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Low-Energy Nuclear Physics

Understanding Nuclear Physics from QCD

Testing the Standard Model at low-energy 
in nuclear environments



Low-Energy Nuclear Physics

Testing the Standard Model at low-energy 
in nuclear environments

Assuming CP-violating new physics from massive 
SM extension (M𝚲>MW), what is the 
manifestation of  this new physics at low-energy?



Fundamental Symmetries and Low-Energy Nuclear Physics
๏ The Universe is matter dominated at roughly 1 ppb: 

⌘ ⌘ Xp+n

X�
= 6.19(15)⇥ 10�10

๏ Sources of  CP-violation beyond the Standard Model (SM) are 
needed to generate this observed asymmetry

๏ Assuming nature is CPT symmetric, this implies T-violation 
which implies fermions will have permanent electric dipole 
moments (EDMs)

๏ This has motivated significant experimental efforts to search (or 
plan to search) for permanent EDMs in a variety of  systems  

  e, n, p, deuteron, triton, 3He, ..., 199Hg, 225Ra, 229Pa,...



Fundamental Symmetries and Low-Energy Nuclear Physics
๏ In order to interpret a measurement/constraint of  an EDM in 

a nucleon or nuclei as a value/bound of  couplings to BSM 
physics, we must have a solution to QCD in the IR

๏ Our tools of  choice are lattice QCD (LQCD) and Effective 
Field Theory (EFT)

๏ We desire to compute completely a nucleon EDM resulting 
from CP violating operators, however, this is challenging and 
will take more time

๏ In the meantime, we can exploit symmetries (tricks) to 
determine the long-range CP-violating 𝜋-N couplings from 
simple spectroscopic LQCD calculations which are expected to 
dominate the EDMs of  certain nuclei (eg 225Ra)
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๏ In a large nucleus, the long-range pion exchange will (may) 
dominate the nuclear EDM
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๏ For the QCD theta term

๏ For more generic CP Violating operators
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๏ The nuclear EDM is proportional to the Schiff  moment
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S =
X

i 6=0

h�0|Sz|�iih�i|HCPV |�0i
E0 � Ei

+ c.c.

๏ The Schiff  parameters                     are computed with nuclear 
models under the assumption the CPV operator does not 
significantly distort the nuclear wave-function

{a0, a1, a2}

๏ For a QCD theta term only                      and thus a constraint 
on     can be made through the relation
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S =
2MNgA
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(a0ḡ0 + a1ḡ1 + a2ḡ2)



๏ The nuclear EDM is proportional to the Schiff  moment
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S =
X

i 6=0

h�0|Sz|�iih�i|HCPV |�0i
E0 � Ei

+ c.c.

๏ 225Ra is interesting nucleus as it is octupole deformed 
๏ “stiff ” core making nuclear model calculations more reliable 
๏ nearly degenerate parity partner state 

๏                 enhancement of  

E�
1/2 � E+

1/2 = 55 KeV

{a0, a1, a2}

S =
2MNgA

F⇡
(a0ḡ0 + a1ḡ1 + a2ḡ2)

102 � 103



๏ Sources of  CP-Violation in quark sector:
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Operator [Operator] No. Operators
4 1✓̄

quark EDM 6 2

quark Chromo-EDM 6 2

Weinberg (GGG) 6 1

4-quark 6 2

4-quark induced 6 1
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๏ Sources of  CP-Violation in quark sector:
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QCD Isospin Violation and CP-violating 𝜋-N

ḡ0 =
�Mmd�mu

n�p

md �mu

2mdmu

md +mu
✓̄ = ↵

2mdmu

md +mu
✓̄

๏ A precise determination of  the strong isospin breaking 
contribution to Mn-Mp teaches us about CP-violation 
(I learned all this from Emanuele Mereghetti)



Isospin Violation and Lattice QCD

1.5 2.0 2.5 3.0 3.5

�Mmd�mu
n�p [MeV]

2.26(71) NPLQCD [hep-lat/0605014]

2.51(52) Blum et. al. [1006.1311]

3.13(57) QCDSF-UKQCD [1206.3156]

2.90(63) RM123 [1303.4896]

2.28(26) BMWc [1306.2287]

2.52(29) BMWc [1406.4088]

3.64(21) QCDSF [1508.06401]

2.44(17) weighted average

�Mmd�mu
n�p = 2.44(17) MeV



Isospin Violation and Lattice QCD
strong isospin breaking correction

⇥Mmd�mu
n�p = �(md �mu)

ideal problem for lattice QCD

lattice average

mvalence
u,d 6= msea

l

“partially quenched” lattice 
QCD trick that works on the 
computer but introduces error 
which must be corrected

valence

sea

Beane, Orginos, Savage  Nucl. Phys. B768 (2007)
B. Tiburzi, AWL  Nucl. Phys.  A764 (2006)

AWL  arXiv:0904.2404
Blum, Izubuchi, etal  Phys. Rev. D82 (2010)

AWL  PoS Lattice2010 (2010)
de Divitiis etal  JHEP 1204 (2012)

Horsley etal  Phys. Rev. D86 (2012)
de Divitiis etal  Phys. Rev. D87 (2013)

Borsanyi etal  arXiv:1306.2287
Borsanyi etal  arXiv:1406.4088

�Mmd�mu
n�p = 2.44(17) MeV

Horsley etal  arXiv:1508.06401
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mval = msea � �⌧3
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The first non-standard term in this expression arises from the hairpin interactions, and is the remnant of the partially
quenched chiral Log. Because the ⌘̄ propagator has extra suppression, Eq. (31) relative to the standard version of this
partially quenched propagator [52], (this happens because m̂val = m̂sea), the enhanced chiral logarithm has become
simply a constant. To clarify which contributions are physical, and which are partially quenched artifacts, we have
introduced the term

�2
PQ = �̂ , (37)

which we shall use in the remaining mass expressions. For �̂ ! 0 these expressions reduce to those of standard twisted
mass �PT. Furthermore, comparing to Ref. [57], one can verify that the mass splitting, m

2
⇡0 �m

2
⇡± , determined with

Eq. (36), is the same as that with twisted mass �PT with non-degenrate light quarks, and no partial quenching.
Therefore, with multiple values of the isospin breaking mass term �, one can determine l7 from the charged-neutral
pion mass splitting, at this order, free of partial quenching errors. Also at this order, the pion decay constants do not
receive any corrections and are given by the standard form
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+

2m̂

f

2
l

r
4(⇤) + cos !

16W̃ â
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�
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D. Baryons

One can also include baryons in twisted mass �PT [25], using an extension of the heavy baryon chiral Lagrangian
formulated by Jenkins and Manohar [58, 59]. For our work, we will need the two-flavor partially quenched baryon
Lagrangian, which was first developed in Ref. [44] and later extended to NNLO in Ref. [60]. Here we use the
normalization conventions of Ref. [61], for which the twisted mass baryon chiral Lagrangian is given by
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In this Lagrangian, ( ) denote the graded summation of flavor indices, first defined in Ref. [42]. The spurions are
defined as
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1
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⇠Â

†
⇠ ± ⇠

†
Â⇠
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with �

0 and Â defined in Eq. (21). Here, ⇠

2 = ⌃ is needed for the inclusion of the baryon fields in the chiral Lagrangian.
The axial field is defined as

Aµ =
i

2
�
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�
, (41)

and Sµ is a spin operator [58, 59]. As with the mesons, we must match this Lagrangian to the unquenched one, given
by
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Partially Quenched Nucleon Lagrangian
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0 and Â defined in Eq. (21). Here, ⇠

2 = ⌃ is needed for the inclusion of the baryon fields in the chiral Lagrangian.
The axial field is defined as

Aµ =
i

2
�
⇠@µ⇠

† � ⇠

†
@µ⇠

�
, (41)

and Sµ is a spin operator [58, 59]. As with the mesons, we must match this Lagrangian to the unquenched one, given
by

L = Nv ·DN +
↵M

(4⇡f)
NM+N +

�M

(4⇡f)
NN tr(M+) +

�W

(4⇡f)
NN tr(W+)

+ (Tµv ·D Tµ) + � (TµTµ) +
�M

(4⇡f)
(TµM+Tµ) +

�M

(4⇡f)
(TµTµ) tr(M+) +

�W

(4⇡f)
(TµTµ) tr(W+)

+ 2 gA NS ·A N � 2 g�� TµS ·A Tµ + g�N

h
T

kji

µ A

µ,i0

i ✏ji0Nk + h.c.

i
. (42)

8

Performing the matching, one finds
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for the discretization operators. Using the partially quenched Lagrangian, performing the matching with Eqs. (43)
and (44), and working consistently to NLO we find the nucleon masses are given by
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Here, we see that the NLO contributions exactly cancel in mn�mp, thus rendering the expansion of the mass splitting
on the same footing as the pion mass expansion. One can see the last term in these mass expressions is proportional
to the coupling of the nucleons to the singlet field, being proportional to (gA + g1). These terms are remnants of our
partially quenched theory and would vanish if the sea quarks had an isospin breaking mass term equal to that of the
valence quarks.

Similarly, one can determine the delta mass expressions. One should caution that due to the strong coupling to
the ⇡ �N system, the deltas, at lighter pion masses, have significantly larger volume dependence than the nucleons
or pions [62–64]. Neglecting these issues for this work, the delta mass extrapolation formulae are given by
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where the coe�cients c� are given in Table I and
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, m > |�| . (47)

In the limit �̂ ! 0, these expressions reduce to those in Ref. [25]. Similar to the nucleons, the NLO contributions
exactly cancel from the mass splittings, and the last term in this expression arises from the partially quenched
construction. Also, at this order, one sees the delta masses obey an equal spacing rule, which is violated at NNLO by
one operator [60]. It is precisely the imaginary piece of this F-function, which in finite Euclidean volume gives rise
to the power-law dependence of the delta masses [63, 64].
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construction. Also, at this order, one sees the delta masses obey an equal spacing rule, which is violated at NNLO by
one operator [60]. It is precisely the imaginary piece of this F-function, which in finite Euclidean volume gives rise
to the power-law dependence of the delta masses [63, 64].
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mval = msea � �⌧3

Nucleon Masses

Mn �Mp = 2↵N�
B

4⇡f⇡
+O(�2, �m⇡)

Notice in the isospin splitting, not only the isospin violation appears as 
expected, but the non-analytic pion loop corrections exactly cancel, and the 
PQ effects exactly cancel!  (This is only with “symmetric isospin breaking”)

The expansion for Mn-Mp becomes similar to that of  the pions (only even 
powers of  the pion mass)
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8m⇡(4⇡f⇡)2

Mp =M0 �
2B�

4⇡f⇡

↵N

2
+

m2
⇡

4⇡f⇡

⇣↵N

2
+ �N (µ)

⌘
� 3⇡g2A

(4⇡f⇡)2
m3

⇡ � 8g2⇡N�

3(4⇡f⇡)2
F(m⇡,�, µ)

+
3⇡�4

PQ(gA + g1)2

8m⇡(4⇡f⇡)2



Isospin Violation and Lattice QCD AWL  arXiv:0904.2404

mval = msea � �⌧3

Mn �Mp =
2B�

4⇡f⇡

⇢
↵N +

m2
⇡

(4⇡f⇡)2
(bM1 + bM6 ) +

J (m⇡,�, µ)

(4⇡f⇡)2
4g2⇡N�

✓
5

9
�M � ↵N

◆

m2
⇡

(4⇡f⇡)2


20

9
�Mg2⇡N� � 4↵N (g2A + g2⇡N�)� ↵N (6g2A + 1) ln

✓
m2

⇡

µ2

◆�

+
↵N�4

PQ

m2
⇡(4⇡f⇡)

2

✓
2� 3

2
(gA + g1)

2

◆�

Full NNLO Nucleon mass splitting:
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lattice QCD calculation performed using the 
Spectrum Collaboration anisotropic clover-
Wilson gauge ensembles (developed @ JLAB)

ensemble atm⇡ atmK at� [Ncfg ⇥ Nsrc]

L T atml atms 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 0.0800 0.1033 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 – – 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 – – 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 – – 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 0.0689 0.0968 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 – – 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 0.0393 0.0833 842 ⇥ 11 – – –

ensemble m⇡ mK at� [Ncfg ⇥ Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 500 647 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 426 608 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 426 608 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 426 608 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 426 608 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 244 520 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 244 520 842 ⇥ 11 – – –

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-
laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of
important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim
of this work is to perform a detailed analysis of the scale setting, the quark mass renor-
malization and the light-quark mass dependence of the ground state hadron spectrum. The
HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice
spacing with fixed renormalized anisotropy ⇠ = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, ⌦� and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest
light quark mass dependence of all the baryons. The strategy is to extrapolate atm⌦(l⌦, s⌦)
to the physical values of l⌦ and s⌦, where

l⌦ =
m2

⇡

m2
⌦

, s⌦ =
2m2

K � m2
⇡

m2
⌦

. (1)

We define the physical values by their isospin averaged values (after subtracting EM self-
energy corrections). The pions are split at O(�2) with the ⇡± having no � correction whereas

3
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[M
eV

]

msea = lm0p0860 sm0p0743
msea = lm0p0840 sm0p0743
msea = lm0p0830 sm0p0743

ensemble atm⇡ atmK at� [Ncfg ⇥ Nsrc]

L T atml atms 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 0.0800 0.1033 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 – – 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 – – 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 – – 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 0.0689 0.0968 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 – – 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 0.0393 0.0833 842 ⇥ 11 – – –

ensemble m⇡ mK at� [Ncfg ⇥ Nsrc]

L T atml atms [MeV] [MeV] 0.0002 0.0004 0.0010 0.0020

16 128 -0.0830 -0.0743 488 620 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16 207 ⇥ 16

16 128 -0.0840 -0.0743 420 591 166 ⇥ 25 166 ⇥ 25 166 ⇥ 25 166 ⇥ 50

20 128 -0.0840 -0.0743 420 591 120 ⇥ 25 – – –

24 128 -0.0840 -0.0743 420 591 97 ⇥ 25 – 193 ⇥ 25 –

32 256 -0.0840 -0.0743 420 591 291 ⇥ 10 291 ⇥ 10 291 ⇥ 10 –

24 128 -0.0860 -0.0743 240 508 118 ⇥ 26 – – –

32 256 -0.0860 -0.0743 240 508 842 ⇥ 11 – – –

I. INTRODUCTION

II. DETAILS OF THE LATTICE CALCULATION

The calculations presented in this work were performed on the Hadron Spectrum Col-
laboration (HSC) anisotropic clover-Wilson ensembles [1]. There have been a number of
important calculations performed on these ensembles... HSC, NPLQCD, EMC, ... The aim
of this work is to perform a detailed analysis of the scale setting, the quark mass renor-
malization and the light-quark mass dependence of the ground state hadron spectrum. The
HSC ensembles exist for a variety of light quark masses and volumes but just a single lattice
spacing with fixed renormalized anisotropy ⇠ = as/at = 3.5.

III. LIGHT-QUARK MASS DEPENDENCE AND SCALE SETTING

A. Pseudo-Nambu-Goldstone mesons, ⌦� and scale setting

We will use the omega mass to set the scale, since it is expected to have the simplest
light quark mass dependence of all the baryons. The strategy is to extrapolate atm⌦(l⌦, s⌦)
to the physical values of l⌦ and s⌦, where

l⌦ =
m2

⇡

m2
⌦

, s⌦ =
2m2

K � m2
⇡

m2
⌦

. (1)

We define the physical values by their isospin averaged values (after subtracting EM self-
energy corrections). The pions are split at O(�2) with the ⇡± having no � correction whereas

3
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Nucleon Mass Splitting Ratio Cn(t) / Cp(t)
Cn(t)

Cp(t)
= e��MN tA0 + �n0 + (A1 + �n1 )e

�(�+��n)t + · · ·
A0 + �p0 + (A1 + �p1)e

�(�+��p)t

= e��MN t
�
1 + (�n0 � �p0) + [�n1 � �p1 �A1(��

n � ��p)t] e��t
 

In ratio, excited state mass gap is the nucleon excited state, � >> Mn �Mp
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this is striking evidence of  a chiral logarithm
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๏ QCD Theta term

Computational Strategy

LCPV = � g2s ✓̄

32⇡2
G̃µ⌫G

µ⌫ L�
CPV = � ḡ0

2F⇡
N̄~⇡ · ~⌧N

ḡ0 =
�Mmd�mu

n�p

md �mu

2mdmu

md +mu
✓̄Symmetries

�Mmd�mu
n�p = ↵(md �mu)

Simple spectroscopic calculation allows us to determine this 
long-range CP-Violating pion-nucleon coupling

This strategy was developed in conversations with  
Emanuele Mereghetti while we were both at LBNL



๏ Quark Chromo-EDM Operators

Computational Strategy

L6
q̄q = � i

2
q̄�µ⌫�5(d̃0 + d̃3⌧3)Gµ⌫q �

1

2
q̄�µ⌫(c̃3⌧3 + c̃0)Gµ⌫q



๏ Quark Chromo-EDM Operators

Computational Strategy
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Symmetries ḡ0 = �qMN
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+ �MN
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c̃0
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✓
�qMN

�⇡N
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๏ Quark Chromo-EDM Operators

Computational Strategy

L6
q̄q = � i

2
q̄�µ⌫�5(d̃0 + d̃3⌧3)Gµ⌫q �

1

2
q̄�µ⌫(c̃3⌧3 + c̃0)Gµ⌫q

Symmetries ḡ0 = �qMN
d̃0
c̃3

+ �MN
�qm2
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2

interactions arising from these sources of CP violation. The leading order chiral Lagrangian
for CP violation is [8]

L�
CP = � ḡ0

2F⇡
N̄⌧i⇡iN � ḡ1

2F⇡
N̄⇡3N , (2)

where ḡ0 and ḡ1 are the long-range CP-violating pion-nucleon couplings. For a QCD ✓̄-term,
ḡ1 is suppressed in the chiral expansion compared to ḡ0, but this does not hold for more
general BSM CP violation.

Focussing on the dimension-6 quark-bilinear operators, there are two quark EDM opera-
tors and two quark C-EDM operators, along with their CP conserving partners [8],

L6
q̄q =� i

2
q̄�µ⌫�5(d0 + d3⌧3)qFµ⌫ � i

2
q̄�µ⌫�5(d̃0 + d̃3⌧3)Gµ⌫q

� 1

2
q̄�µ⌫ (c3⌧3 + c0)qFµ⌫ � 1

2
q̄�µ⌫ (c̃3⌧3 + c̃0)Gµ⌫q, (3)

where Fµ⌫ , Gµ⌫ are the QED and QCD field-strength tensors.1 Just as with the QCD ✓̄-term,
this symmetry can be exploited to perform simple spectroscopic lattice QCD calculations
of the nucleon mass and mass splitting in the background of the CP conserving opera-
tors. For example, one can perturbatively add the operator q̄�µ⌫⌧3qGµ⌫ to the action (after
transforming to Euclidean space-time, of course) and compute the induced change in the
proton-neutron mass splitting. This will, in turn, provide a contribution to the long-range
pion-nucleon CP-violating coupling.

In terms of gluonic operators, the two long-range couplings in Eq. (2) are given by [8]

ḡ0 = �qMN
d̃0
c̃3

+ �MN
�qm2

⇡

m2
⇡

d̃3
c̃0

,

ḡ1 = �2�⇡N

✓
�qMN

�⇡N
� �qm2

⇡

m2
⇡

◆
d̃3
c̃0

. (4)

In these expressions

�MN = nucleon mass splitting induced by O = � q̄ ⌧3 q ,

�⇡N = nucleon sigma-term induced by O = �m̄q̄q ,

�qMN = nucleon mass splitting induced by O = �(c̃3/2) q̄�
µ⌫⌧3Gµ⌫q ,

�qMN = nucleon sigma-term induced by O = �(c̃0/2) q̄�
µ⌫Gµ⌫q ,

�qm
2
⇡ = pion sigma-term induced by O = �(c̃0/2) q̄�

µ⌫Gµ⌫q , (5)

where 2� = md�mu and 2m̄ = md+mu. One can compute simple spectroscopic properties of
the nucleon and, by exploiting the symmetry relation between these quark bilinear operators,
determine the CP-violating pion-nucleon couplings in terms of the fundamental dimension-6
quark operators.

This provides a unique opportunity to use lattice QCD and EFT to contribute signifi-
cantly to the search for BSM physics, specifically, the search for new sources of CP violation,
which we expect on general grounds. Indeed, this project addresses one of the areas high-
lighted in the USQCD white paper on “Lattice QCD for Cold Nuclear Physics” [9].

1 Note that these operators are dimension-6 because the coe�cients are proportional to the fermion masses.

This pattern of chiral symmetry breaking is expected, otherwise the BSM physics would generate additive

quark mass renormalization.

Again, all that is needed are simple spectroscopic quantities



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

You may recognize these operators...



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

You may recognize these operators...

�qMN = c̃3
@MN [c̃cO3]

@c̃3
�qMN = c̃0

@MN [c̃0O0]

@c̃0

The quantities of  interest can be determined by making use of  
the Feynman-Hellman Theorem and simple spectroscopic 
LQCD calculations



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

You may recognize these operators...

�qMN = c̃3
@MN [c̃cO3]

@c̃3
�qMN = c̃0

@MN [c̃0O0]

@c̃0

The quantities of  interest can be determined by making use of  
the Feynman-Hellman Theorem and simple spectroscopic 
LQCD calculations

We also need to determine

�⇡N = ml
@MN

@ml
�MN = �

@MN

@�

� =
md �mu

2
ml =

md +mu

2



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

Simple spectroscopic LQCD calculations can be used to 
determine these important long-range CP-Violating pion-
nucleon couplings

Spectroscopic calculations are what we are best at



๏ Quark Chromo-EDM Operators

Computational Strategy

O0 = �1

2
q̄�µ⌫G

µ⌫q O3 = �1

2
q̄⌧3�µ⌫G

µ⌫q

The leading contribution will come from the valence quarks 
(experience with valence/sea quark mass contribution to 
nucleon mass) - begin with this contribution

D� = D + �{O0,O3}
๏ Invert the valence quarks with a modified Dirac operator

๏ Construct nucleon correlation function with these quarks and 
determine the resulting nucleon mass

๏ Vary λ and determine slope of  mass correction to get derivative
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Computational Strategy

A new method for computing  
quark bi-linear matrix elements

developed with Chris Bouchard & Kostas Orginos 
software development also from Thorsten Kurth



Feynman-Hellman Theorem and Matrix Elements

Feynman-Hellman Theorem
The Feynman-Hellman Theorem (FHT) relates matrix 
elements to (variations in) the spectrum
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limit of correlation functions determined with functional derivatives of the partition function. This
elucidates the generic applicability of our new method: one can determine matrix elements of any
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Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon
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q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h0|Ô(t)Ô†(0)|0i�
=

1

Z
Z

DUµe
�S�S�O(t)O†(0) (3)

with

S� = �

Z
d4xj(x) (4)

with j(x) some bi-linear current density. The derivative
of the correlation function is related to the matrix ele-
ments of the current
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1
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Z
D�e�S�S�

Z
d4x0j(x0)O(t)O†(0)

(5)
The first term is proportional vacuum matrix element of
the current and vanishes unless the current has vacuum
quantum numbers. The second term involves an integral
over the the matrix elements and we have
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Z

d4x0h0|j(x0)|0iC�(t)

+

Z
dt0h0|T{O(t)J(t0)O†(0)}|0i (6)

where we have defined J(t) =
R
d3xj(t, ~x). We see ex-

plicitly now that the second term contains the matrix
element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity

The FHT is often used to determine the scalar quark 
matrix elements in the nucleon (needed to interpret direct 
dark matter detection) both with Chiral Perturbation 
Theory and direct lattice QCD calculations
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Can the FHT be used to compute other matrix elements?
Yes!  By now, it has been implemented by 
CSSM + QCDSF/UKQCD, PRD90 (2014) [1405.3019]
to explore nucleon structure

I will describe an improved implementation and also relate 
the method to another popular newly revived method of 
computing matrix elements - the “summation method”
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Consider a two point correlation function in the presence 
of some source

|�i ⌘ �-vacuum

|⌦i ⌘ lim
�!0

|�i
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j(x) = some bi-linear current density

e.g. �j(x) = q̄(x)mqq(x)

A New Method for Computing Matrix Elements
(Inspired by the Feynman-Hellman Theorem)

Paulo Bedaque,1, ⇤ Chris Bouchard,2, † Kostas Orginos,2, 3, ‡ and André Walker-Loud2, 3, 4, §
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We can differentiate the correlator with respect to 𝝺  
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1
Maryland Center for Fundamental Physics, Department of Physics,

University of Maryland, College Park, MD 20742-4111, USA

2
Department of Physics, The College of William & Mary Williamsburg, VA 23187-8795, USA

3
Thomas Je↵erson National Accelerator Facility Newport News, VA 23606, USA

4
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Motivated by the Feynman-Hellman Theorem, we derive an improved method for computing ma-
trix elements of external currents utilizing only two-point correlation functions. The contamination
from excited states is shown to be Euclidean-time dependent allowing for a significantly improved
ability to reliably determine and control the systematics. We demonstrate the utility of our method
with a calculation of the nucleon axial-charge, performed at a single lattice spacing and a moderate
unphysical pion mass. The Feynman-Hellman Theorem can be derived from the long Euclidean-time
limit of correlation functions determined with functional derivatives of the partition function. This
elucidates the generic applicability of our new method: one can determine matrix elements of any
external current by computing only two-point correlation functions, including non-zero momentum
transfer and flavor-changing matrix elements.

Introduction:

The Feynman-Hellman Theorem and QFT: The
Feynman-Hellman Theorem (FHT) in quantum mechan-
ics relates matrix elements to variations in the spectrum:

@En

@�
= hn|H�|ni (1)

where the Hamiltonian is given by H = H0 + �H�. This
simple relation is easily derived at first order in pertur-
bation theory but is applicable more generally. The FHT
is often invoked in lattice QCD calculations to determine
the scalar quark matrix elements in the nucleon

mq
@mN

@mq

����
mq=mphy

q

= hN |mq q̄q|Ni , (2)

for both the light (q = {u, d}) and strange (q = s) quark
matrix elements.

The important observation about the FHT is that it
relates a three-point correlation function to a change in
a two-point correlation function due to some perturb-
ing source. The lattice calculation of three point func-
tions, particularly those involving nucleons and other
baryons, are particularly challenging for a number of rea-
sons, while there are now many highly advanced methods
developed for computing two-point correlation functions
and the spectrum. The calculation of three point func-
tions are stochastically noisy and often su↵er from con-
tamination from excited states. Controlling these sys-
tematics requires a significant increase in the numerical
cost of the calculations making full calculations often pro-
hibitively expensive. If we can invoke the FHT to com-
pute matrix elements using only two-point correlation
functions, then we can apply our sophisticated meth-
ods for spectroscopy to these important non-perturbative
quantities with reduced systematics.

The FHT has already been utilized to compute certain
matrix elements of the nucleon cite[Adelaidians]

Can we provide more insight on the connection be-
tween the FHT and QFT?

A New Method: Consider a two point correlation func-
tion computed in the presence of some external source

C�(t) = h�|Ô(t)Ô†(0)|�i
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The first term is proportional to a vacuum matrix element 
and the second contains the matrix element we are 
interested in.  We are really interested in the linear-
response

J(t) =

Z
d

3
x j(t,x)
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Let us focus on the second term:

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.

Z
dt0h⌦|T{O(t)J(t0)O†(0)}|⌦i =

Z
1

t
dt0h⌦|J(t0)O(t)O†(0)|⌦i

+

Z t

0
dt0h⌦|O(t)J(t0)O†(0)|⌦i

+

Z t

�1

dt0h⌦|O(t)O†(0)J(t0)|⌦i (7)

The FHT relates matrix elements to derivatives of the
spectrum. The e↵ective mass is a derived quantity which
asymptotes to the ground state mass in the long Eu-
clidean time limit,

meff (t, ⌧) =
1

⌧
ln

✓
C(t)

C(t+ ⌧)

◆
�!
t!1

1

⌧
ln(eE0⌧ ) (8)

Consider the derivative of the e↵ective mass in the pres-
ence of the external current

@meff
� (t, ⌧)

@�

����
�=0

=
1

⌧

�@�C�(t+ ⌧)

C(t+ ⌧)
� �@�C�(t)

C(t)

�
(9)

From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest

@meff
� (t, ⌧)

@�

����
�=0

=
1

⌧

Z
dt0

 h0|T{O(t+ ⌧)J(t0)O†(⌧)}|0i
C(t+ ⌧)

� h0|T{O(t)J(t0)O†(0)}|0i
C(t)

�

=
R(t+ ⌧)�R(t)

⌧
(10)

where

R(t) =

R
dt0h0|T{O(t)J(t0)O(0)}|0i

C(t)
(11)

Relation to other methods:

derivative of e↵ective mass

Implementation:

Systematics:

An application: the nucleon axial charge:

Conclusions:

⇤

bedaque@umd.edu

†

cmbouchard@wm.edu

‡

kostas@wm.edu

§

awalker-loud@lbl.gov

0 00 t tt

t0

t0
t0

The middle contribution is in fact similar to the summation 
method, summed over all time slices between the source 
and sink

+ +

(+ disconnected pieces)



Feynman-Hellman Theorem and Matrix Elements

The FHT relates matrix elements to the spectrum.  Can 
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NOTE: even for currents with non-vanishing vacuum 
matrix elements, this contribution exactly cancels in this 
quantity
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We are then left with the following
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To understand this quantity, we begin by inserting 
complete set’s of states where appropriate
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Feynman-Hellman Theorem and Matrix Elements

The numerator term we can separate into the three 
regions: t0 < 0, 0  t0  t, t < t0

I II III

The middle region, II, is the region we are interested in, 
where we have the matrix element of interest.  The other 
two regions will contribute to systematics that must be 
controlled.
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After some algebra and finite sums, one finds for region II:
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Relation to other methods: derivative of e↵ective mass

NOTE: the term we are interested in is enhanced by a 
factor of t
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The contributions from regions I and III must have some 
symmetry.  The easiest way to evaluate these terms is to 
consider a shifted coordinate system, and a symmetric 
correlation function about the origin
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2
 t  T

2
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From Eq. (6), we observe the term proportional to the
vacuum matrix element exactly cancels in the di↵erence
in Eq. (9) even for scalar currents, leaving us with terms
only proportional to the matrix elements of interest

@meff
� (t, ⌧)

@�

����
�=0

=
1

⌧

Z
dt0
 h0|T{O(t+ ⌧)J(t0)O†(⌧)}|0i

C(t+ ⌧)

� h0|T{O(t)J(t0)O†(0)}|0i
C(t)

�

=
R(t+ ⌧)�R(t)

⌧
(10)

where

R(t) =

R
dt0h0|T{O(t)J(t0)O(0)}|0i

C(t)
(11)

@�m
eff
� (t, ⌧)

���
�=0

=
R(t+ ⌧)�R(t)

⌧
(12)

C(t) = h⌦|O(t)O†(0)|⌦i

=
X

n
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I:

II:

It is straightforward to show this is equivalent to summing 
over just the first lattice and non of it’s images



Feynman-Hellman Theorem and Matrix Elements
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ZnmJ ⌘ hn|O|mJi

These terms are also not enhanced by t



Feynman-Hellman Theorem and Matrix Elements

The expression for R(t) is not obviously useful.  The 
“magic” happens when we consider the differentiation of 
the effective mass

2

element we are interested in, summed over all time in-
sertions. For 0 < t0 < t, this is in fact the quantity
R(t) defined in the summation method summed over all

time insertions and the other time regions will contribute
systematic contaminations.
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What we are left with in the end, is an expression of the 
form (for fixed 𝜏)

@�m
eff
� (t, ⌧)

���
�=0

=
h0|J |0i
2E0

+ (Ct+D)e��t

There are no time-independent contributions other than 
the matrix element of interest



Practical Implementation:

Feynman-Hellman Theorem and Matrix Elements

We are interested in the linear response of the theory to 
external sources.
At the level of a QCD correlation function, we are then 
interested in only a single insertion of the current on the 
quark propagator, such that the proton for example, would 
have a contribution

One then makes suitable replacements of all the quark 
flavor-lines with the “Feynman-Hellman” propagator



Practical Implementation:

Feynman-Hellman Theorem and Matrix Elements

the “Feynman-Hellman” propagator is given by
= SFH(y, x) =

X

z

S(y, z)�(z)S(z, x)

S(z, x) standard quark propagator off some source at 
x, to all z

�(z) some bi-linear operator (can be constant)
e.g.,       for the vector current�4

�(z)S(z, x) treat like a source to invert off of



Test case: nucleon axial charge, LHPC comparison

Feynman-Hellman Theorem and Matrix Elements

there are old LHPC calculations of the nucleon axial 
charge with moderate pion masses using DWF on asqtad 
MILC ensembles
the “regular” propagators were on disk at JLab, so we 
could simply make the Feynman-Hellman propagators



Test case: nucleon axial charge, LHPC comparison

Feynman-Hellman Theorem and Matrix Elements
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our results are in exquisite agreement with LHPC
PRD 82 (2010), arXiv:1001.3620

(the oscillations are from a large domain wall mass,                    )M5 = 1.7



Test case: nucleon axial charge, DWF on HISQ

Feynman-Hellman Theorem and Matrix Elements
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m⇡ ' 310 MeV

a ' 0.15 fm
we are doing our quark CEDM 
calculation with this setup



Feynman-Hellman Theorem and Matrix Elements

This is equivalent to taking functional derivatives of the 
partition function with respect to the perturbing source, 
then setting the source to zero.
It can be applied to non-zero matrix elements
It can be applied to flavor changing matrix elements
…



Conclusions

This is an exciting time for low-energy precision tests of 
the Standard Model.

Lattice QCD is an essential aspect of this research field as 
it is the only non-perturbative regulator of QCD, and 
therefore it allows us to quantitatively understand the 
manifestation/interactions of BSM physics within nuclear 
environments.


