The T $(t, 2n)\alpha$, T $({}^{3}\text{He}, np)\alpha$, and ${}^{3}\text{He}({}^{3}\text{He}, 2p)\alpha$ Reactions at Low Energies

Carl R. Brune

Ohio University

5 March 2015

INT Workshop INT 15-58W: Reactions and Structure of Exotic Nuclei

Overview of Presentation

- \blacktriangleright T(t, 2n) α Inertial Confinement Fusion Experiment
- **Example 3** Results and Analysis of Neutron Energy Spectrum
- **In Measurement of Thermonuclear Reaction Rate**
- \blacktriangleright T(³He, *np*) α and ³He(³He, 2*p*) α Experiments
- \triangleright Conclusions and Outlook

Motivation and Background

- \triangleright Study reaction mechanism: ⁵He and di-neutron correlations
- \triangleright R-Matrix description of 3-particle final states
- \triangleright Study mirror symmetry
- ^I Demonstrate measurement of charged-particle reaction rate in plasma
- \triangleright The cross section and neutron spectrum are important for inertial confinement fusion

National Ignition Facility

images courtesy LLNL

Similar capabilities exist at the Laboratory for Laser Energetics (LLE) at Rochester (Omega Laser), but $\approx 50 \times$ less powerful

Unique Features of ICF Environment for Nuclear Physics

as compared to accelerator-based approaches

- ► Low mass near target
- \blacktriangleright Sharp time structure
- \triangleright Possibility of high neutron fluxes
- \triangleright Willingness to work with tritium

Measurement of the $T(t, 2n)\alpha$ at the National Ignition Facility

- \triangleright Nearly pure tritium gas $(0.1\%$ D), low areal density "symcap" (gas-filled plastic capsule)
- $\triangleright \approx 200$ ps thermonuclear burn time
- $\triangleright kT = 3.3(3) \text{ keV} \rightarrow E_{\text{Gamma}}(T + T) = 16 \text{ keV}$
- \triangleright 2 organic liquid scintillators (xylene) \odot 20 and 22 meters, respectively
- \blacktriangleright Modeling includes:
	- \triangleright Instrument Response Function (time response)
	- \triangleright Scintillator response (efficiency)
	- \triangleright Attenuation and scattering
	- \blacktriangleright Thermal broadening
	- \blacktriangleright Background from $T(d, n)$ (small)

Raw Data from Equator Detector @ 20.1 m

Fits to Time Spectra

General Comments on the Phenomenological R-Matrix Method (2-Body Case)

- \triangleright Exact implementation of quantum-mechanical symmetries and conservation laws (Unitarity)
- \triangleright Treats long-ranged Coulomb potential explicitly
- ► Wavefunctions are expanded in terms of unknown basis functions
- \triangleright Energy eigenvalues and the matrix elements of basis functions are adjustable parameters, which are typically optimized via χ^2 minimization
- \triangleright A wide range of physical observables can be fitted (e.g. cross sections, E_r , Γ_r ,...)
- \triangleright The fit can then be used to determine unmeasured observables
- \triangleright Better than the alternatives (effective range, K-matrix...)
- ▶ Major Approximations: truncation (levels / channels), channel radius

 $T(t, 2n)\alpha$ R-Matrix Modeling (3-Body Case)

Carl Brune, Dan Sayre, Jac Caggiano, Andy Bacher, Gerry Hale, Mark Paris

- \triangleright Three-body final state treated in Faddeev-inspired approach
- \triangleright Kinematics (recoil) is more complicated
- \blacktriangleright Angular correlation effects on spectrum
- \blacktriangleright Identical particles / antisymmetrization
- \triangleright F.C. Barker formalism + angular momentum coupling + antisymmetrization
	- $-$ D.P. Balamuth, R.W. Zurmühle, and S.L. Tabor, Phys. Rev. C 10, 975 (1974).
	- $-$ D.F. Geesaman *et al.*, Phys. Rev. C 15, 1835 (1977).
	- $-$ H.O.U. Fynbo *et al.*, Phys. Rev. Lett **91**, 082502 (2003).

Two-Body Interactions are Modeled in an R-matrix Approach

 $n - \alpha$ R-matrix parameters: Stammbach and Walter (1972).

The singlet nn is modeled with a one-level R-matrix that reproduces the scattering length and effective range of the Argonne V18 potential.

Some Formulas

▶ Our form for the matrix element:

$$
\mathcal{M}_{\nu_1 \nu_2} = \sum_c u_c(12) f_{\nu_1 \nu_2}^{lJ}(\Omega_1, \Omega_{23}) - u_c(21) f_{\nu_2 \nu_1}^{lJ}(\Omega_2, \Omega_{13})
$$

 \blacktriangleright u_c is given by an R-matrix expression:

$$
u_c(12) = \left[\frac{P_1 P_{23}}{p_1 p_{23}}\right]^{1/2} e^{i(\omega_1 - \Phi_1)} e^{i(\omega_{23} - \Phi_{23})} \frac{\sum_{\lambda} \frac{A_{c\lambda} \gamma_{c\lambda}}{E_{c\lambda} - E_{23}}}{1 - [S_{23} - B_c + iP_{23}]R_c}
$$

 \blacktriangleright $f_{\nu_1\nu_2}^{lJ}$ contains the spin and angular information:

$$
f_{\nu_1\nu_2}^{lJ}(\Omega_1, \Omega_{23}) = \sum_{m,m_l,m_l'} \frac{(-1)^{J+m}}{\sqrt{2J+1}} \langle l m_l \frac{1}{2} \nu_1 | J m \rangle \langle l m_l' \frac{1}{2} \nu_2 | J-m \rangle Y_{l m_l}(\hat{\mathbf{p}}_1) Y_{l m_l'}(\hat{\mathbf{p}}_{23})
$$

 \blacktriangleright The particle distribution is given by

$$
\frac{d^3N}{dE_i\,\Omega_i\,d\Omega_j} = \sum_{\nu_1,\,\nu_2} |\mathcal{M}_{\nu_1\nu_2}|^2 \, p_i p_{jk} \mathcal{J}_{ijk}
$$

A 0⁺ (l = 0) initial t + t state is assumed, and $c = 1/2^+$, $1/2^-$, $3/2^-$, $n + \alpha$ or an $l = 0$ spin-singlet di-neutron state.

The resulting formula for the particle spectra...

is not so simple, and I will not repeat it here. The key step is the application of an obscure addition theorem for spherical harmonics that was first given by M.E. Rose [Journal of Mathematics and Physics 37, 215 (1958)]:

$$
Y_{lm}(\hat{\mathbf{c}}) = \sum_{\substack{\lambda_1 + \lambda_2 = l \\ \nu_1 + \nu_2 = m}} a^{\lambda_1} b^{\lambda_2} \langle \lambda_1 \nu_1 \lambda_2 \nu_2 | lm \rangle \sqrt{\frac{4\pi (2l+1)!}{(2\lambda_1 + 1)!(2\lambda_2 + 1)!}} Y_{\lambda_1 \nu_1}(\hat{\mathbf{a}}) Y_{\lambda_2 \nu_2}(\hat{\mathbf{b}}),
$$

where $\hat{\mathbf{c}} = \vec{\mathbf{a}} + \vec{\mathbf{b}}$ with $\vec{\mathbf{a}} = a\hat{\mathbf{a}}$ and $\vec{\mathbf{b}} = b\hat{\mathbf{b}}$.

Findings:

- \blacktriangleright Antisymmetrization is very important
- Angular correlations are important for the $3/2^ n + \alpha$ channel:

 $W(\theta) = 1 + P_2(\cos \theta)$

 \triangleright There *is* coherent interference between different partial waves

Neutron Energy Distributions

Neutron energy distributions for each channel considered separately. The primary, secondary, exchange, and total are given by the dotted, dashed, dot-dashed, and solid curves, respectively. Only the total is shown for the nn case.

Coherent Interference Effects

- \blacktriangleright Interference contributions to the neutron energy distributions for partial wave combinations indicated.
- \blacktriangleright There is minimal coherent interference between the 3/2− and 1/2− contributions.

R-Matrix Fitting

Assume $3/2^-$, $1/2^-$, $1/2^+$ *n*- α and singlet *nn* channels.

- \blacktriangleright Explore all combinations of channels.
- \blacktriangleright Fit both detectors simultaneously.
- Best fit yields $\chi^2_{\text{min}} = 632$ when all A_{λ} included (812 data points):

$T(t, 2n)\alpha$ Neutron Spectrum $E_{c.m.} = 16 \text{ keV}$

Sayre, Caggiano et al., Rev. Lett. 111, 052501 (2013). Di-neutron not included.

 $T(t, 2n)\alpha$ Neutron Spectrum $E_{c.m.} = 16 \text{ keV}$

Jarmie and Brown, NIM B10/11 405 (1985) Measured alphas – preliminary results...

Fig. 8. T(t. α)nn reaction raw data for 45° lab angle and 115 keV bombarding energy. Note the large peak of alpha-particles from the 0.5% deuterium contaminant in the target gas.

Fig. 9. Integrated S functions for the T(t, α)nn reaction. Our preliminary data are the black circles with 5% absolute errors. Also shown are the data of Govorov et al. (triangles) ref. [10]; Agnew et al. (crosses) [11]; and Serov et al. (squares) [12]. The solid curve is an R-matrix prediction of Hale [13], and the dashed curve is from the compilation of Greene [14].

α-Particle Spectrum Extracted from Jarmie and Brown (1985)

The prediction from the fit with the di-neutron (Fit 16) is much better: $\chi^2 = 46$ versus 140 for 35 data points.

Dalitz Plot from Best Fit (Fit 16)

Determination of Thermonuclear Reaction Rate

\blacktriangleright Definition:

$$
\langle \sigma v \rangle = \sqrt{\tfrac{8}{\pi \mu (kT)^3}} \int_0^\infty E \sigma(E) \exp[-E/(kT)] \, dE
$$

▶ Principle of measurement:

- \triangleright Measure ratio to T(d, n) reaction rate (known to ≈ 1%)
- \blacktriangleright H.-S. Bosch and G.M. Hale, Nucl. Fusion 32 611 (1992)
- Assume constant S factor for $T(t, 2n)\alpha$
- \triangleright Mass spectrometry of capsule fill gas:
	- ighthartixt tritium: 99.598(4) $%$
	- \blacktriangleright deuterium: 0.082(1) %
	- \blacktriangleright remainder: protium and ³He
- ▶ Yield-weighted ion temperature determination:
	- ightharpoonup width of "14 MeV" neutron peak from $T(d, n)$
	- **Figure 1** Brysk Formula: $\sigma[E_n] \approx \sqrt{\frac{2M_n\langle E_n\rangle}{M_\alpha + M_n}}$ $\frac{2M_n \langle E_n \rangle}{M_\alpha + M_n}(kT)$
	- \blacktriangleright H. Brysk, Plasma Physics 15, 611 (1973)
	- \triangleright Actual analysis uses a more sophisticated approach, including, e.g., relativistic kinematics

Reaction Rate Ratio is Insensitive to Temperature

 $T(d,n)$ and $T(t,2n)$ Reactivity Integrands for $kT = 3.3$ keV

Systematic Errors Considered:

- \blacktriangleright Fuel mixture uncertainty
- \blacktriangleright Spectrum fitting
- \triangleright Ion temperature determination (small)
- \triangleright Total systematic error is estimated to be 10%

Analysis and Results

 \blacktriangleright Numbers of neutrons:

- \blacktriangleright $N_{DT} \propto n_D n_T \langle \sigma v \rangle_{DT}$ $\blacktriangleright N_{TT} \propto \frac{n_T^2}{2} \langle \sigma v \rangle_{TT} \times 2$ \blacktriangleright $\frac{N_{TT}}{N_{DT}} = \frac{n_T}{n_D}$ $\langle \sigma v \rangle_{TT}$ $\langle \sigma v \rangle_{DT}$
	- \blacktriangleright watch factors of two!
- \blacktriangleright Spectral fitting:
	- $N_{DT} = 3.9(3) \times 10^{12}$
	- $N_{TT}/N_{DT} = 4.5(4)$
	- \triangleright $kT = 3.3(3)$ keV (burn-weighted)

 $S(16 \text{ keV}) = 200(20) \text{ keV-b}$

Comparison to other Data

Note the energy averaging in the plasma is not that different than many of the accelerator measurements, e.g., if a "stopping" target is used.

Summary, Open Questions, and Outlook for $T(t, 2n)\alpha$

- \triangleright Only the 3/2⁻ (⁵He g.s.) provides a distinct feature in the neutron spectrum.
- Interpretation of the continuum remains somewhat ambiguous.
- It would be interesting to measure the neutron spectrum below 4 MeV .
- It would also be nice to measure the α -particle spectrum, particularly near the endpoint.
- \blacktriangleright The reaction rate for $T(t, 2n)\alpha$ has been measured in plasma conditions.
- Improved neutron neutron detectors are now online at NIF:
	- \triangleright solid bibenzyl crystals
	- \triangleright better sensitivity and less time response tail
	- $\triangleright \rightarrow$ improved neutron spectrum measurements
- ^I A study of the temperature dependence of the neutron spectrum and reaction rate is underway at Omega (LLE facility at Rochester) and NIF.

$T(^{3}He, np)\alpha$ and $^{3}He(^{3}He, 2p)\alpha$

- \triangleright Measurements are underway at LLE by a group from MIT: Johan Frenje, Alex Zylstra, Maria Gatu-Johnson, et al.
- \triangleright Requires proton detection, for example by a Magnet Recoil Spectrometer (MRS).
- ▶ Allows tests of isospin and mirror symmetry.

Outlook

- \blacktriangleright Measurements of particle spectra and cross sections for the $T(t, 2n)\alpha$, $T(^{3}He, np)\alpha$, and $^{3}He(^{3}He, 2p)\alpha$ reactions have been recently completed or are in progress.
- In Further work on R-matrix approaches to three-body states is underway.
- \triangleright This approach could also be applied to other three-body final state problems where particle correlations can be measured, such as ${}^{16}Be \rightarrow 2n + {}^{14}Be$.

where evidence for the di-neutron has been reported:

A. Spyrou et al., Phys. Rev. Lett. 108, 102501 (2012).

Thanks to collaborators:

- D.T. Casey, J.A. Caggiano, R. Hatarik, D.P. McNabb, D.B. Sayre, V.A. Smalyuk (Lawrence Livermore National Lab)
- G.M. Hale, M.W. Paris (Los Alamos National Lab)
- J.A. Frenje, M. Gatu-Johnson, A.B. Zylstra (MIT)
- A.D. Bacher (Indiana), M. Couder (Notre Dame)