Spectroscopic factor
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Propagator in principle generates
• Elastic scattering cross sections for p and n 

• Including all polarization observables 

• Total cross sections for n 

• Reaction cross sections for p and n 

• Overlap functions for adding p or n to bound states in Z+1 or N+1 

• Plus normalization --> spectroscopic factor 

• Overlap function for removing p or n with normalization 

• Hole spectral function including high-momentum description 

• One-body density matrix; occupation numbers; natural orbits 

• Charge density 

• Neutron distribution 

• p and n distorted waves 

• Contribution to the energy of the ground state from VNN



reactions and structure

Dispersive Optical Model
• Claude Mahaux 1980s 

– connect traditional optical potential to bound-state potential 

– crucial idea: use the dispersion relation for the nucleon self-energy 

– smart implementation: use it in its subtracted form  

– applied successfully to 40Ca and 208Pb in a limited energy window 

– employed traditional volume and surface absorption potentials and a local 
energy-dependent Hartree-Fock-like potential 

– Reviewed in Adv. Nucl. Phys. 20, 1 (1991) 

• Radiochemistry group at Washington University in St. Louis: 
Charity and Sobotka propose to use it for a sequence of Ca 
isotopes —> data-driven extrapolations to the drip line 
- First results 2006 PRL 

- Subsequently —> attention to data below the Fermi energy related to 
ground-state properties —> Dispersive Self-energy Method (DSM)
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Optical potential <--> nucleon self-energy
• e.g. Bell and Squires --> elastic T-matrix = reducible self-energy 
• Mahaux and Sartor  

– relate dynamic (energy-dependent) real part to imaginary part 

– employ subtracted dispersion relation 

General dispersion relation for self-energy: 

Calculated at the Fermi energy 

Subtract 

�F = 1
2

�
(EA+1

0 � EA
0 ) + (EA

0 � EA�1
0 )

⇥
Re �(E) = �HF � 1

�
P
Z 1

E+
T

dE0 Im �(E0)

E � E0 +
1

�
P
Z E�

T

�1
dE0 Im �(E0)

E � E0

Re �(⇥F ) = �HF � 1

�
P
Z 1

E+
T

dE0 Im �(E0)

⇥F � E0 +
1

�
P
Z E�

T

�1
dE0 Im �(E0)

⇥F � E0

Re �(E) = Re �
gHF (⇥F )

� 1

�
(⇥F � E)P

Z 1

E+
T

dE0 Im �(E0)

(E � E0)(⇥F � E0)
+

1

�
(⇥F � E)P

Z E�
T

�1
dE0 Im �(E0)

(E � E0)(⇥F � E0)

Adv. Nucl. Phys. 20, 1 (1991)



reactions and structure

Recent local 
DOM analysis 
--> towards 

global
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Elastic scattering data for protons and neutrons
• Abundant for stable targets
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Local DOM ingredients and transfer reactions
• Overlap function 

• p and n optical potential 

• ADWA (developed by Ron Johnson) 

• MSU-WashU:-->  

• 40,48Ca,132Sn,208Pb(d,p)

E        
2            
13        

19.3           
56 

  
   

CH+ws 

0.94 
0.82 
0.77 
1.1 

  

DOM 

0.72 
0.67 
0.68 
0.70

N. B. Nguyen, S. J. Waldecker, F. M. Nuñes, R. J. Charity, and W. H. Dickhoff

Phys. Rev. C84, 044611 (2011), 1-9
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132Sn(d,p)
• Does it work when the potentials are extrapolated? 

• Data: K.L. Jones et al., Nature 465, 454 (2010) 

• Ed = 9.46 MeV    132Sn(d,p)133Sn 

• CH89+ws --> S1f7/2 =1.1 

• DOM       --> S1f7/2 =0.72
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Nonlocal DOM implementation PRL112,162503(2014)

• Particle number --> nonlocal imaginary part 
• Microscopic FRPA & SRC --> different nonlocal properties above 

and below the Fermi energy 
• Include charge density in fit 
• Describe high-momentum nucleons <--> (e,e’p) data from JLab 

Implications 

• Changes the description of hadronic reactions because interior 
nucleon wave functions depend on non-locality 

• Consistency test of the interpretation of (e,e’p) possible 
• Independent “experimental” statement on size of three-body 

contribution to the energy of the ground state--> two-body only: 
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Differential cross sections and analyzing powers
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Reaction (p&n) and total (n) cross sections
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Nonlocal imaginary self-energy: 
proton number --> 19.88   
neutron number -> 19.79 
S0d3/2= 0.76 
S1s1/2 = 0.78  
0.15 larger than NIKHEF analysis! 

`  5
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40Ca spectral function

Old (p,2p) data from Liverpool 
or (e,e’p) from Saclay
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Correlations from nuclear reactions

Different optical potentials --> 
different reduction factors 
for transfer reactions 
Spectroscopic factors > 1 
??? 
PRL 93, 042501 (2004) HI 
PRL 104, 112701 (2010) Transfer

(e,e’p)

Recent summary —> Jenny Lee 

Different reactions different 
results??? 

In (e,e’p) proton still has to get 
out of the nucleus —> optical 
potential 
Nucl. Phys. A553,297c (1993) 

Consistency study in progress

Linking nuclear reactions and nuclear structure —> DOM
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• Extracting information on correlations beyond the independent particle 
model requires optical potentials in (e,e’p), (d,p),(p,d),(p,pN), etc. 

• Quality of ab initio to describe elastic scattering or optical potentials 
should be improved substantially and urgently

Linking nuclear reactions and nuclear structure

Coupled cluster calculation using 
overlap functions 
PRC86,021602(R)(2012) 
Probably limited to low energy

Green’s function 
result —> optical 
potential with 
emphasis on SRC only 
PRC84,044319(2011)

40Ca
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High-momentum components
Rohe, Sick et al. JLab data for Al and Fe (e,e’p) 
per proton
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Jefferson Lab data per proton
• Pion/isobar contributions cannot be described 
• Rescattering contributes some cross section (Barbieri, Lapikas)
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Critical experimental data
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Historical perspective...
• The following authors identify the single-particle propagator (or 

self-energy) as central quantities in many-body systems 

• but apart from qualitative features, they don’t answer what it 
looks like for a real system like a nucleus!

Abrikosov, Gorkov, Dzyaloshinski 
(Methods of Quantum Field Theory in Statistical Physics, 1963 Dover Revised edition 1975), 

Pines 
(The Many-body Problem, 1961 Addison Wesley reissued 1997), 

Nozieres 
(Theory of Interacting Fermi Systems, 1964 Addison-Wesley reissued 1997), 

Thouless 
(The Quantum Mechanics of Many-body Systems, 1972 Dover reissue of second edition, 2014), 

Anderson 
(Concepts in Solids, Benjamin 1963; World Scientific reissued 1998), 

Schrieffer 
(Theory of Superconductivity, 1964 Benjamin revised 1983), 

Migdal 
(Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Interscience, 1967), 

Fetter and Walecka 
(Quantum Theory of Many-particle Systems, 1971 Dover reissued 2003)
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Energy of the ground state
• Energy sum rule (Migdal, Galitski & Koltun) 

• Not part of fit because it can only make a statement about the 
two-body contribution 

• Result:  
– DOM ---> 7.91 MeV/A              T/A ---> 22.64 MeV/A 

– 10% of the particles (those with momenta above 1.4 fm-1) provide ~⅔ of the 
binding energy! 

– Exp.         8.55 MeV/A 

– Three-body ---> 0.64 MeV/A attraction 

– Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18
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Do elastic scattering data tell us about correlations? 
• Scattering T-matrix 

• Free propagator 

• Propagator 

• Spectral representation 

• Spectral density 

• Coordinate space 

• Elastic scattering explicit
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Adding an s1/2 neutron to 40Ca

Multiplied by r2
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d3/2

• One node now
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No nodes
• Asymptotically determined by inelasticity
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Determine location of bound-state strength
• Fold spectral function with bound state wave function 

• —> Addition probability of bound orbit 
• Also removal probability 

• Overlap function 

• Sum rule
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Spectral function for bound states
• [0,200] MeV —> constrained by elastic scattering data
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proton number --> 19.88   
neutron number -> 19.79 
S0d3/2= 0.76 
S1s1/2 = 0.78  
0.15 larger than NIKHEF analysis! 



• Orbit closer to the continuum —> more strength in the continuum 

• Note “particle” orbits 

• Drip-line nuclei have valence orbits very near the continuum 

• 48Ca in progress —> more later this week
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Quantitatively

Table 1: Occupation and depletion numbers for bound orbits in 40Ca.
dnlj [0, 200] depletion numbers have been integrated from 0 to 200 MeV. The
fraction of the sum rule that is exhausted, is illustrated by nn`j + dn`j ["F , 200].
Last column dnlj [0, 200] depletion numbers for the CDBonn calculation.

orbit nn`j dn`j [0, 200] nn`j + dn`j ["F , 200] dn`j [0, 200]
DOM DOM DOM CDBonn

0s1/2 0.926 0.032 0.958 0.035
0p3/2 0.914 0.047 0.961 0.036
1p1/2 0.906 0.051 0.957 0.038
0d5/2 0.883 0.081 0.964 0.040
1s1/2 0.871 0.091 0.962 0.038
0d3/2 0.859 0.097 0.966 0.041
0f7/2 0.046 0.202 0.970 0.034
0f5/2 0.036 0.320 0.947 0.036 PRC90,  061603(R) (2014)



reactions and structure

In progress
• 48Ca —> charge density has been measured 
• Recent neutron elastic scattering data —> PRC83,064605(2011) 
• Local DOM  OLD                               Nonlocal DOM NEW
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Preliminary results 48Ca
• Density distributions 
• DOM —> neutron distribution —> Rn-Rp 
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Conclusions
• It is possible to link nuclear reactions and nuclear structure  
• Vehicle: nonlocal version of Dispersive Optical Model (Green’s 

function method) pioneered by Mahaux —> DSM 
• Can be used as input for analyzing nuclear reactions 
• Can predict properties of exotic nuclei 
• “Benchmark” for ab initio calculations: e.g. VNNN —> binding 
• Can describe ground-state properties  

– charge density & momentum distribution 

– spectral properties including high-momentum Jefferson Lab data 

• Elastic scattering determines depletion of bound orbitals 

• Outlook: reanalyze many reactions with nonlocal potentials... 
• For N ≷ Z exhibits sensitivity to properties of neutrons —> weak 

charge in progress


