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¡  PDFs	characterize	the	momentum	distributions	of	quarks	and	
gluons	inside	the	nucleon.	

¡  They	are	important	inputs	for	making	predictions	in	high-energy	
scattering	experiments.	
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From J. Rojo’s talk at 
SLAC, 2015 
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¡  PDFs	induce	large	uncertainty	in	Higgs	production	at	the	LHC.	

¡  A	better	understanding	and	precise	determination	of	PDFs	
required	to	help	us	understand	the	standard	model	and	
disentangle	new	physics	effects.	
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¡  PDFs	are	the	universal	properties	of	nucleons	

§  Nucleons	are	bound	states	of	quarks	and	gluons	described	by	the	
fundamental	theory	of	QCD.	

§  The	quarks	and	gluons	are	strongly	interacting	and	relativistic,	PDFs	
are	intrinsically	non-perturbative.	

¡  Our	knowledge	of	PDFs	is	mainly	driven	by	the	data	from	
state-of-the-art	high-energy	programs,	BCDMS,	SLAC,	
NMC,	JLab,	HERA,	E866,	CDF,	DØ,	COMPASS,	RHIC,	
JPARC,	LHC,	…,	(see	talks	by	Nocera	and	Schmidt),	but	a	
first	principle	study	of	PDFs	is	still	behind.	
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¡  The	nucleon	wavefunction	|P>	is	usually	defined	at	equal	
time	and	includes	lots	of	complexities:	valence	quarks,	
sea	quarks,	gluons;	

¡  An	equal-time	wavefunction	is	not	frame	independent:	
§  Under	a	Lorentz	boost	Λ,	|P>	transforms	as	

§  U(Λ)	depends	on	the	interaction,	so	the	transformation	U(Λ(P))	
is	not	kinematic,	but	dynamical.	
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P =U(Λ(p)) P = 0
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¡  In	high	energy	scattering,	the	nucleon	is	travelling	at	a	
large	momentum	relative	to	the	probe;	

§  The	time	scale	of	the	interaction	between	quarks	and	gluons	is	
dilated	due	to	relativistic	effects;	

§  When	the	nucleon	exchanges	a	hard	momentum	with	the	probe	
within	an	“impulse”,	the	struck	quark	or	gluon	almost	does	not	
feel	the	other	constituents;	

§  In	the	infinite	momentum	frame	(IMF),	this	picture	becomes	
simple	as	the	quarks	and	gluons	appear	like	free	particles,	i.e.,	
partons.	
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¡  However,	the	IMF	can	never	be	achieved	in	reality,	so	
this	picture	is	an	approximation	for	high-energy	
scattering:	
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equivalent to the use of IMF.] The parton density can be described as the matrix element of
gauge-invariant operators in hadron states, and since the cross section is gauge-invariant by
itself, this means that the on-shell parton scattering cross section is also gauge-invariant and
can be calculated independently in any gauge. This can also be seen from that the parton
cross sections involve only on-shell parton scattering. The gauge-invariance, however, masks
the physical property of the parton density operator. For example, the quark longitudinal-
momentum density distribution

q(x) =
1

2P+

∫
dλ

2π
eiλx⟨PS|Ψ(λn)γ+Ψ(0)|PS⟩ , (18)

where n is a light-like four-vector n2 = 0 and the nucleon momentum is P µ = (P 0, 0, 0, P 3),
with P · n = 1. Ψ(ξ) is a gauge-invariant quark field defined through multiplication of a
light-cone gauge link

Ψ(ξ) = exp

(
−ig

∫ ∞

0

n · A(ξ + λn)dλ

)
ψ(ξ) . (19)

This gauge link ensures that whenever a partial derivative or canonical momentum of colored
quarks appears, the gauge potential Aµ must be present simultaneously to make it a covariant
derivative (kinetic momentum), Dµ = ∂µ + igAµ. Indeed, taking its moments,

∫
xn−1q(x)dx ∼ nµ1 ...nµn⟨P |ψ(0)γµ1iDµ2 ...iDµnψ(0)|P ⟩ , (20)

we see that the parton momentum distribution refers to the gauge-invariant kinetic momen-
tum! The kinetic momentum structure is clearly seen through Feynman diagrams in Fig.
1: Gauge symmetry requires that a parton with kinetic momentum k+ = xP+ includes the
sum of all diagrams with towers of longitudinal gluon A+ insertions.

x y x− y y z x− y − z

A+ A+ A+

FIG. 1: Deep-inelastic scattering process in which the gauge invariance involving the longitudinal
quark kinetic momentum xP+ is achieved through insertions of gluons with longitudinal polariza-
tion A+.

Simple parton physics emerges in the light-cone gauge A+ = 0, where the light-cone
gauge link disappears, all the covariant derivatives in Eq. (20) become partial ones, i.e.,
the canonical momentum and the simple quark field become physical. One can use the
light-cone quantization to write

ψ+(ξ) =

∫
dk+d2k⊥
2k+(2π)3

[
d†(k+, k⊥)v(k

+, k⊥)e
i(k+ξ−−k⃗⊥·ξ⃗⊥) + b(k+, k⊥)u(k

+, k⊥)e
−i(k+ξ−−k⃗⊥·ξ⃗⊥)

]

(21)
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From Ji, Xu, and 
Zhao, JHEP, 2012

•  Leading	twist	effect	
•  Sensitive	to	the	soft	scales	at	

higher-twist	
•  One	has	to	fix	to	the	light-cone	

gauge	A+=0	to	eliminate	the	
longitudinal	gluons,	and	thus	have	
a	clear	partonic	picture.	

•  AP	(Altarelli,	Parisi,	1977)	equation	
was	derived	in	the	IMF.	



¡  The	IMF	picture	of	parton	physics	is	replaced	by	light-
cone	quantization,	in	which	the	probe	is	moving	at	the	
speed	of	light	and	the	nucleon	is	at	rest:	
§  In	light-cone	quantization,	the	wavefunction	is	defined	at	equal	

light-cone	time	ξ+=(x0+x3)/√2=0;	
§  The	Hamiltonian	HLC=P-	can	be	used	to	formulate	“time”-

independent	perturbation	theory	as	in	non-relativistic	quantum	
mechanics;	

§  The	nucleon	wavefunction	can	have	a	Fock	space	expansion	
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to the moments of parton distributions [11]. However, measuring operators matrix elements
with many derivatives is intrinsically noisy, and as such, one can only evaluate the first few
moments. Over the years, people have invented approaches to overcome this di�culty [12–
14], but none has been promising enough for realistic numerical simulations.

An alternative approach that has been advocated strongly by some is light-front quantiza-
tion [15–17], related to the form of the time-independent perturbation theory in the IMF [7].
Actually the light-front formulation of a dynamical theory goes back more than half a cen-
tury to Dirac’s original paper [18]. The formalism goes roughly as follows: Consider ⇠+ as
the new time and introduce the equal ”time” commutators to quantize the field theory. The
fields at ⇠+ = 0 have canonical plane-wave expansions in terms of the Fock particles. The
new hamiltonian is ĤLC = P̂�, which can be used to develop time-independent perturba-
tion theory as in non-relativistic quantum mechanics. One can then go on to determine the
spectrum of P� and eigenstates by solving the non-perturbative Schrödinger-like equation,

P̂�|P i = (M2/2P+)|P i , (3)

where eigenvalue M2 is the hadron mass, and P+ is the light-front momentum. In QCD, it
is most convenient to work with A+ = 0 gauge, the Fock particles are partons. The hadron
states can be expressed in terms of the Fock expansion [17],

|P i =
X

n↵,�i

Z
⇧

i

dx
i

d2k?ip
2x

i

(2⇡)3
 
n↵

(x
i

, k?i

,�
i

)
��n↵ : x

i

P+, k?,i

,�
i

↵
, (4)

where n is the number of partons, �
i

are helicity labels. All partons have the longitudinal
fraction x

i

, and transverse momentum k?,i

. Index ↵ sums over possible amplitudes  
n↵

for
a given parton number and parton helicities. The examples of the proton and meson Fock
states can be found in Ref. [19, 20]. Once we have the light-front wave functions, one can
calculate any parton physics observables of interest.

Solving a field theory on the light-cone front is notoriously di�cult, despite the many
nice features of the theory such as the vacuum becomes ”trivial”, and one more generator
of the Lorentz group becoming kinematical, etc. [17]. Apart from two-dimensional theories
and perturbative expansion in terms of the number of Fock particles, no systematic ap-
proximation has been found for non-perturbative calculations in 3+1 dimension. Unlike the
ordinary formulation of asymptotic field theories whose static properties can be simulated
on Euclidean lattices, no such formalism exists for light-front theories. The di�culty might
be related to the fact that they are intrinsically Minkowskian. A hybrid formulation of the
light-front theories in terms of the transverse lattice has been proposed and explored [21],
but so far it has not lead to successful simulations.

In recent publications, a new approach to calculating parton distributions using Euclidean
lattice QCD has been proposed [22–26]. This approach essentially goes back to the original
definition of the parton densities by Feynman, i.e., starting with the ordinary momentum
distribution n(~k, P z) related to the space correlation function of the quark fields in a hadron.
This quantity is calculable using ordinary lattice QCD. However, it depends on the hadron
momentum P z. The Feynman distribution is obtained in the limit of P z ! 1 limit, i. e,

q(x) ⇠ lim
Pz!1

Z
d2k?dk

zn(~k, P z)�(x� kz/P z) . (5)

The lattice simulations, however, cannot provide an infinite P z result directly. How can one
then recover the P z = 1 limit from a moderately-large-P z result that might be possible on
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¡  The	PDFs	can	be	defined	as	light-cone	correlations	
along	the	“new	spatial	direction”	ξ-=(x0-x3)/√2:	

§  The	light-cone	gauge	link	ensures	its	gauge	invariance;	
§  Invariant	under	the	boost	along	the	nucleon	momentum	

direction;	
§  In	the	light-cone	gauge	A+=0,	has	clear	interpretation	as	parton	

density:	
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One of the greatest simplifications in describing physics of hadron scattering at high en-
ergy, such as production of Higgs bosons at the Large Hadron Collider (LHC) [2], is the
parton model introduced by R. Feynman [1]. According to this, a fast moving hadron, such
as proton, can be viewed as a beam of noninteracting quarks and gluons (partons) charac-
terized by their momentum density, q(x) and g(x), where x is the fraction of the longitudinal
momentum carried by the parton, x = kz/P z with the hadron momentum P z ! 1. Then
the hard-scattering cross sections involving the hadrons can be calculated as the convolu-
tion of the basic parton scattering cross sections �̂ and parton densities. In the fundamental
theory of strong interactions, quantum chromodynamics (QCD), this simple picture can be
justified by the so-called factorization theorems [3–5]. The only corrections introduced by
quantum field theory is that the parton densities are scheme and scale dependent, and the
latter can be studied through renormalization group equations [6]. The scheme and scale
dependence of the parton densities are of course cancelled by the similar dependences of par-
ton scattering cross sections, leaving the physical quantities invariant under the perturbative
definitions of partons.

While parton scattering cross sections can be computed in QCD perturbation theory
thanks to asymptotic freedom, the parton densities are intrinsically non-perturbative. As
mentioned above, Feynman’s definition of parton density was made in the infinite momen-
tum frame (IMF), in which the parent hadrons have an infinite momentum [1]. This seems
to be a mathematical limit di�cult for intuitive understandings. The exact notion of the
infinite-momentum limit can actually be understood by boosting Feynman diagrams in per-
turbation theory, as was done by Weinberg [7]. Over the years, however, one found that
it is convenient to formulate the parton density in the formalism of light-cone correlation
function [8]: Introduce the light-cone coordinates,

⇠± =
1

2
(⇠0 ± ⇠3) , (1)

and similarly for other four-vectors, where ⇠µ (µ = 0, 1, 2, 3) is the space-time coordinates
(reserving x for the momentum fraction) and the hadron is moving in the 3 or z-direction.
The parton density is now calculated as the matrix elements of the non-local correlator [9],

q(x, µ2) =

Z
d⇠�

4⇡
e�ix⇠

�
P

+hP | (⇠�)�+ (2)

⇥ exp

 
�ig

Z
⇠

�

0

d⌘�A+(⌘�)

!
 (0)|P i ,

where  the quark Dirac field, Aµ is the gluon potential, g is the strong coupling, µ2 is the
renormalization scale. Here the infinite boost factors all disappeared, and IMF physics is
reflected entirely through the boosted quark and gluon operator. The above matrix element
is now independent of the hadron external momentum P µ! The price one pays, however,
is that the parton density no longer represents a equal-time correlation, as was originally
defined in the IMF by Feynman.

Although a significant progress is made by getting rid of the infinite boost, the light-
cone correlation functions by no means are easy to calculate. For instance, to use Wilson’s
lattice QCD method [10], which is intrinsically Euclidean, one has to get rid of the real
time dependence. One has to Taylor-expand the separation between the quark fields and
obtain the local operators with multiples of derivatives, whose matrix elements are related

2

q(x) ~ d 2k⊥ dk
+n(k+,k⊥ )δ(x − k

+ / P+ )∫
Oct.	22,	2015	



¡  Despite	its	nice	features,	calculating	PDFs	in	light-cone	
quantization	is	difficult,	
§  No	systematic	approximation	has	been	found	in	solving	QCD	in	

light-cone	quantization	in	3+1	dimensions;	
§  AdS/QCD:	no	exact	correspondence	can	be	made.	

	
¡  The	only	practical	approach	to	solve	non-perturbative	

QCD	is	the	lattice	theory.	
§  Defined	in	the	Euclidean	space,	with	τ=it	being	real;	
§  A4=iA0	is	real;	
§  Has	been	successful	in	calculating	hadron	spectroscopy,	

nucleon	form	factors,	finite	temperature	QCD,	etc.	
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¡  Lattice	QCD	cannot	directly	access	light-cone	quantities	
due	to	their	dependence	on	real	time:	
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•  La#ce	can	calculate	the	moments	of	
PDFs	which	are	local	operators;	

•  Parametrize	the	PDFs	with	a	smooth	
func9onal	form	

•  Determine	the	parameters	from	the	
la#ce	computed	moments	

•  Problem:	number	of	calculable	
moments	is	limited	(H.W.	Lin’s	talk)	

Detmold et al., Mod.Phys.Lett.A 03’ �

Oct.	22,	2015	

equivalent to the use of IMF.] The parton density can be described as the matrix element of
gauge-invariant operators in hadron states, and since the cross section is gauge-invariant by
itself, this means that the on-shell parton scattering cross section is also gauge-invariant and
can be calculated independently in any gauge. This can also be seen from that the parton
cross sections involve only on-shell parton scattering. The gauge-invariance, however, masks
the physical property of the parton density operator. For example, the quark longitudinal-
momentum density distribution

q(x) =
1

2P+

∫
dλ

2π
eiλx⟨PS|Ψ(λn)γ+Ψ(0)|PS⟩ , (18)

where n is a light-like four-vector n2 = 0 and the nucleon momentum is P µ = (P 0, 0, 0, P 3),
with P · n = 1. Ψ(ξ) is a gauge-invariant quark field defined through multiplication of a
light-cone gauge link

Ψ(ξ) = exp

(
−ig

∫ ∞

0

n · A(ξ + λn)dλ

)
ψ(ξ) . (19)

This gauge link ensures that whenever a partial derivative or canonical momentum of colored
quarks appears, the gauge potential Aµ must be present simultaneously to make it a covariant
derivative (kinetic momentum), Dµ = ∂µ + igAµ. Indeed, taking its moments,

∫
xn−1q(x)dx ∼ nµ1 ...nµn⟨P |ψ(0)γµ1iDµ2 ...iDµnψ(0)|P ⟩ , (20)

we see that the parton momentum distribution refers to the gauge-invariant kinetic momen-
tum! The kinetic momentum structure is clearly seen through Feynman diagrams in Fig.
1: Gauge symmetry requires that a parton with kinetic momentum k+ = xP+ includes the
sum of all diagrams with towers of longitudinal gluon A+ insertions.

x y x− y y z x− y − z

A+ A+ A+

FIG. 1: Deep-inelastic scattering process in which the gauge invariance involving the longitudinal
quark kinetic momentum xP+ is achieved through insertions of gluons with longitudinal polariza-
tion A+.

Simple parton physics emerges in the light-cone gauge A+ = 0, where the light-cone
gauge link disappears, all the covariant derivatives in Eq. (20) become partial ones, i.e.,
the canonical momentum and the simple quark field become physical. One can use the
light-cone quantization to write

ψ+(ξ) =

∫
dk+d2k⊥
2k+(2π)3

[
d†(k+, k⊥)v(k

+, k⊥)e
i(k+ξ−−k⃗⊥·ξ⃗⊥) + b(k+, k⊥)u(k

+, k⊥)e
−i(k+ξ−−k⃗⊥·ξ⃗⊥)

]

(21)
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¡  The	number	of	calculable	moments	strongly	limits	the	
power	of	lattice	QCD	to	calculate	PDFs;	

¡  Given	that	lattice	QCD	can	only	calculate	the	matrix	
elements	of	time-independent	operators	at	zero	or	
finite	nucleon	momentum,	can	we	find	a	way	to	obtain	
PDFs	directly	from	lattice	QCD?	
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¡  The	gluon	polarization	ΔG	contributes	to	the	longitudinal	
nucleon	spin,	and	is	measured	in	polarized	deep	inelastic	
scattering	(DIS)	and	proton-proton	collisions.	
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Quark	
spin	

Gluon	spin	

Quark	and	
gluon	
OAM	

Longitudinal	proton	spin	structure	
ΔΣ(Q2=10 GeV2) = 0.242, 
de Florian et al., 2009

ΔG(Q2=10 GeV2) ~ 0.2, 
de Florian et al., 2014

SLAC	
HERMES	(DESY)	
COMPASS	(CERN)	
JLab	
RHIC	
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Naïve	spin	sum	rule:	

1
2
=
1
2
ΔΣ+ΔG + l zq + l

z
q



¡  ΔG is	defined	as	the	first	moment	of	the	polarized	gluon	
distribution	function	(A.V. Manohar, PRL 1990):	

¡  In	light-cone	quantization,	

																												Δg(x)=

¡  However,	the	first	moment	of	Δg(x)	does	not	correspond	to	any	
local	gauge-invariant	operators;	

¡  As	a	result,	ΔG cannot	be	directly	calculated	on	the	lattice,	and	
has	been	a	problem	for	a	long	time.	
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Δg(x) = i
2xP+

dξ −e−ixP
+ξ− PS F+,i

a∫  (ξ − )Lab(ξ −, 0) !F+
b,i (0) PS



¡  A	recent	proposal	tries	to	define	the	gauge-invariant	
gluon	spin	operator	at	equal	time	in	the	rest	frame	of	
the	nucleon	(Chen et al., PRL 2008).	

	
	

§  In	Abelian	gauge	theory,	

Aperp	is	gauge	invariant	under	a	gauge	transformation.	
§  However,	Aperp	is	not	frame	independent.	In	QED,	its	

transformation	under	a	Lorentz	boost	is	dynamical.	
§  This	makes	the	physical	meaning	of	E×Aperp	as	spin	not	clear.	

Oct.	22,	2015	 INT-15-3,	Seattle	 17	

Sg = d3x∫  
!
E ×
!
A⊥

!
A =
!
A⊥ +

!
A//,    

!
∇⋅
!
A⊥ = 0,    

!
∇×
!
A// = 0



¡  Actually,	in	the	rest	frame	of	the	nucleon,	due	to	the	
existence	of	unphysical	degrees	of	freedom	(d.o.f.),	there	is	
no	physical	meaning	of	gluon	spin	at	all;	

¡  Nevertheless,	if	we	boost	the	nucleon	to	the	IMF,	
longitudinal	gluon	field	strength	is	suppressed,	Aperp	fully	
captures	the	physical	d.o.f.,	and	therefore	E×Aperp	can	be	
regarded	as	the	spin	of	free	gluon	fields	in	this	limit.	

¡  This	is	the	famous	Weizsäcker-Williams	approximation	(or	
equivalent	photon	method)	in	classical	electrodynamics	
(Jackson, Classical Electrodynamics).	
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¡  Moreover,	we	can	prove	that	(Ji, Zhang, Zhao, PRL 
2013)	

§  The	nucleon	matrix	element	of	E×Aperp	is	just	the	gauge-
invariant	gluon	spin	defined	from	the	first	momentum	of	Δg(x).	

§  E×Aperp	is	time	independent,	and	therefore	can	be	readily	
calculated	in	lattice	QCD.	

§  One	can	obtain	ΔG	by	studying	the	IMF	limit	of	the	matrix	
element	of	E×Aperp.	
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!
E ×
!
A⊥

P→∞⎯ →⎯⎯ dx∫ i
x

dξ −e−ixP
+ξ−F+,i

a  (ξ − )Lab(ξ −, 0) !F+
b,i (0)∫  



¡  However,	since	E×Aperp	is	frame	dependent,	its	matrix	
element	will	depend	on	the	nucleon	momentum	P,	which	
becomes	a	large	scale	of	theory;	

¡  In	perturbation	theory,	if	one	does	the	ultraviolet	(UV)	
regularization	first,	the	matrix	element	of	E×Aperp	can	contain	
logarithms	of	P,	which	is	singular	in	the	IMF	limit.		

¡  Instead,	if	one	takes	the	IMF	limit	of	E×Aperp	first,	and	then	
does	the	UV	regularization,	one	obtains	the	correct	ΔG.	

¡  The	tricky	point	is	that	lattice	QCD	can	only	calculate	finite	
momentum	matrix	elements.	
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One	loop	example:	

Jaffe-Manohar sum rule and its physical significance A LaMET Approach Summary

Matching to the physical results through a LaMET

One-loop example (Ji, Zhang, and Zhao, 2013)

k

p

k

p

k + p

• At large but finite ~p, taking the loop momentum k ! 1 first

hp, s|
⇣
~E ⇥ ~A?

⌘3
|p, si =

↵SCF

4⇡

"
5
3✏

+
5
3

ln
µ2

m2 +
4
3

ln
4~p2

m2 �
1
9

#
u†⌃3u+O(

m2

~p2 ) ,

(31)
• Taking ~p2 ! 1 first,

hp, s|
⇣
~E ⇥ ~A?

⌘3
|p, si = ↵SCF

4⇡
(
3
✏
+ 3 ln µ2

m2 + 7) u†⌃3u , (32)

• The light-cone gauge result,

hp, s|
⇣
~E ⇥ ~A

⌘3
|p, si A+=0

=
↵SCF

4⇡
(
3
✏
+ 3 ln µ2

m2 + 7) u†⌃3u . (33)

Light-cone 2014 Yong Zhao

Jaffe-Manohar sum rule and its physical significance A LaMET Approach Summary

Matching to the physical results through a LaMET

One-loop example (Ji, Zhang, and Zhao, 2013)
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¡  By	observation	we	find	that	the	IMF	limit	does	not	
change	the	collinear	or	infrared	(IR)	divergence	in	the	
matrix	element,	and	the	difference	is	just	in	the	UV	
divergent	part.	

¡  The	UV	divergent	part	is	calculable	in	perturbative	QCD,	
and	therefor	we	can	take	this	advantage	to	match	the	
matrix	element	at	finite	momentum	and	in	the	IMF.	

¡  A	systematic	matching	procedure	is	provided	by	the	
large	momentum	effective	theory	(LaMET).	
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The	large	momentum	effective	theory	(LaMET)	is	a	theory	that	
expands	in	powers	of	1/P,	where	P	is	the	nucleon	momentum	(Ji, 
Sci. China Phys. Mech. Astro., 2014):	
	
1.  Construct	a	Euclidean	quasi-observable	Õ	which	can	be	calculated	

in	lattice	QCD;	

2.  The	IMF	limit	of	Õ	is	constructed	to	be	a	parton	observable	O;	

3.  The	matrix	elements	of	Õ	is	dependent	on	the	lattice	cut-off	Λ	and	
generally	P,	i.e.,	Õ(P/Λ),	while	the	parton	observable	depends	on	
the	renormalization	scale	μ	(if	in	the	MSbar	scheme),	i.e.,	O(μ);	
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4.	Taking	the	P->∞	limit	of	Õ(P/Λ)	is	generally	ill-defined	due	to	
the	singularities	in	quantum	field	theory,	but	it	can	be	related	to	
O(μ)	through	a	factorization	formula:	
	
	
	
¡  P	is	much	larger	than	ΛQCD	as	well	as	the	nucleon	mass	M;	

¡  O(μ)	captures	all	the	infrared	(IR)	and	collinear	divergences	in	Õ(P/Λ),	and	
thus	the	leading	term	can	be	factorized	into	O(μ)	and	a	perturbative	
coefficient	Z.	

!O(P /Λ) = Z(P /Λ,µ /Λ)O(µ)+ c2
P2

+
c4
P4 +…
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IR	&	Collinear	

Hard	 Perturbative	QCD	

Non-perturbative	QCD	

Matching	

Õ(P/Λ)	 O(μ)	
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¡  Review	of	parton	distribution	functions	(PDF)	
§  Parton	physics	and	the	infinite	momentum	frame	
§  Why	it	is	difficult	to	calculate	PDFs	in	lattice	QCD?	

¡  A	new	way	of	calculating	parton	physics	
§  Lesson	from	the	gluon	polarization	
§  Large	momentum	effective	theory	approach	

¡  PDFs	from	large	momentum	effective	theory	
§  From	a	quasi-PDF	to	the	normal	PDF	
§  Requirements	for	the	computation	resources	
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¡  Consider	the	spatial	correlation	of	two	quarks	in	the	
nucleon	with	momentum	P	along	the	z	direction:	
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I. INTRODUCTION

Parton distributions characterize the structure of nucleons in terms of partons in high-
energy scattering processes. They are an essential ingredient in making physical predictions
for hadron-hadron or lepton-hadron collision experiments. Although much effort has been
devoted to extracting parton distributions from various experimental data [1–6], the com-
putation of parton distributions from the underlying theory of strong interactions, quantum
chromodynamics (QCD), has been a difficult task, due to their non-perturbative nature.
One may wonder whether it is possible to evaluate parton distributions from lattice QCD,
which is so far the only reliable framework for non-perturbative phenomena in QCD. In
the field-theoretic language, the parton distribution is given in terms of non-local light-cone
correlators, which can be viewed as the density of quarks and gluons in the infinite mo-
mentum limit (before ultraviolet (UV) cut-offs are imposed) or light-front correlations of
partons at finite nucleon momentum [7]. Such correlations are time-dependent and intrinsi-
cally Minkowskian, and thus cannot be readily computed on the lattice. Past attempts have
been mainly focused on the evaluation of local moments of the distributions. However, the
evaluation of higher moments of parton distributions on the lattice becomes considerably
difficult for technical reasons [8].

Recently, a direct approach to compute parton physics on a Euclidean lattice has been
proposed by one of the present authors [9]. In this approach one computes, instead of the
light-cone distribution, a related quantity, which may be called quasi-distribution [10]. In
the case of unpolarized quark density, the quasi-distribution is defined as

q̃(x,Λ, P z) =

∫

∞

−∞

dz

4π
eizk

z⟨P |ψ(0, 0⊥, z)γz exp
(

−ig

∫ z

0

dz′Az(0, 0⊥, z
′)

)

ψ(0)|P ⟩ , (1)

where x = kz/P z is the longitudinal momentum fraction, and V z is the z-component of
four vector V µ, γµ is the Dirac matrix, ψ is the quark Dirac field, and |P ⟩ is the nucleon
state with four-momentum P µ = (P 0, 0, 0, P z). All fields and coupling constant g appearing
in the above expression are bare ones, and Λ is the momentum cut-off to regulate the UV
divergences. The operator above is time-independent and non-local, and its matrix element
can be simulated on a lattice for any P z ≪ 1/a ∼ Λ, where a is the lattice spacing. However,
the result is not the light-cone distribution extracted from the experimental data, q(x, µ)
(scheme-dependent, usually in MS and µ indicates the renormalization scale). To recover
the latter from the former, one needs to find a matching condition of the type

q̃NS(x,Λ, P
z) =

∫

dy Z

(

x

y
,
Λ

P z
,
µ

P z

)

qNS(y, µ) +O((M/P z)2) (2)

for a large P z, where we have limited ourselves to the so-called non-singlet quantities such
as up minus down flavors, so that the gluon contribution can be ignored. The correction
terms are in power of M/P z, where M is a QCD scale, such as the hadron mass. Since the
difference between q̃NS and qNS is that the former is for finite but large momentum while
the latter is for infinite momentum, the IR behavior of the distribution should not change
when moving from one frame to the other, and the matching factor Z captures only the UV
behavior and is thus entirely perturbative. The above relation can actually be viewed as
a factorization conjecture: All the soft divergences are cancelled on both sides, and all the
collinear divergences in q̃(x,Λ, P z) are the same as those in the light-cone distributions. Of
course one has yet to prove that this holds to all orders in perturbation theory. However,

2

ξ− 

ξ3 = z l -l 

√2γl 

−√2γl 

ξ+ 
ξ0 = t 

•  Equal-time	correlation;	

•  The	matrix	element	of	the	
quasi	distribution	depends	on	
the	nucleon	momentum	Pz;	

•  In	the	IMF	limit,	z->ξ-,	and	Az 
-> A+,	the	quasi	PDF	
approaches	normal	PDF.	

Ji, PRL 2013



¡  According	to	LaMET,	the	quasi	PDF	is	related	to	the	normal	PDF	through	a	
perturbative	matching	formula	for	the	non-singlet	case	(Xiong, Ji, Zhang, and 
Zhao, PRD 2014):	

§  Integration	range	is	determined	by	the	support	of	light-cone	parton	
distribution;	

§  Both	light-cone	and	quasi	PDFs	contain	soft	divergences,	but	they	cancel	in	
themselves;	

§  They	also	have	the	same	collinear	divergences;	

§  Z	factor	captures	the	difference	in	their	UV	behavior,	and	is	thus	perturbatively	
calculable;	

§  Higher	twist	effects	suppressed	by	the	large	momentum.	
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Also the collinear or mass singularity is the same as in the quasi-parton distribution. This
shows that at one-loop level, the quasi-parton distribution captures all the collinear physics
in the infinite momentum frame. Moreover, the contribution comes only from the diagram
in which the intermediate gluon has a cut, which has a parton interpretation.

III. ONE-LOOP FACTORIZATION

Now we are ready to construct a factorization formula at one-loop order. In the infinite
momentum frame or on the light-cone, the momentum fraction in parton distributions and
splitting functions is limited to [−1, 1]. However, in the present case, the splitting in the
quasi-distribution is not constrained to this region, it can be in [−∞,∞]. Thus the connec-
tion of the two distributions is reflected through the following factorization theorem up to
power corrections in the large P z limit

q̃(x,Λ, P z) =

∫ 1

−1

dy

|y|
Z

(

x

y
,
Λ

P z
,
µ

P z

)

q(y, µ) +O
(

Λ2
QCD/(P

z)2,M2/(P z)2
)

, (13)

where the integration range is determined by the support of the quark distribution q(y) on
the light cone (at one-loop one has just 0 < y < 1 for a quark target), the momentum
fraction x is defined in the finite momentum frame. We define the light-cone distribution
q(y, µ) in the MS subtraction scheme with µ the renormalization scale.

The Z factor has a perturbative expansion in αs

Z

(

ξ,
Λ

P z
,
µ

P z

)

= δ(ξ − 1) +
αs

2π
Z(1)

(

ξ,
Λ

P z
,
µ

P z

)

+ . . . (14)

Before we present the results of Z factor, it is worthwhile to comment on the linear divergence
coupled to the double pole 1/(1− ξ)2 in the quasi distribution, as can be seen from Eqs. (8)
and (9) above. In the previous section we worked in the axial gauge, and the linear divergence
comes from the last term in the numerator of the axial gauge gluon propagator Eq. (A2)
(for the treatment of this double pole in axial gauge computations see e.g. Ref. [16]). If one
chooses a covariant gauge like the Feynman gauge, one has, in addition to those in Fig. 1,
extra diagrams involving the gauge link, and the linear divergence will come from the gauge
link self-energy diagram. In dimensional regularization, the linear divergence is absent due
to the lack of a cut-off scale, and the term leading to the linear divergence becomes, after
k0 and k⃗⊥ integration, a term linear in P z which reduces the double pole coupled to it to a
single pole. The combination of the two contributions in Fig. 1 then leads to the usual plus
distribution. However, the lattice simulations of quasi distributions require a momentum
cut-off. From our one-loop computation a linear divergence associated with the double pole
cannot be avoided in the cut-off scheme. The prescription for the double pole is given
as 1/((1 − ξ)2 + ϵ2), which can be clearly seen in a non-axial gauge like Feynman gauge.
In Feynman gauge, this prescription follows from the requirement of well-defined Wilson
line propagators. Then after combining the real and virtual contributions, the double pole
reduces to a single one prescribed by its principal value. From the renormalization point
of view, a revised definition of the quasi distribution is preferred such that the gauge link
self-energy is subtracted in a gauge invariant way (for a similar case in TMD see discussions
e.g. in [7]). This is also preferred by lattice simulations of the quasi distribution. We will
explore this possibility in a forthcoming paper.

7



¡  Take	unpolarized	quark	distribution	as	an	example	[Ji, Xiong, Zhang and 
Zhao PRD, 13]	
§  @LO	

			Both	quasi	and	light-cone	quark	distribu9on	yield	a	simple	delta	func9on	
	

§  @NLO	
			The	computa9on	can	be	carried	out	in	any	gauge:	
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as a first step, we will show in the present paper that it is indeed true at one-loop. It is
worthwhile to point out here that the choice of quasi-distributions is not unique, one can
define more than one possible quasi-distributions which have similar properties as q̃(x,Λ, P z),
for example by replacing γz by γt (the time-component of the Dirac matrix). Here we will
focus on the type in Eq. (1) simple for lattice QCD calculations.

We will concentrate on the non-singlet quark distribution in this paper, and prove the
above factorization at one-loop level. Throughout the process we obtain the one-loop match-
ing factor Z between the time-independent quasi-distribution and light-cone distribution.
The result will be useful for recovering the light-cone distribution from lattice QCD simula-
tions of the quasi-distribution to the leading-logarithmic accuracy. To obtain the complete
one-loop matching condition useful for lattice calculations, the calculation shall be done with
the same lattice Lagrangian as for the numerical simulations. However, this is considerably
more complicated, and is not needed for the purpose of demonstrating one-loop factoriza-
tion. Power suppressed corrections of the type (1/P z)n with n ≥ 1 are also ignored and will
be considered in separate publications.

Although we consider here the factorization of the bare quasi distribution only, it might be
useful to study renormalized versions of the distribution in certain renormalization schemes,
such as dimensional regularization. It appears that the bare distributions we define depend
on the UV cut-offs in two places: one is in the wave-function renormalization associated
with the quark fields, and the other is the renormalization associated with the gauge link.
Although it is trivial to see that both renormalization are multiplicative at one-loop level,
it may be a nontrivial exercise to show that the bare quasi-distribution can be renormalized
multiplicatively to all orders in perturbation theory due to overlapping divergences.

The rest of this paper is organized as follows. In Sec. 2, we present the result of one-
loop calculation for unpolarized quasi-quark distribution. Based on this result, we propose
in Sec. 3 a factorization theorem valid to one-loop level and extract the matching factor
between quasi distribution and light-cone distribution. In Sec. 4, the results for quark
helicity and transversity distributions are given. We conclude in Sec. 5. The details of
one-loop computation are given in the Appendix.

II. ONE-LOOP RESULT FOR UNPOLARIZED QUASI-QUARK DISTRIBUTION

In this section, we consider the one-loop correction in the case of unpolarized quasi-quark
distribution q̃(x,Λ, P z). The one-loop computation for non-singlet quark distribution is
similar to QED because the non-Abelian property does not enter in the non-singlet case.
Note that the same calculation done in Ref. [9] is incomplete and the detailed result there
shall be replaced by the correct one here.

At tree-level, the quasi-distribution yields the same result as the light-cone one

q̃(0)(x) = q(0)(x) = δ(1− x) . (3)

The one-loop calculation can in principle be carried out in any gauge since the result is
gauge invariant. We choose the axial gauge Az = 0 where the gauge link in Eq. (1) becomes
unity. In the axial gauge, the relevant Feynman diagrams are shown in Fig. 1, where the
non-local operator is depicted as a dashed line. The diagrams contain UV, soft and collinear
divergences. We use the quark mass m to regulate the collinear divergence. The soft
divergence is expected to cancel between the diagrams. The UV divergence is regulated by
a transverse-momentum cut-off Λ.

3

�  In	axial	gauge			 �  In	Feynman	gauge			



¡  One-loop	matrix	element	of	the	normal	PDF:	

	
Remarks:	

§  In	the	IMF	or	on	the	light-cone,	partons	can	only	have	momentum	fraction	
0<x<1;	
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same way, which means the cutoff in y is well below Λ/P z. One shall note several interesting
features of the above result: 1) There are contributions in the regions x > 1 and x < 0.
The physics behind this is transparent: when the parent particle has a finite momentum
P z, the constituent parton can have momentum larger than P z, and even negative. This
is very different from the infinite momentum frame result, where the momentum fraction is
restricted to −1 < x < 1 (Note that at one-loop level, one has just 0 < x < 1 in a quark
target, however, there are contributions for −1 < x < 0 at two-loop level). 2) There is a
linear divergence associated with an axial gauge singularity 1/(1−x)2. It comes from the last
term of the axial gauge gluon propagator numerator in Eq. (A2). If one works in a covariant
gauge like the Feynman gauge, this term will come from the gauge link self energy. We will
give a more detailed discussion on this issue in the next section when we present the one-loop
factorization formula. 3) There is no logarithmic UV divergence in q̃(1). Instead there is
a logarithmic dependence on P z in the region 0 < x < 1. We will see later on that this
logarithmic dependence can be transformed into the renormalization scale dependence of
the light-cone parton distribution by a matching condition. It is worthwhile to comment on
the difference between the UV behavior of the light-cone and quasi distributions. Unlike the
light-cone distribution where the quark and gluon propagator are linear in k− when written
in light-cone coordinates, one therefore gets a UV divergent k⃗⊥ integral upon integration over
k−; in the quasi distribution one integrates over k0, on which the propagator is quadratically
dependent, therefore one gets a UV convergent k⃗⊥ integral in dimensional regularization
(the reason there is a linear divergence in the above results is because we used a cut-off
regulator. In dimensional regularization the linear divergence is absent due to the lack of a
large scale other than P z, but it is present in the cut-off or lattice regularization). However,
note that the momentum fraction is not restricted to [0, 1] any more, the integration over
y therefore has a logarithmic divergence, this yields the usual UV divergence in the wave
function renormalization constant. 4) All soft divergences are cancelled. However, there are
remaining collinear divergences reflected by the quark-mass dependence.

On the other hand, with the same regularization, one can calculate the light-cone parton
distribution by taking the limit P z → ∞. This is done following the spirit of Ref. [15] and
the result is (for details of the computation see the appendix)

q(x,Λ) = (1 + Z(1)
F (Λ) + . . . )δ(x− 1) + q(1)(x,Λ) + . . . (10)

with

q(1)(x,Λ) =
αSCF

2π

{

0 , x > 1 or x < 0 ,
1+x2

1−x
ln Λ2

m2 − 1+x2

1−x
ln (1− x)2 − 2x

1−x
, 0 < x < 1 ,

(11)

and

Z(1)
F (Λ) =

αSCF

2π

∫

dy

{

0 , y > 1 or y < 0 ,

−1+y2

1−y
ln Λ2

m2 +
1+y2

1−y
ln (1− y)2 + 2y

1−y
, 0 < y < 1 ,

(12)

where the integrand of Z(1)
F (Λ) is exactly opposite to that of q(1)(x,Λ), indicating the quark

number conservation at one-loop. If dimensional regularization is used for the UV divergence,
the results q(1)(x, µ) and Z(1)

F (µ) (with µ the renormalization scale) are slightly different, and
can be obtained from the above ones by making the replacement lnΛ2 → 1/ϵUV−γE+ln 4πµ2.
This result agrees with that derived from the light-cone definition of parton distribution.
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¡  One-loop	matrix	element	of	the	normal	PDF:	

	
Remarks:	

§  Light-cone	singularity	cancels	between	real	and	virtual	contributions;	
§  Collinear	divergence	ln(m2)	exists	in	the	PDF.	
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same way, which means the cutoff in y is well below Λ/P z. One shall note several interesting
features of the above result: 1) There are contributions in the regions x > 1 and x < 0.
The physics behind this is transparent: when the parent particle has a finite momentum
P z, the constituent parton can have momentum larger than P z, and even negative. This
is very different from the infinite momentum frame result, where the momentum fraction is
restricted to −1 < x < 1 (Note that at one-loop level, one has just 0 < x < 1 in a quark
target, however, there are contributions for −1 < x < 0 at two-loop level). 2) There is a
linear divergence associated with an axial gauge singularity 1/(1−x)2. It comes from the last
term of the axial gauge gluon propagator numerator in Eq. (A2). If one works in a covariant
gauge like the Feynman gauge, this term will come from the gauge link self energy. We will
give a more detailed discussion on this issue in the next section when we present the one-loop
factorization formula. 3) There is no logarithmic UV divergence in q̃(1). Instead there is
a logarithmic dependence on P z in the region 0 < x < 1. We will see later on that this
logarithmic dependence can be transformed into the renormalization scale dependence of
the light-cone parton distribution by a matching condition. It is worthwhile to comment on
the difference between the UV behavior of the light-cone and quasi distributions. Unlike the
light-cone distribution where the quark and gluon propagator are linear in k− when written
in light-cone coordinates, one therefore gets a UV divergent k⃗⊥ integral upon integration over
k−; in the quasi distribution one integrates over k0, on which the propagator is quadratically
dependent, therefore one gets a UV convergent k⃗⊥ integral in dimensional regularization
(the reason there is a linear divergence in the above results is because we used a cut-off
regulator. In dimensional regularization the linear divergence is absent due to the lack of a
large scale other than P z, but it is present in the cut-off or lattice regularization). However,
note that the momentum fraction is not restricted to [0, 1] any more, the integration over
y therefore has a logarithmic divergence, this yields the usual UV divergence in the wave
function renormalization constant. 4) All soft divergences are cancelled. However, there are
remaining collinear divergences reflected by the quark-mass dependence.

On the other hand, with the same regularization, one can calculate the light-cone parton
distribution by taking the limit P z → ∞. This is done following the spirit of Ref. [15] and
the result is (for details of the computation see the appendix)

q(x,Λ) = (1 + Z(1)
F (Λ) + . . . )δ(x− 1) + q(1)(x,Λ) + . . . (10)

with

q(1)(x,Λ) =
αSCF

2π

{

0 , x > 1 or x < 0 ,
1+x2

1−x
ln Λ2

m2 − 1+x2

1−x
ln (1− x)2 − 2x

1−x
, 0 < x < 1 ,

(11)

and

Z(1)
F (Λ) =

αSCF

2π

∫

dy

{

0 , y > 1 or y < 0 ,

−1+y2

1−y
ln Λ2

m2 +
1+y2

1−y
ln (1− y)2 + 2y

1−y
, 0 < y < 1 ,

(12)

where the integrand of Z(1)
F (Λ) is exactly opposite to that of q(1)(x,Λ), indicating the quark

number conservation at one-loop. If dimensional regularization is used for the UV divergence,
the results q(1)(x, µ) and Z(1)

F (µ) (with µ the renormalization scale) are slightly different, and
can be obtained from the above ones by making the replacement lnΛ2 → 1/ϵUV−γE+ln 4πµ2.
This result agrees with that derived from the light-cone definition of parton distribution.
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¡  One-loop	matrix	element	of	the	quasi	PDF:	

Remarks:	
§  In	the	finite	momentum	frame,	the	quark	momentum	fraction	–∞	<x<	+∞.	
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The choice of the axial gauge at one-loop here is purely formal, simplifying the Feynman
diagram. In fact the integrand before momentum integration is exactly the same as in the
Feynman gauge. Various terms have straightforward Feynman gauge interpretations which
we will use in the discussions below concerning the linear divergence.

Choosing transverse momentum cut-off as a UV regulator needs some explanation. As we
have indicated in the Introduction, we intend to find a matching condition which is useful
for lattice QCD. Lattice uses short distance cut-off a, and keeps all power-divergent contri-
butions. As we shall see, the quasi distribution has a linear divergence from the self-energy
of the gauge link (as calculated in Feynman gauge). Dimensional regularization would have
discarded this; using a momentum cut-off will allow us keeping track of this divergence.
Clearly, momentum cut-off scheme is difficult to generalize to more than one loops, and if a
higher order calculation is needed, one shall directly do it using lattice action. At one-loop
order in Abelian gauge theory, momentum cut-off can be done without violating gauge sym-
metry, as for example, in the Lamb shift calculation [11]. Transverse-momentum cutoff also
violates the rotational symmetry. Our intention is to show that the one-loop factorization
works and to obtain the leading-logarithmic and leading-power divergent contribution in the
matching condition; this can be achieved in any cut-off regularization.

k

p

k

p

k

p

p

FIG. 1: One-loop corrections to quasi quark distribution.

The one-loop diagrams in Fig. 1 generate the following result

q̃(x,Λ, P z) = (1 + Z̃(1)
F (Λ, P z))δ(x− 1) + q̃(1)(x,Λ, P z) + . . . , (4)

where we have included the tree-level result, and q̃(1)(x,Λ, P z) comes from the first diagram,

Z̃(1)
F (Λ, P z) comes from the self energy diagram. We defer the computational details of q̃(1)

and Z̃(1)
F to the appendix, and present their results below. The q̃(1) contribution can be

written as

q̃(1)(x,Λ, P z) =
αSCF

2π

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1+x2

1−x
ln x(Λ(x)−xP z)

(x−1)(Λ(1−x)+P z(1−x)) + 1− xP z

Λ(x) +
xΛ(1−x)+(1−x)Λ(x)

(1−x)2P z , x > 1 ,

1+x2

1−x
ln (P z)2

m2 + 1+x2

1−x
ln 4x(Λ(x)−xP z)
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Both q̃(1) and Z̃(1)
F involve singularities at x = 1(y = 1) and a linear divergent term, a
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Eq. (8) is valid for x well below Λ/P z. In a nucleon with large but finite momentum P z,
the fraction of partons with momentum fraction x ∼ Λ/P z is expected to be negligible. To

ensure vector current conservation, the momentum fraction in Z̃(1)
F shall be understood in the
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Eq. (8) is valid for x well below Λ/P z. In a nucleon with large but finite momentum P z,
the fraction of partons with momentum fraction x ∼ Λ/P z is expected to be negligible. To

ensure vector current conservation, the momentum fraction in Z̃(1)
F shall be understood in the
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The choice of the axial gauge at one-loop here is purely formal, simplifying the Feynman
diagram. In fact the integrand before momentum integration is exactly the same as in the
Feynman gauge. Various terms have straightforward Feynman gauge interpretations which
we will use in the discussions below concerning the linear divergence.

Choosing transverse momentum cut-off as a UV regulator needs some explanation. As we
have indicated in the Introduction, we intend to find a matching condition which is useful
for lattice QCD. Lattice uses short distance cut-off a, and keeps all power-divergent contri-
butions. As we shall see, the quasi distribution has a linear divergence from the self-energy
of the gauge link (as calculated in Feynman gauge). Dimensional regularization would have
discarded this; using a momentum cut-off will allow us keeping track of this divergence.
Clearly, momentum cut-off scheme is difficult to generalize to more than one loops, and if a
higher order calculation is needed, one shall directly do it using lattice action. At one-loop
order in Abelian gauge theory, momentum cut-off can be done without violating gauge sym-
metry, as for example, in the Lamb shift calculation [11]. Transverse-momentum cutoff also
violates the rotational symmetry. Our intention is to show that the one-loop factorization
works and to obtain the leading-logarithmic and leading-power divergent contribution in the
matching condition; this can be achieved in any cut-off regularization.
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FIG. 1: One-loop corrections to quasi quark distribution.

The one-loop diagrams in Fig. 1 generate the following result

q̃(x,Λ, P z) = (1 + Z̃(1)
F (Λ, P z))δ(x− 1) + q̃(1)(x,Λ, P z) + . . . , (4)

where we have included the tree-level result, and q̃(1)(x,Λ, P z) comes from the first diagram,

Z̃(1)
F (Λ, P z) comes from the self energy diagram. We defer the computational details of q̃(1)

and Z̃(1)
F to the appendix, and present their results below. The q̃(1) contribution can be
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Both q̃(1) and Z̃(1)
F involve singularities at x = 1(y = 1) and a linear divergent term, a

detailed discussion of which will be given in the next section when we present the one-loop
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condition
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to one-loop order. Since the constituent of the quark in a quasi-distribution does not have
a parton interpretation, the parton momentum fraction extends from −∞ to +∞. The y
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integration, a momentum cutoff is also needed in the z direction. It is interesting to see that
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The choice of the axial gauge at one-loop here is purely formal, simplifying the Feynman
diagram. In fact the integrand before momentum integration is exactly the same as in the
Feynman gauge. Various terms have straightforward Feynman gauge interpretations which
we will use in the discussions below concerning the linear divergence.

Choosing transverse momentum cut-off as a UV regulator needs some explanation. As we
have indicated in the Introduction, we intend to find a matching condition which is useful
for lattice QCD. Lattice uses short distance cut-off a, and keeps all power-divergent contri-
butions. As we shall see, the quasi distribution has a linear divergence from the self-energy
of the gauge link (as calculated in Feynman gauge). Dimensional regularization would have
discarded this; using a momentum cut-off will allow us keeping track of this divergence.
Clearly, momentum cut-off scheme is difficult to generalize to more than one loops, and if a
higher order calculation is needed, one shall directly do it using lattice action. At one-loop
order in Abelian gauge theory, momentum cut-off can be done without violating gauge sym-
metry, as for example, in the Lamb shift calculation [11]. Transverse-momentum cutoff also
violates the rotational symmetry. Our intention is to show that the one-loop factorization
works and to obtain the leading-logarithmic and leading-power divergent contribution in the
matching condition; this can be achieved in any cut-off regularization.
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FIG. 1: One-loop corrections to quasi quark distribution.

The one-loop diagrams in Fig. 1 generate the following result

q̃(x,Λ, P z) = (1 + Z̃(1)
F (Λ, P z))δ(x− 1) + q̃(1)(x,Λ, P z) + . . . , (4)

where we have included the tree-level result, and q̃(1)(x,Λ, P z) comes from the first diagram,
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Both q̃(1) and Z̃(1)
F involve singularities at x = 1(y = 1) and a linear divergent term, a
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Eq. (8) is valid for x well below Λ/P z. In a nucleon with large but finite momentum P z,
the fraction of partons with momentum fraction x ∼ Λ/P z is expected to be negligible. To

ensure vector current conservation, the momentum fraction in Z̃(1)
F shall be understood in the
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¡  One-loop	matrix	element	of	the	quasi	PDF:	

Remarks:	
§  Collinear	divergence	exists	only	in	0<x<1,	and	is	the	same	as	the	normal	PDF.	
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The choice of the axial gauge at one-loop here is purely formal, simplifying the Feynman
diagram. In fact the integrand before momentum integration is exactly the same as in the
Feynman gauge. Various terms have straightforward Feynman gauge interpretations which
we will use in the discussions below concerning the linear divergence.

Choosing transverse momentum cut-off as a UV regulator needs some explanation. As we
have indicated in the Introduction, we intend to find a matching condition which is useful
for lattice QCD. Lattice uses short distance cut-off a, and keeps all power-divergent contri-
butions. As we shall see, the quasi distribution has a linear divergence from the self-energy
of the gauge link (as calculated in Feynman gauge). Dimensional regularization would have
discarded this; using a momentum cut-off will allow us keeping track of this divergence.
Clearly, momentum cut-off scheme is difficult to generalize to more than one loops, and if a
higher order calculation is needed, one shall directly do it using lattice action. At one-loop
order in Abelian gauge theory, momentum cut-off can be done without violating gauge sym-
metry, as for example, in the Lamb shift calculation [11]. Transverse-momentum cutoff also
violates the rotational symmetry. Our intention is to show that the one-loop factorization
works and to obtain the leading-logarithmic and leading-power divergent contribution in the
matching condition; this can be achieved in any cut-off regularization.

k

p

k

p

k

p

p

FIG. 1: One-loop corrections to quasi quark distribution.

The one-loop diagrams in Fig. 1 generate the following result
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where we have included the tree-level result, and q̃(1)(x,Λ, P z) comes from the first diagram,

Z̃(1)
F (Λ, P z) comes from the self energy diagram. We defer the computational details of q̃(1)

and Z̃(1)
F to the appendix, and present their results below. The q̃(1) contribution can be
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Both q̃(1) and Z̃(1)
F involve singularities at x = 1(y = 1) and a linear divergent term, a

detailed discussion of which will be given in the next section when we present the one-loop
factorization formula. From Eqs. (5) and (6) one can check the vector current conservation
condition
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to one-loop order. Since the constituent of the quark in a quasi-distribution does not have
a parton interpretation, the parton momentum fraction extends from −∞ to +∞. The y
integration is logarithmically divergent, in the above result we leave it unintegrated, in order
to see the match between the structures of Z̃(1)

F and q̃(1). If one chooses to perform the y
integration, a momentum cutoff is also needed in the z direction. It is interesting to see that
the collinear divergence exists only for 0 < x < 1, which is the basis for factorization.
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the problem. In other words, one shall take the limit Λ → ∞ and keep only the leading
contribution and ignore the power-suppressed ones. This in principle shall also be the case
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¡  By	comparing	their	one-loop	matrix	elements,	the	matching	
factor	can	be	read	as:	
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Also the collinear or mass singularity is the same as in the quasi-parton distribution. This
shows that at one-loop level, the quasi-parton distribution captures all the collinear physics
in the infinite momentum frame. Moreover, the contribution comes only from the diagram
in which the intermediate gluon has a cut, which has a parton interpretation.

III. ONE-LOOP FACTORIZATION

Now we are ready to construct a factorization formula at one-loop order. In the infinite
momentum frame or on the light-cone, the momentum fraction in parton distributions and
splitting functions is limited to [−1, 1]. However, in the present case, the splitting in the
quasi-distribution is not constrained to this region, it can be in [−∞,∞]. Thus the connec-
tion of the two distributions is reflected through the following factorization theorem up to
power corrections in the large P z limit

q̃(x,Λ, P z) =

∫ 1

−1

dy

|y|
Z

(

x

y
,
Λ

P z
,
µ

P z

)

q(y, µ) +O
(

Λ2
QCD/(P

z)2,M2/(P z)2
)

, (13)

where the integration range is determined by the support of the quark distribution q(y) on
the light cone (at one-loop one has just 0 < y < 1 for a quark target), the momentum
fraction x is defined in the finite momentum frame. We define the light-cone distribution
q(y, µ) in the MS subtraction scheme with µ the renormalization scale.

The Z factor has a perturbative expansion in αs

Z

(

ξ,
Λ

P z
,
µ

P z

)

= δ(ξ − 1) +
αs

2π
Z(1)

(

ξ,
Λ

P z
,
µ

P z

)

+ . . . (14)

Before we present the results of Z factor, it is worthwhile to comment on the linear divergence
coupled to the double pole 1/(1− ξ)2 in the quasi distribution, as can be seen from Eqs. (8)
and (9) above. In the previous section we worked in the axial gauge, and the linear divergence
comes from the last term in the numerator of the axial gauge gluon propagator Eq. (A2)
(for the treatment of this double pole in axial gauge computations see e.g. Ref. [16]). If one
chooses a covariant gauge like the Feynman gauge, one has, in addition to those in Fig. 1,
extra diagrams involving the gauge link, and the linear divergence will come from the gauge
link self-energy diagram. In dimensional regularization, the linear divergence is absent due
to the lack of a cut-off scale, and the term leading to the linear divergence becomes, after
k0 and k⃗⊥ integration, a term linear in P z which reduces the double pole coupled to it to a
single pole. The combination of the two contributions in Fig. 1 then leads to the usual plus
distribution. However, the lattice simulations of quasi distributions require a momentum
cut-off. From our one-loop computation a linear divergence associated with the double pole
cannot be avoided in the cut-off scheme. The prescription for the double pole is given
as 1/((1 − ξ)2 + ϵ2), which can be clearly seen in a non-axial gauge like Feynman gauge.
In Feynman gauge, this prescription follows from the requirement of well-defined Wilson
line propagators. Then after combining the real and virtual contributions, the double pole
reduces to a single one prescribed by its principal value. From the renormalization point
of view, a revised definition of the quasi distribution is preferred such that the gauge link
self-energy is subtracted in a gauge invariant way (for a similar case in TMD see discussions
e.g. in [7]). This is also preferred by lattice simulations of the quasi distribution. We will
explore this possibility in a forthcoming paper.

7

Z (1)(ξ ) /CF =
1+ξ 2

1−ξ
ln ξ
ξ −1

+1+ 1
(1−ξ )2

Λ
Pz ,    ξ>1

Z (1)(ξ ) /CF =
1+ξ 2

1−ξ
ln (Pz )2

µ 2 +
1+ξ 2

1−ξ
ln[4ξ (1−ξ )]− 2ξ

1−ξ
+1+ 1

(1−ξ )2
Λ
Pz ,    0<ξ<1

Z (1)(ξ ) /CF =
1+ξ 2

1−ξ
ln ξ −1

ξ
−1+ 1

(1−ξ )2
Λ
Pz ,    ξ<0



Near	ξ=1,	there	is	also	virtual	contribution:	
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Now we are ready to write down the matching factor connecting the quasi quark distri-
bution to the light-cone quark distribution. For ξ > 1, one has

Z(1)(ξ)/CF =

(

1 + ξ2

1− ξ

)

ln
ξ

ξ − 1
+ 1 +

1

(1− ξ)2
Λ

P z
, (15)

whereas for 0 < ξ < 1

Z(1)(ξ)/CF =

(

1 + ξ2

1− ξ

)

ln
(P z)2

µ2
+

(

1 + ξ2

1− ξ

)

ln
[

4ξ(1− ξ)
]

−
2ξ

1− ξ
+1+

Λ

(1− ξ)2P z
, (16)

and for ξ < 0

Z(1)(ξ)/CF =

(

1 + ξ2

1− ξ

)

ln
ξ − 1

ξ
− 1 +

Λ

(1− ξ)2P z
. (17)

Near ξ = 1, one has an additional term coming from the self energy correction

Z(1)(ξ) = δZ(1)(2π/αs)δ(ξ − 1) (18)

with

δZ(1) =
αSCF

2π

∫

dy

⎧

⎪

⎨

⎪

⎩

−1+y2

1−y
ln y

y−1 − 1− Λ
(1−y)2P z , y > 1 ,

−1+y2

1−y
ln (P z)2

µ2 − 1+y2

1−y
ln
[

4y(1− y)
]

+ 2y(2y−1)
1−y

+ 1− Λ
(1−y)2P z , 0 < y < 1 ,

−1+y2

1−y
ln y−1

y
+ 1− Λ

(1−y)2P z , y < 0 ,

(19)

which is extracted from Eqs. (9) and (12) above, and provides a plus distribution for the
singularity in the single pole term 1/(1−ξ) at ξ = 1, as well as a principal value prescription
for the double pole. The large logarithmic dependence on P z in q̃(x,Λ, P z) can be trans-
formed into the renormalization scale dependence through the above matching condition.
On the lattice, the matching can be recalculated up to a constant accuracy using the stan-
dard approach, where the longitudinal and transverse momentum cut-offs are done in a way
consistent with lattice symmetry [17].

So far, we have considered only the quark contribution. One can start with an antiquark
to do the one-loop calculation. In this case, one also has a contribution to q̃(x,Λ, P z) from
q̄(x). However, the antiquark distribution has the property

q̄(x) = −q(−x) , (20)

which is related to quark distribution at negative x. Moreover, the Z factor has the same
property. After including both quark and antiquark contribution, the factorization Eq. (13)
still applies, but now the quantities on the r.h.s. include also the antiquark contribution
reflected by the negative y region. The above is the complete one-loop factorization theorem,
which replaces Eq. (11) and the Z-factor in Ref. [9].

We have constructed at one-loop level a factorization formula connecting the quasi par-
ton distribution to the light-cone parton distribution. Of course it remains to be shown
that there exists such a formula to all-loop orders. The factorization formula then al-
lows one to extract the parton distribution q(x, µ) from calculating the quasi parton dis-
tribution on the lattice by measuring the time-independent, non-local quark correlator
ψ(0, 0⊥, z)γz exp

(

−ig
∫ z

0 dz′Az(0, 0⊥, z′)
)

ψ(0) in a state with increasingly large P z (max-
imum ∼ 1/a with a denoting lattice spacing).
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Lattice	matrix	elements	

Quasi	PDF	

Normal	PDF	

Matching	through	LaMET	

Matching	between	continuum	and	
lattice	renormalization	schemes	
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¡  Quasi	PDF	is	the	matrix	element	of	a	non-local	operator	

§  In	the	renormalization	of	local	operators,	all	UV	divergences	can	
be	removed	by	local	counterterms.	

§  Renormalization	of	non-local	operator	matrix	element	is	rather	
distinct.	Needs	non-local	counterterms,	and	to	deal	with	axial	
singularities.	
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¡  In	the	continuum	theory,	quasi-PDF	can	be	multiplicatively	
renormalized	at	two-loop	order	in	dimensional	regularization.	[Ji 
and Zhang, PRD, 15’]	

¡  Vertex	contribution	contains	sub-divergences	only,	which	can	be	
removed	by	counterterms	from	interaction	(UV	counterterms	in	
the	axial	gauge).	

¡  Renormalization	of	quasi	PDF	reduces	to	the	renormalization	of	
two	separate	(axial	gauge)	quark	fields,	which	is	equivalent	to	the	
renormalization	of	the	heavy-light	quark	vector	current	in	HQET.	

¡  Such	features	are	expected	to	hold	for	all	orders,	to	be	checked.	
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¡  The	renormalization	of	nonlocal	operators	in	lattice	QCD	is	
desirable,	but	difficult.	It	is	not	tested	HYP	smearing	can	make	the	
renormalization	factor	~1;	

¡  With	a	proper	renormalization	scheme	in	the	lattice	theory,	we	will	
be	able	to	calculate	the	matching	between	lattice	and	continuum	
theory	matrix	elements	with	perturbative	QCD.	

Oct.	22,	2015	 INT-15-3,	Seattle	 41	



¡  Similar	to	target	mass	corrections	from	the	trace	of	the	nucleon	
matrix	element,	which	is	of	order	~O(M2/(Pz)2),	has	been	derived	
(J.W. Chen, in preparation);	

¡  Higher	twist	correction	to	the	correlation	operator	itself,	which	is	
of	order	~O(ΛQCD

2/(Pz)2),	has	been	derived,	and	its	matrix	element	
is	to	be	calculated	in	lattice	QCD	(J.W. Chen, in preparation).	
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�  Isovector	(sea)	quark	distribution	
calculated	with	the	LaMET	approach	

�  HYP	smearing	applied	to	smoothen	
Wilson	line	gauge	links	

�  One-loop	matching	+	mass	corrections	
included	

Lin et. al. PRD 15’
See H.W. Lin’s talk. �

Alexandrou et. al. 
PRD 15’�



¡  Parton	with	momentum	xPz	has	correlation	length	~1/
xPz,	so	with	a	boosted	nucleon	the	distribution	the	
valence	quark	is	shrunk	by	the	boost	factor	γ.	

¡  Needs	higher	resolution	along	the	z	direction,	lattice	
spacing	should	be	1/γ	to	transverse	directions,	or,	with	
the	same	box	size	lattice	sites	must	be	γ	times	that	of	
the	transverse	directions.	

Oct.	22,	2015	 INT-15-3,	Seattle	 44	

Ji, Sci. China Phys. Mech. Astro., 2014	



¡  The	smallest	x	for	PDF	is	~	ΛQCD/Pz.	The	correlation	
length	of	valence	quark	does	not	change	under	the	
Lorentz	boost,	but	to	achieve	extremely	small	x	one	
needs	extremely	large	Pz.	

¡  For	example,	for	x~10-4,	Pz~3TeV,	which	means	that	the	
lattice	sites		must	be	3000	times	of	those	in	the	
transverse	directions.	

¡  	This	requires	a	lot	of	computation	resources!	Current	
computation	power	is	good	at	studying	large	x	PDFs,	
while	small	x	can	be	probed	in	experiments.	
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¡  Since	the	energy	difference	between	the	lowest	excited	
state	and	the	ground	state	will	be	suppressed	by	a	factor	
of	γ,	one	also	requires	a	long	evolution	to	extract	the	
matrix	elements.	

¡  For	a	typical	244	lattice,	the	ideal	choice	of	lattice	size	
for	such	calculation	will	be	242×(24γ)2.	
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¡  LaMET	can	be	applied	to	the	lattice	QCD	
calculation	of	all	the	other	parton	physics.	
§  Light-cone	wavefuntions	
§  Pion	distribution	amplitude	[Ji, Schäfer, Xiong and 

Zhang, 15’]	
§  Transverse	momentum	distributions	
§  Generalized	parton	distributions	[Ji, Schäfer, Xiong 

and Zhang, 15']	
§  Wigner	distributions	
§  Fragmentation	functions	
§  …	
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¡  LaMET	enables	us	to	extract	parton	observables	
from	the	lattice	matrix	elements	of	certain	time-
independent,	frame-dependent	operators.	

¡  The	normal	PDF	is	related	to	quasi	PDF	through	
a	perturbative	matching	condition	that	has	been	
calculated	using	LaMET.	

¡  A	program	for	the	lattice	calculation	of	PDFs	is	
outlined.	

Oct.	22,	2015	 INT-15-3,	Seattle	 48	



INT-15-3,	Seattle	 49	Oct.	22,	2015	



¡  For	QED,	

	
¡  For	QCD,	the	non-Abelian	Coulomb	condition	leads	to	the	

IMF	limit	of	Aphys,	

Ai
⊥ = A

i −∂i
1!
∂2
!
∂ ⋅
!
A→ Ai −∂i

1
∂+
A+

1
∂+

f (ξ '− ) = 1
2

dξ '− K(ξ − −ξ '− ) f (ξ '− )∫ ,     

K(ξ − −ξ '− ) = sgn(ξ − −ξ '− ), or ± 2θ(ξ − −ξ '− ).

A+
phys = 0,     A+

pure = A
+.
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¡  Polarized	gluon	distribution:	

Δg(x)	can	be	measured	in	polarized	DIS	and	proton-proton	
collisions.	

¡  Total	gluon	polarization:	

Δg(x) = i
2xP+

dξ −e−ixP
+ξ− PS F+,i

a∫  (ξ − )Lab(ξ −, 0) !F+
b,i (0) PS

ΔG = dx  ∫ Δg(x)

=
1

2P+
PS dx

x∫ dξ −e−ixP
+ξ−F+,i

a∫  (ξ − )Lab(ξ −, 0) !F+
b,i (0) PS

= −
1

2P+
PS [Ai,a −

1
∂+
∂iA+,b(ξ '− )Lba (ξ '−,ξ − )] !F+

  i,b(0) PS
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Moment	of	the	quark	GTMD	

dxd 2k⊥k
i
⊥∫ f (x,

!
k⊥,
!
Δ⊥ ) =

1
2P+

P 'S ψ(0)γ +i
!
Di
pureψ(0) PS

ε ij lim
Δ→0

∂
∂iΔi dxd 2kT  k j

T f (x,kT ,ΔT )∫ =
1

2P+

PS d3ξ  ∫ ψ(ξ )γ +ε ijξ ii
!
Dj

pureψ(ξ ) PS
(2π )3δ (3)(0)

,

                        lim
Pz→∞

Lc
q = ε ij lim

Δ→0

∂
∂iΔi dxd 2kT  k j

T f (x,kT ,ΔT )∫

                                       = − dxd 2kT
k2
T

M 2 F
q
14 (x, 0,k2

T , 0, 0)∫ .

Zhao, Liu, Yang, 2015
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Moment	of	the	quark	GTMD	
	
¡  F14	is	a	GTMD	whose	measurement	is	unknown	right	now,	

but	its	possibility	has	been	studied	(Courtoy et al., 2014);	

¡  The	canonical	quark	OAM	density	is	related	to	a	twist-three	
GPD	measureable	in	hard	exclusive	processes	(Ji et al., 2012; 
Hatta, 2012).	

Lcan
q  (x) = ε ij lim

Δ→0

∂
i∂Δi

dξ −

2π
 ∫ e−ixP

+ξ− P 'S ψ(ξ − )γ +i
!
Dj

pureψ(0) PS
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¡  The	gluon	GTMD	

¡  The	canonical	gluon	OAM	density	is	also	related	to	a	twist-
three	GPD	(Hatta et al., 2012, 2013).	

g(x,
!
k⊥,
!
Δ⊥ ) ≡ − i

2xP+

dz−d 2z⊥
(2π )3 eixP

+z− P 'S F+α (− z
−

2
,− z⊥

2
)γ +∫

×W −

−z− /2,±∞
WT

−z⊥ /2,z⊥ /2W
−

±∞,z− /2
F+

 α (z
−

2
, z⊥

2
) PS

lim
Pz→∞

Lc
g = ε ij lim

Δ→0

∂
∂iΔi dxd 2kT  k j

Tg(x,kT ,ΔT )∫

Zhao, Liu, Yang, 2015
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