Lattice QCD calculation of nucleon charges g_A , g_S and g_T for nEDM and beta decay

Boram Yoon

Los Alamos National Laboratory

with T. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin PNDME Collaboration

Oct 5, 2015

Nucleon Charge g_{Γ}^{q}

$$\langle N \mid \bar{q} \Gamma q \mid N \rangle = g_{\Gamma}^{q,N} \bar{\psi}_N \Gamma \psi_N$$

- Can be calculated using lattice QCD
- Plays important role in understanding SM, probing BSM

Neutron Decay

- SM : V-A Weak decay (e_L with ν_L)
- BSM : Novel S, T interactions (e_R with ν_L)

Leading BSM Contribution and Nucleon Charges

$$H_{\text{eff}} \supset G_F \left[\varepsilon_S \; \overline{u} d \times \overline{e} (1 - \gamma_5) \nu_e + \varepsilon_T \; \overline{u} \sigma_{\mu\nu} d \times \overline{e} \sigma^{\mu\nu} (1 - \gamma_5) \nu_e \right]$$

• Low energy hadronic part can be calculated from lattice:

$$g_S^{u-d} \sim \langle p \mid \bar{u}d \mid n \rangle, \qquad g_T^{u-d} \sim \langle p \mid \bar{u}\sigma_{\mu\nu}d \mid n \rangle$$

Note: $\langle p | \bar{u}\Gamma d | n \rangle = \langle p | \bar{u}\Gamma u | p \rangle - \langle p | \bar{d}\Gamma d | p \rangle \equiv g_{\Gamma}^{u-d}$ in isospin limit

• Combined with neutron decay experiments, lattice calculation of g_S^{u-d} and g_T^{u-d} can be used to **constrain BSM physics** (ε_S , ε_T)

Required Precision of g_S and g_T

Bhattacharya, et al., PRD85 054512 (2012)

- 90% CL contours in $[\varepsilon_S, \varepsilon_T]$ plane
- (Near) future expt. b and B₁ at 10⁻³
- Impact limited by g_S and g_T

•
$$\delta g_T = \frac{2}{3} \delta g_S$$

 Goal: 10% accuracy in g_S and g_T

Neutron Electric Dipole Moment (nEDM)

• Measure for the distribution of positive and negative charge inside the neutron

Violates CP

- Current expt. upper limit : $|d_N| < 2.9 \times 10^{-26} e \cdot {\rm cm} \\ [{\rm Baker, \ et \ al., \ PRL, \ 2006}]$
- Standard model estimate : $|d_N| \sim 10^{-31} e \cdot {
 m cm}$ [Dar, arXiv:hep-ph/0008248]
- CPV in SM is not enough to explain observed baryon asymmetry
- nEDM : good probe of new CP-violating BSM physics

Neutron EDM, Quark EDM and Tensor Charge

- Sources of nEDM in \mathcal{L}_{eff}^{CPV} : θ_{QCD} , quark-EDM, chromo-EDM, Weinberg 3-gluon, ...
- Quark EDMs

$$\mathcal{L} = -\frac{i}{2} \sum_{q=u,d,s} d_{q} \, \bar{q} \sigma_{\mu\nu} \gamma_{5} q F^{\mu\nu}$$

Neutron EDM from qEDMs (assuming qEDM is the major source)

$$d_N = d_u g_T^{u,N} + d_d g_T^{d,N} + d_s g_T^{s,N}$$

Hadronic part: nucleon tensor charge

$$\langle N | \bar{q}\sigma_{\mu\nu}q | N \rangle = g_T^{q,N} \bar{\psi}_N \sigma_{\mu\nu}\psi_N$$

Neutron EDM, Quark EDM and Tensor Charge

• $d_q \propto m_q$ in many models

$$d_q = y_q \delta_q; \qquad \frac{y_u}{y_d} \approx \frac{1}{2}, \qquad \frac{y_s}{y_d} \approx 20$$

$$d_{N} = d_{u} g_{T}^{u,N} + d_{d} g_{T}^{d,N} + d_{s} g_{T}^{s,N}$$

= $d_{d} \left[g_{T}^{d,N} + \frac{1}{2} \frac{\delta_{u}}{\delta_{d}} g_{T}^{u,N} + 20 \frac{\delta_{s}}{\delta_{d}} g_{T}^{s,N} \right]$

 \Rightarrow Precision determination of $g_T^{s,N}$ is important

Lattice QCD

- Non-perturbative approach to understand QCD
- Formulated on discretized Euclidean space-time
 - Hypercubic lattice
 - Lattice spacing "a"
 - Quark fields placed on sites
 - Gauge fields on the links between sites; U_{μ}

Systematics for Lattice Calculation

Finite Lattice Spacing

– Simulations at finite lattice spacings $a \approx 0.06, 0.09$ & 0.12 fm

 \Rightarrow Extrapolate to continuum limit, a = 0

Heavy Quark Mass

- Smaller quark mass \longrightarrow Larger computational cost
- Simulations at (heavy) pion masses $M_{\pi} \approx 130, 210$ & 310 MeV
- \Rightarrow Extrapolate to physical pion mass, $M_{\pi} = M_{\pi}^{\text{phys}}$

Finite Volume

- Simulations at finite lattice volume

 $M_{\pi}L = 3.2 \sim 5.4 \ (L = 2.9 \sim 5.8 \ {\rm fm})$

 \Rightarrow Extrapolate to infinite volume, $M_{\pi}L = \infty$

Excited State Contamination

MILC HISQ Lattices, $n_f = 2 + 1 + 1$

ID	a (fm)	M_{π} (MeV)	$L^3 \times T$	$M_{\pi}L$
a12m310	0.1207(11)	305.3(4)	$24^3 \times 64$	4.54
a12m220S	0.1202(12)	218.1(4)	$24^3 \times 64$	3.22
a12m220	0.1184(10)	216.9(2)	$32^3 \times 64$	4.29
a12m220L	0.1189(09)	217.0(2)	$40^3 \times 64$	5.36
a09m310	0.0888(08)	312.7(6)	$32^3 \times 96$	4.50
a09m220	0.0872(07)	220.3(2)	$48^3 \times 96$	4.71
a09m130	0.0871(06)	128.2(1)	$64^3 \times 96$	3.66
a06m310	0.0582(04)	319.3(5)	$48^3 \times 144$	4.51
a06m220	0.0578(04)	229.2(4)	$64^3 \times 144$	4.25

- Fermion discretization : Clover (valence) on HISQ (sea)
- HYP smearing reduce discretization artifact

•
$$m_u = m_d$$

Three-point Function Diagrams

- Quark-line connected / disconnected diagrams
- Disconnected diagrams : Complicated and expensive on lattice Canceled in isovector charges g_{Γ}^{u-d}
- Neutron decay needs only connected diagrams (g_T^{u-d}, g_S^{u-d}) , Quark EDM needs both diagrams (g_T^u, g_T^d, g_T^s)

Connected Quark Loop Contribution

Nucleon Charge on Lattice

• Nucleon charges g_{Γ}^q (Γ = V,A,S,T) defined by

• On lattice, g_{Γ}^{q} is extracted from ratio of 3-pt and 2-pt function

$$C^{\operatorname{Spt}}/C^{\operatorname{2pt}} \longrightarrow g_{\Gamma}^q$$

 $-C^{\mathsf{2pt}} = \langle 0 | \ \chi(t_{\mathsf{s}}) \ \overline{\chi}(0) \ | 0 \rangle, \quad C^{\mathsf{3pt}} = \langle 0 | \ \chi(t_{\mathsf{s}}) \ \mathcal{O}(t_{\mathsf{i}}) \ \overline{\chi}(0) \ | 0 \rangle$

- $-\chi$: interpolating operator of proton
- χ introduces **excited states** of proton

Removing Excited States Contamination

• (1) Gaussian smearing on src/snk, (2) Seperation of src/snk in T

- Separating proton sources far from each other
 → small excited state effect, but weak signal
- Separating in reasonable range, remove excited state by fitting to

$$C^{2\text{pt}}(t_{\text{sep}}) = A_0^2 e^{-M_0 t_{\text{sep}}} + A_1^2 e^{-M_1 t_{\text{sep}}}$$

$$C^{3\text{pt}}(t_{\text{sep}}, t_{\text{ins}}) = B_0 e^{-M_0 t_{\text{sep}}} + B_1 e^{-M_1 t_{\text{sep}}}$$

$$+ B_{01} \left[e^{-M_0 t_{\text{ins}}} e^{-M_1 (t_{\text{sep}} - t_{\text{ins}})} + e^{-M_1 t_{\text{ins}}} e^{-M_0 (t_{\text{sep}} - t_{\text{ins}})} \right]$$

Removing Excited States Contamination (a09m130)

All Mode Averaging (AMA) Technique

- All-mode averaging (AMA) [Blum, Izubuchi and Shintani, PRD 88, 094503 (2013)]
- Exploiting translation symmetry & small fluctuation of low-modes
- "LP" term is cheap low-precision estimate (inverter with $r \sim 10^{-3}$)
- "HP" (high-precision) correction term Systematic error ⇒ Statistical error
- $N_{\text{LP}} \gg N_{\text{HP}}$ brings computational gain (e.g., N_{LP} = 60, N_{HP} = 4)

MILC HISQ Lattices, $n_f = 2 + 1 + 1$

ID	a (fm)	M_{π} (MeV)	$L^3 \times T$	$M_{\pi}L$
a12m310	0.1207(11)	305.3(4)	$24^3 \times 64$	4.54
a12m220S	0.1202(12)	218.1(4)	$24^3 \times 64$	3.22
a12m220	0.1184(10)	216.9(2)	$32^3 \times 64$	4.29
a12m220L	0.1189(09)	217.0(2)	$40^3 \times 64$	5.36
a09m310	0.0888(08)	312.7(6)	$32^3 \times 96$	4.50
a09m220	0.0872(07)	220.3(2)	$48^3 \times 96$	4.71
a09m130	0.0871(06)	128.2(1)	$64^3 \times 96$	3.66
a06m310	0.0582(04)	319.3(5)	$48^3 \times 144$	4.51
a06m220	0.0578(04)	229.2(4)	$64^3 \times 144$	4.25

Renormalization of Bilinear Operators $\overline{q} \Gamma q$

- Lattice results $\Longrightarrow \overline{\text{MS}}$ scheme at 2GeV
- Non-perturbative renormalization using RI-sMOM scheme

 $g_{\Gamma}^{\text{renorm}} = \frac{Z_{\Gamma}}{Z_{V}} \times \frac{g_{\Gamma}^{\text{pare}}}{g_{\Gamma}^{\text{pare}}}$

• Calculate ratio Z_{Γ}/Z_V : reduce lattice artifact

[PRD 89, 094502 (2014)], [arXiv:1506.06411]

(Use $Z_V g_V^{u-d} = 1$)

Axial Charge g_A on the Lattice

Axial Charge g_A

- Smaller lattice spacing shows smaller value of g_A?
- Excited state contamination!

Excited State Effect of g_A (bare)

Excited State Effect of g_A (bare)

Source/Sink gaussian smearing radius:

 $0.66~{\rm fm}$ (a12), $0.50~{\rm fm}$ (a09) and $0.39-0.33~{\rm fm}$ (a06)

- Tuned so that it minimizes computation cost and statistical noise but underestimated excited state effect in smaller *a* ensembles
- Larger excited state effect observed in smaller *a* ensembles

$$C^{2\mathsf{pt}}(t_{\mathsf{sep}}) = A_0^2 e^{-M_0 t_{\mathsf{sep}}} + A_1^2 e^{-M_1 t_{\mathsf{sep}}}$$

 $A_1^2/A_0^2 \approx$ 0.7 (a12), 1.2 (a09), and 1.7–3.5 (a06)

• Excited state contamination makes g_A smaller

• Fixed source/sink smearing, large src-snk separation

Excited State Effect of g_A with Different Smearing

- Aggressive smearing reduces excited state effect, and pushes *g*_A up closer to experimental estimate
- g_A is under investigation

Small Excited State Contamination in g_S and g_T

Small Excited State Contamination in g_S and g_T

Extrapolation to Physical Limit: g_S^{u-d} , g_T^{u-d}

• Volume extrapolation is not displayed, but included

Extrapolation to Physical Limit: g_T^u , g_T^d

BSM Constraints in β -decay from g_T^{u-d} , g_S^{u-d}

- 90% CL contours in $[\varepsilon_S, \varepsilon_T]$ plane
- Nuclear Experiments : $0^+ \rightarrow 0^+$ transitions, Asym in Gamow-Teller β -decay, ...
- Future UCN expt. b and B₁ at 10⁻³

Disconnected Quark Loop Contribution

Disconnected Contribution to the Nucleon Charges

Disconnected part of the ratio of 3pt func to 2pt func

$$\left[\frac{C^{2\mathsf{pt}}}{C^{2\mathsf{pt}}}\right]^{\mathsf{disc}} = -\frac{\langle C^{2\mathsf{pt}}(t_{\mathsf{s}}) \sum_{\mathbf{x}} \mathrm{Tr}[M^{-1}(t_{\mathsf{i}}, \mathbf{x}; t_{\mathsf{i}}, \mathbf{x}) \Gamma] \rangle}{\langle C^{2\mathsf{pt}}(t_{\mathsf{s}}) \rangle}$$

- M: Dirac operator
- $\text{Tr}[M^{-1}(t_{i}, \mathbf{x}; t_{i}, \mathbf{x}) \Gamma]$: disconnected quark loop

Difficulties in Disconnected Diagram Calculation

$$\left[\frac{C^{3\text{pt}}}{C^{2\text{pt}}}\right]^{\text{disc}} = -\frac{\langle C^{2\text{pt}}(t_{\text{s}}) \sum_{\mathbf{x}} \text{Tr}[M^{-1}(t_{\text{i}}, \mathbf{x}; t_{\text{i}}, \mathbf{x})\sigma_{\mu\nu}] \rangle}{\langle C^{2\text{pt}}(t_{\text{s}}) \rangle}$$

- Connected calculation needs only point-to-all propagators
 Disconnected quark loop needs all-x-to-all propagators
 ⇒ Computationally L³ times more expensive; need new technique
- Noisy signal \Rightarrow Need more statistics

Improvement & Error Reduction Techniques

- Multigrid Solver [Osborn, et al., 2010; Babich, et al., 2010]
- All-Mode Averaging (AMA) for Two-point Correlators
 [Blum, Izubuchi and Shintani, 2013]
- Hopping Parameter Expansion (HPE)
 [Thron, et al., 1998; McNeile and Michael , 2001]
- Truncated Solver Method (TSM) [Bali, Collins and Schäfer, 2007]
- Dilution [Bernardson, et al., 1994; Viehoff, et al., 1998]

Removing Excited States Contamination

- Interpolating operator introduces excited state contamination
- Remove excited state by fitting to

$$C^{2\text{pt}}(t_{\text{sep}}) = A_1 e^{-M_0 t_{\text{sep}}} + A_2 e^{-M_1 t_{\text{sep}}}$$

$$C^{3\text{pt}}(t_{\text{sep}}, t_{\text{ins}}) = B_1 e^{-M_0 t_{\text{sep}}} + B_2 e^{-M_1 t_{\text{sep}}}$$

$$+ B_{12} \left[e^{-M_0 t_{\text{ins}}} e^{-M_1 (t_{\text{sep}} - t_{\text{ins}})} + e^{-M_1 t_{\text{ins}}} e^{-M_0 (t_{\text{sep}} - t_{\text{ins}})} \right]$$

Removing Excited States Contamination (a12m310, *l*)

Removing Excited States Contamination (a12m310, s)

0.020 Extrap $t_{sep} = 10$ $t_{sep} = 11$ $t_{sep} = 12$ t_{sep}= 8 0.015 t_{sep}=9 0.010 $g_T^{s,\,disc}$ 0.005 0.000 -0.005 -0.010 a12m310 -0.015 2 3 -3 -2 $\tau - t_{sep}/2$

Proton Tensor Charge : Connected / Disconnected

Connected Contribution

$$g_T^u = 0.77(6), \qquad g_T^d = -0.20(2)$$

Disconnected Contribution

Ens	g_T^l	g_T^s
a12m310	-0.0121(23)	-0.0040(19)
a12m220	-0.0037(40)	-0.0010(27)
a09m310	-0.0050(22)	-0.0005(21)
a09m220	—	-0.0021(54)
a06m310	-0.0037(65)	-0.0005(55)

- $-g_T^{l,\text{disc}}$ is tiny compared to the connected contributions \Rightarrow Take maximum value as systematic error
- No connected diagrams for $g_T^s \Rightarrow$ Extrapolate to physical point
- Disconnected contributions are non-trivial in g_S and g_A ($\mathcal{O}(10\%)$)

[arXiv:1506.04196], [arXiv:1506.06411]

Simultaneous extrapolation of g_T^s in (a, M_{π})

 $g_T^s = 0.008(9)$

Results

Lattice Results of Nucleon Tensor Charge

• Proton Charges ($\mu^{\overline{MS}} = 2 \, \text{GeV}$)

$$g_S^{u-d} = 0.86(18)$$

 $g_T^{u-d} = 0.99(7)$

$$g_T^u = 0.77(6)$$

 $g_T^d = -0.20(2)$
 $g_T^s = -0.008(9)$

Neutron Tensor Charge

In isospin limit ($m_u = m_d$), $u \leftrightarrow d$ from proton g_T

Lattice Calculations of Isovector Tensor Charge

Disconnected Contribution to Tensor Charge

This study

$$|g_T^{l,{\rm disc}}| \le 0.0121, \qquad g_T^{s,{\rm disc}} = 0.008(9)$$

- Lattice, Abdel-Rehim, *et al.*, 2014, $a = 0.082 \text{ fm}, M_{\pi} = 370 \text{ MeV}, \text{ Twisted mass}$ $q_T^{l,\text{disc}} = 0.0008(7)$
- Lattice, S. Meinel, *et al.*, 2014, $a = 0.11 \text{ fm}, M_{\pi} = 317 \text{ MeV}, \text{ Clover}$

Tensor Charge

	g_T^d	g_T^u	g_T^s	μ
This study	-0.20(2)	0.77(6)	0.008(9)	2 GeV
Quark model	-1/3	4/3	_	_
QCD Sum Rules ¹	-0.35(17)	1.4(7)	_	?
Dyson-Schwinger ²	-0.11(2)	0.55(8)	_	2 GeV
Transversity 1 ³	-0.18(33)	0.57(21)	_	\sim 1 GeV
Transversity 2 ⁴	-0.25(20)	0.39(15)	_	\sim 1 GeV
Transversity 3 ⁵	$-0.22^{+0.14}_{-0.08}$	$0.39^{+0.07}_{-0.11}$	_	3.2 GeV

¹Pospelov and Ritz, 1999 ²Pitschmann, *et al.*, 2014 ³Bacchetta, *et al.*, 2012 ⁴Anselmino, *et al.*, 2013 ⁵Kang, *et al.*, 2015

qEDM and Tensor Charge

$$d_N = d_u \ g_T^{u,N} + d_d \ g_T^{d,N} + d_s \ g_T^{s,N}$$

Known parameters

$$\begin{split} |d_N| &< 2.9 \times 10^{-26} e \text{ cm (90\% C.L.)} & \text{[Baker, et al., PRL 2006]} \\ g_T^{u,N} &= -0.20(2) \\ g_T^{d,N} &= -0.77(6) \\ g_T^{s,N} &= -0.008(9) \end{split}$$

 \Rightarrow Place constraints on d_q

qEDM Constraints

Constraints in Split SUSY Model

Split SUSY: Quark EDM is the dominant BSM source of CPV

Conclusion

- g_A is under investigation, focusing on the excited state effect
- Isovector g_S and g_T are obtained within 20% and 7% uncertainty
- Presented first lattice QCD calculation of nucleon tensor charge including all systematics (*a*, M_{π} , $M_{\pi}L$, disconnected diagrams)
- Constrained qEDMs and split SUSY model by using the lattice results combined with experiment