Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Towards ab-initio calculations of electromagnetic reactions in exotic nuclei

Sonia Bacca | Theory Department | TRIUMF | Physics Department | Univ. of Manitoba

In collaboration with: Nir Barnea, Gaute Hagen, Mirko Miorelli, Thomas Papenbrock, Giuseppina Orlandini, *et al.*

INT workshop on "Reactions and Structure of Exotic Nuclei"

National Research Council Canada

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Electromagnetic Reactions

Pigmy Resonance

Motivations

Electromagnetic probes (coupling constant <<1)

"With the electro-magnetic probe, we can immediately relate the cross section to the transition matrix element of the current operator, thus to the structure of the target itself"

$$\sigma \propto |\langle \Psi_f | J^\mu | \Psi_0 \rangle|^2$$

[De Forest-Walecka, Ann. Phys. 1966]

 For few-nucleons one can perform exact calculations both for bound and scattering states test the nuclear theory on light nuclei and extend it to

heavier mass number

- Provide important informations in other fields of physics, where nuclear physics plays a crucial role:
 - Astrophysics: γ interactions with nucleonic matter, radiative capture reactions, ν interactions with nucleonic matter (vector current as em)
 - Atomic physics (nuclear corrections to atomic levels, etc.)

Particle physics (neutrino-less double beta decay, neutrino-nucleus interactions)

March 3rd 2015

Electromagnetic Reactions

Photo-nuclear Reactions

Reactions resulting from the interaction of a photon with the nucleus

For photon energy 15-25 MeV stable nuclei across the periodic table show a wide and large peak

Sonia Bacca

Electromagnetic Reactions

Photo-nuclear Reactions

Reactions resulting from the interaction of a photon with the nucleus

For photon energy 15-25 MeV stable nuclei across the periodic table show a wide and large peak

Coulomb excitations

Inelastic scattering between two charged particles. Can use unstable nuclei as projectiles.

4

Neutron-rich nuclei show fragmented low-lying strength

Sonia Bacca

&triumf

Ab-initio Theory Tools

Review Paper: Electromagnetic Reactions on Light Nuclei S. Bacca and S. Pastore J. Phys. G: Nucl. Part. Phys. **41** 123002 (2014).

March 3rd 2015

Sonia Bacca

CTRIUMF

Ab-initio Theory Tools

March 3rd 2015

Sonia Bacca

Lorentz Integral Transform Method

Efros, et al., JPG.: Nucl.Part.Phys. **34** (2007) R459

Reduce the continuum problem to a bound-state problem

$$R(\omega) = \oint_{f} \left| \left\langle \psi_{f} \left| J^{\mu} \right| \psi_{0} \right\rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$
$$L(\sigma, \Gamma) = \int d\omega \frac{R(\omega)}{(\omega - \sigma)^{2} + \Gamma^{2}} = \left\langle \tilde{\psi} \right| \tilde{\psi} \right\rangle < \infty$$

where
$$\left| ilde{\psi}
ight
angle$$
 is obtained solving

$$(H - E_0 - \sigma + i\Gamma) |\tilde{\Psi}\rangle = J^{\mu} |\Psi_0\rangle$$

• Due to imaginary part $\Gamma_{\widetilde{L}}$ the solution $|\psi
angle$ is unique

• Since $\langle ilde{\psi} | ilde{\psi}
angle$ is finite, $| ilde{\psi}
angle$ has bound state asymptotic behaviour

 $L(\sigma,\Gamma) \xrightarrow{\text{inversion}} R(\omega)$

The exact final state interaction (FSI) is included in the continuum rigorously!

Solved for A=3,4,6,7 with hyper-spherical harmonics expansions and for A=4 with NCSM

March 3rd 2015

Sonia Bacca

Tuesday, 3 March, 15

Giant Dipole Resonance in A=6

with Hyperspherical Harmonics

March 3rd 2015

Sonia Bacca

Extension to medium-mass nuclei

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

• CC is optimal for closed shell nuclei $(\pm 1, \pm 2)$ Uses particle coordinates $|\psi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle = e^{T}|\phi_{0}(\vec{r}_{1},\vec{r}_{2},...,\vec{r}_{A})\rangle$ reference SD with any sp states $T = \sum T_{(A)}$ cluster expansion $T_2 = \frac{1}{4} \sum_{ij,ab} t^{ab}_{ij} \ a^{\dagger}_a a^{\dagger}_b a_j a_i$ T_2 T_3 CCSD CCSDT $N < N_{max}$ Model space truncation $n_{o}^{2}n_{u}^{4}$ Computational load

Tuesday, 3 March, 15

Extension to medium-mass nuclei

Develop new many-body methods that can extend the frontiers to heavier and neutron nuclei

• CC is optimal for closed shell nuclei $(\pm 1, \pm 2)$

Uses particle coordinates

$$\langle \psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A) \rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A) \rangle$$

reference SD with any sp states

What about electro-weak reactions?

LIT+CC can possibly extend calculations of inelastic reactions into medium-mass nuclei!

LIT with Coupled Cluster Theory

New theoretical method aimed at extending *ab-initio* calculations towards medium-mass

S.B. et al., PRL 111, 122502 (2013)

$$\begin{split} (H - z^*) |\tilde{\Psi}\rangle &= J^{\mu} |\psi_0\rangle \\ \text{with } z = E_0 + \sigma + i\Gamma \\ \bar{H} = e^{-T} H e^T \\ \bar{\Theta} = e^{-T} \Theta e^T \\ L(\sigma, \Gamma) &= \left\langle \tilde{\Psi} | \tilde{\Psi} \right\rangle \\ & \bullet \\ L(\sigma, \Gamma) = \left\langle \tilde{\Psi}_L | \tilde{\Psi}_R \right\rangle = \\ -\frac{1}{2\pi} \Im \left\{ \langle \bar{0}_L | \bar{\Theta}^{\dagger} \left[| \tilde{\Psi}_R(z^*) \rangle - | \tilde{\Psi}_R(z) \rangle \right] \\ \text{with } | \tilde{\Psi}_R(z^*) \rangle &= \hat{R}(z^*) | \Phi_0 \rangle \end{split}$$

Formulation based on the solution of an Equation of Motion with source No approximations done so far!

Present implementation in the CCSD scheme

$$T = T_1 + T_2$$

$$\hat{R} = \hat{R}_0 + \hat{R}_1 + \hat{R}_2$$

March 3rd 2015

Sonia Bacca

Chiral Effective Field Theory

Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Meissner, Nogga, Machleidt,...

Construct an effective Lagrangian which respects the chiral symmetry and is written as an expansion in powers of $\frac{Q}{\Lambda_b}$ $\mathcal{L} = \sum_k c_k \left(\frac{Q}{\Lambda_b}\right)^k$

Details of short distance physics not resolved, but captured in low energy coupling constants, fit to experiment once

Systematic expansion of the potential in many-body terms

Traditional Paradigm: calibrate NN on NN scattering data calibrate 3N on 3N data

Tests and Results from NN only

 $H(\Lambda) = T + V_{NN}(\Lambda) + V_{3N}(\Lambda) + V_{4N}(\Lambda) + \dots$

 $V_{NN} > V_{3N} > V_{4N}$

March 3rd 2015

Tuesday, 3 March, 15

Sonia Bacca

LIT with Coupled Cluster Theory

New theoretical method aimed at extending *ab-initio* calculations towards medium mass

Validation for ⁴He

Comparison of CCSD with exact hyperspherical harmonics (EIHH) with NN forces at N³LO

The comparison with exact theory is very good!

Sonia Bacca

LIT with Coupled Cluster Theory

New theoretical method aimed at extending *ab-initio* calculations towards medium mass

S.B. et al., PRL 111, 122502 (2013)

Extension to Dipole Response Function in ¹⁶O with NN forces derived from χ EFT (N³LO)

The position of the GDR in ¹⁶O is described from first principles for the first time!

March 3rd 2015

Sonia Bacca

Addressing neutron-rich nuclei

²²O with NN forces derived from χ EFT (N³LO)

S.B. et al., PRC 90, 064619 (2014)

March 3rd 2015

Tuesday, 3 March, 15

FRIUMF

Sonia Bacca

Addressing heavier nuclei

⁴⁰Ca with NN forces derived from χ EFT (N³LO)

S.B. et al., PRC 90, 064619 (2014)

March 3rd 2015

Sonia Bacca

Tuesday, 3 March, 15

16

Electric Dipole Polarizability

The comparison with experiment is very good

March 3rd 2015

Sonia Bacca

Tuesday, 3 March, 15

Electric Dipole Polarizability

M. Miorelli et al., in preparation (2015)

Medium-mass nuclei with NN(N³LO)

The present Hamiltonian underestimates both radii and electric dipole polarizabilities

March 3rd 2015

Sonia Bacca

Conclusions and Outlook

- Electromagnetic break up reactions are very rich observables to test our understanding of nuclear forces
- Extending first principles calculations to medium mass nuclei is possible and very exciting: more applications/impact on experiments in the future

Perspectives

- Other multipole excitation: electric quadrupole or monopole, magnetic dipole in medium mass nuclei
- Add triples excitations: \hat{R}_3, T_3
- Extend first principle calculations to the weak sector: Gamow-Teller transitions

See talk by Gaute Hagen on Wed

Thank you!

March 3rd 2015