

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Radiative Capture Reactions of and into Exotic Nuclei

Barry Davids TRIUMF INT, Seattle, March 2015

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Solar Fusion: pp Chain

- pp chain responsible for 99% of solar energy release
- Adelberger *et al.*, Rev. Mod. Phys. 83, 195 (2011)

Rates of pp Chain Reactions

Mar 2015

TRIUMF

Quiescent Stellar Burning

- Radiative capture reaction rates determine energy release, neutrino production, and nucleosynthesis in Sun and other stars
- ${}^{3}\text{He} + \alpha \rightarrow {}^{7}\text{Be} + \gamma (\pm 5\%)$
- $^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma (\pm 8\%)$
- ${}^{14}N + p \rightarrow {}^{15}O + \gamma (\pm 7\%)$
- Solar neutrino fluxes now measured to ±3% (⁸B) and ±5% (⁷Be)

Solar Abundance Problem

- Neutrino fluxes strongly correlated with core temperature due to sensitivity of thermally averaged reaction rates
- CNO cycle neutrino fluxes also depend linearly on primordial solar core number densities of C & N
- Hence sufficiently precise solar neutrino flux measurements can be used
 to deduce primordial core composition
- By forming a ratio of neutrino fluxes nearly independent of core temperature under variations of all other parameters can isolate linear dependence on total C+N number density (Haxton & Serenelli)
- 3D solar atmospheric model results imply lower heavy element abundance than simple model but disagree with sound speed profile deduced from helioseismology
- Can distinguish between two abundances of heavy elements
- Can test assumption that primordial Sun was homogeneous (core abundances obtained from solar surface observations)
- Segregation of metals in protoplanetary disk could reconcile helioseismology and surface abundances

Prospects

- Borexino might be able to detect CNO neutrinos
- SNO+ can potentially measure ¹⁵O flux to ±10% in 3 years of running
- Until then, limiting theoretical uncertainties are $^7\text{Be} + p \rightarrow ^8\text{B} + \gamma \ \&^{14}\text{N} + p \rightarrow ^{15}\text{O} + \gamma$
- ${}^{7}\text{Be} + p \rightarrow {}^{8}\text{B} + \gamma \text{ error dominated by low-}$ energy extrapolation
- ${}^{14}N + p \rightarrow {}^{15}O + \gamma R$ matrix fit depends on width of 6.79 MeV state in ${}^{15}O$

Outline

- Radiative capture reactions on exotic nuclei have small cross sections which can nevertheless sometimes be measured directly
- For heavy exotic nuclei, this becomes more challenging due both to decreasing cross sections and difficulty of acceleration
- In cases where direct measurements remain impossible, reaction theory needed to interpret experimental results, e.g., sorting out roles of compound nuclear and direct reaction mechanisms

RIUMF

ISAC's Recoil Separator

BRAGON Measurements

Measured with DRAGON at 3 energies

INT Workshop

DRAGON Focal Plane Energy Spectrum

- Recoil energy spectra free from background
- More statistics collected than all previous DRAGON experiments combined
- Established world record beam suppression of
- > 1.2 × 10¹⁴ (90% CL)

TRIUMF

Angular Distribution

B.T. Kim et al., Phys. Rev. C 23, 33 (1981)

Radiative Captures

INT Workshop

⁸⁷Be(p,y)⁸B Solar Reaction Rate

INT Workshop

S₁₇(0)

Current recommendation is 20.8 eV b (±8%), of which ±7% is due to theoretical extrapolation

RIUMF Next Step: ⁷Be + p Elastic & Inelastic Scattering

- P. Navrátil et al., Phys. Lett. B 704, 379 (2011)
- Colorado School of Mines scattering chamber "SPIKE" to be commissioned in 2015

INT Workshop

I. Lopes and S. Turck-Chièze, Ap. J 765, 14 (2013)

INT Workshop

Solar Fusion: CNO Cycle

||| Be* +

150 Level Structure

- Require ${}^{14}N(p,\gamma){}^{15}O$ cross section at 30 keV
- LUNA experiments only go down to $E_{cm} = 70 \text{ keV}$
- Energy below low-energy limit of direct γ ray measurements
- Extrapolate to low energies using R-matrix analysis of S-factor

FRIUMF

 ^{15}O

S factor of $14N(p,\gamma)^{15}O$

- Considerable uncertainty in reaction rate is due to width, Γ, of 6.79 MeV state
- Knowledge of Γ would strongly constrain the R-matrix fit

Doppler Shift Lifetime Measurements

- Obtain width from lifetime: $\tau = \hbar / \Gamma$
- Lifetimes measured via Doppler shift of emitted γ rays
- Short lifetime ⇒ large Doppler shift, long lifetime ⇒ small Doppler shift
- Shapes of detected γ ray lines yield lifetimes, sensitive to < 1 fs

®TRIUMF Doppler Shift Lifetimes Facility

y Ray Spectra

TRIUMF

6.18 MeV State

6.86 MeV State

6.79 MeV State

150 Lifetimes

Excitation Energy (MeV)	Galinski <i>et al.</i> 2014 (fs)	Bertone <i>et al.</i> 2001 (fs)	Yamada <i>et al.</i> 2004 (fs)	Schürmann <i>et al.</i> 2008 (fs)	ENSDF (fs)
6.1763(17)	< 2.5	2.10 +1.33 -1.32		< 0.77	≤ 2.5
6.7931(17)	< 1.8	1.60 +0.75 -0.72	> 0.42	< 0.77	≤ 28
6.8594(9)	13.3 + ^{0.9} -1.2				16.01±2.45

Another Attempt

GAN Experimental method and setup The experiment for the measurement of the lifetime of the 6.79 MeV level in ¹⁵O July 2010, exp. spokespersons: ¹⁴N (32 MeV) + ²H \rightarrow mainly: ¹⁵O (Q_{qs}=5.1 MeV) R. Menegazzo, C.A. Ur **15N** (Q_{qs} =8.6 MeV) (Tandem XTU, LNL) @ 32 Mev AdvancedGAmmaTrackingArray Demonstrator asymmetric triple-clusters 4 12 36-fold segmented HPGe reaction chamber Efficiency and Energy resolution: ≈0.3 µm ²H @ 1.3MeV : ≈2% (≈2.7%), 2.5 keV onto 3.8 mg/cm² ¹⁹⁷Au @ 7 MeV : ≈0.5% (≈0.7%), 4.8 keV digital electronics \rightarrow decomposition of signal shapes \rightarrow pulse Shape Analysis \rightarrow beam (z) axis gamma-ray tracking $\overline{E_{\gamma}} = E_{\gamma}(6792 \ keV) \ \frac{\sqrt{1-\beta^2}}{1-\beta \cos\theta}$ $\vartheta \approx 160 \deg \rightarrow \cos \vartheta \approx -0.94$ first interaction point and γ energy $\beta = \left| \frac{\vec{v}}{c} \right| = 0.06 \rightarrow \overline{E_{\gamma}} \sim 6400 \text{ keV}$ event-by-event

Paris, 2014 January 8th

RIUMF

6

Reaction Mechanism

Kinematics of the emitting nuclei

both ¹⁵O and ¹⁵N excited levels are mainly populated *via* nucleon (proton and neutron, respectively) transfer reactions

Line Shapes

Kinematics of the emitting nuclei effect on the γ lineshape

Novae

- Accretion of H- & He-rich matter from low-mass main sequence star onto surface of white dwarf via disk
- When accreted layer is thick enough, temperature and pressure at base sufficient to initiate thermonuclear runaway
- H in accreted layer is "burnt" via nuclear reactions
- Layer ejected, enriching ISM with nucleosynthetic products
- Repeats nearly ad infinitum w/ recurrence time $\sim 10^{4-5}$ yr
- γ rays from ⁷Be, ¹⁸F, ²²Na, and ²⁶Al sought by satellites

^δTRIUMF p(¹⁸F,γ)¹⁹Ne Measurement

- Measured 665 keV resonance with DRAGON
- Previously only upper limit from Rehm *et al.* at ANL's FMA
- Resonance strength 19 (+45,-16) meV @95%CL, hence not an important contributor

INT Workshop

[®]τπιωμε p(³⁸K,γ)³⁹Ca Measurement

Study of 700 keV, 5/2+ resonance with DRAGON

[®]TRIUMF p(³⁸K,γ)³⁹Ca Measurement

G. Christian

Implications

 Greg Christian heading to University of Victoria this week to study implications in slowly accreting ONe novae with Falk Herwig and Pavel Denissenkov using MESA and NuGRID

Going Heavier

- Generally speaking heavy beams only react appreciable at high energies characteristic of supernovae
- Need recoil separator with larger electric and magnetic rigidity limits
- New recoil spectrometer EMMA under construction at TRIUMF
- ⁸³Rb(p,γ)⁸⁴Sr letter of intent accepted (G. Lotay)

EMMA in ISAC-II

EMMA: The ISAC-II Recoil Spectrometer

- Solid angle = $\pm 4^{\circ}$ by $\pm 4^{\circ} = 20$ msr
- Energy acceptance = +25%, -17%
- Mass/charge acceptance = $\pm 4\%$
- 1st order m/q resolving power = 500 for 1 mm beamspot
- •3rd order m/q resolving power for uniform spreads of \pm 3° by \pm 3° (11 msr), \pm 10% Δ E/E is 366 (FWHM)

Focal Plane Detectors

Position Spectrum

Bamaged EMMA Shipment

INT Workshop

Electrode Supports

Broken Ceramic Insulators

EMMA: Current State

Conclusions

- Radiative capture reactions on exotic nuclei have small cross sections which can nevertheless sometimes be measured directly (e.g., ¹⁸F)
- For heavy exotic nuclei, this becomes more challenging due both to decreasing cross sections and difficulty of acceleration (e.g., ³⁸K)
- In cases where direct measurements remain impossible, reaction theory needed to interpret experimental results, (e.g., compound nuclear and direct reaction mechanisms for the lifetime of 6.79 MeV state in ¹⁵O)

References and Credits

- E. G. Adelberger *et al.*, Rev. Mod. Phys. 83, 195 (2011)
- W. Haxton, R.G.H. Robertson, & A.M. Serenelli, Ann. Rev. Astron. Astrophys. 51, 21 (2013)
- S.K.L. Sjue et al., NIM A 700, 179 (2013)
- N. Galinski et al., PRC 90, 035803 (2014)
- C. Akers et al., PRL 110, 262502 (2013)
- Charlie Akers, Greg Christian (DRAGON)
- Alex Rojas, Jon Lighthall (EMMA)