

arxiv:1506.00647

arxiv:1502.00044

Neutron-Antineutron Perturbative Operator Renormalization

Michael I. Buchoff (UW / INT / LLNL) and Michael Wagman (UW / INT)

Michael Wagman, 9/24/2015 Seminar for INT Program:

Intersections of BSM Phenomenology and QCD for New Physics Searches

Neutron-Antineutron Transitions

Predicted by some BSM theories relevant for baryogenesis

Experimentally testable predictions require QCD matrix element calculations

Calculations with quantified uncertainty require lattice QCD and perturbative operator renormalization

Super K, proton decay candidate event

Neutron-Antineturon Phenomenology

Vacuum transition rate described by two-state Hamiltonian

$$\frac{1}{\tau_{n\overline{n}}} = <\bar{n}|H_{n\overline{n}}|n>$$

Magnetic fields, nuclear interactions modify transition rate

Experimental Constraints

ILL: $\tau_{n\bar{n}} > 2.7$ years

SNO: $\tau_{n\bar{n}} > 5.7$ years (preliminary)

Super K: $\tau_{n\bar{n}} > 11$ years

Standard Model Results

Complete basis of gauge singlet six-quark operators, bag model estimates for QCD matrix elements

Rao and Shrock (1984)

$$\mathcal{H}_{n\overline{n}} = \sum_{I=1}^{14} C_I(\mu) Q_I(\mu)$$

1-Loop QCD (and QED) anomalous dimensions Caswell, Milutinovic, and Senjanovic (1983)

Preliminary lattice QCD matrix elements

Buchoff, Schroeder, and Wasem (2012)

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix}$$

The Operators

 $Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AAS} = \mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$

	Chiral Basis	Fixed-Flavor Basis	Chiral Tensor Structure	Chiral Irrep
	Q_1	\mathcal{O}^3_{RRR}	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
	Q_2	\mathcal{O}^3_{LRR}	$\mathcal{D}_L \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
	Q_3	\mathcal{O}^3_{LLR}	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
Isospin 3 —	$\blacktriangleright Q_4$	$4/5 \ \mathcal{O}_{RRR}^2 + 1/5 \ \mathcal{O}_{RRR}^1$	$\mathcal{D}_R^{33+}T^{SSS}$	$(1_L, 7_R)$
Not SM gauge invariant	Q_5	\mathcal{O}^1_{RLL}	$\mathcal{D}_R^- \mathcal{D}_L^{++} T^{SSS}$	$(5_L,3_R)$
	$\blacktriangleright Q_6$	\mathcal{O}^2_{RLL}	$\mathcal{D}_R^3 \mathcal{D}_L^{3+} T^{SSS}$	$(5_L,3_R)$
	$\sim Q_7$	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	${\cal D}^+_R {\cal D}^{33}_L T^{SSS}$	$(5_L,3_R)$
Redundant in $D = 4$	\widetilde{Q}_1	$1/3 \; \mathcal{O}_{RRR}^2 - 1/3 \; \mathcal{O}_{RRR}^1$	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{SSS}$	$(1_L,3_R)$
	\widetilde{Q}_3	$1/3 \ \mathcal{O}_{LLR}^2 - 1/3 \ \mathcal{O}_{LLR}^1$	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{SSS}$	$(1_L,3_R)$

Chiral symmetry provides a basis with no operator mixing

Perturbative Renormalization

$$\mathcal{H}_{n\bar{n}} = \sum_{I} C_{I}^{\overline{MS}}(\mu) Q_{I}^{\overline{MS}}(\mu) = \sum_{I} C_{I}^{\overline{MS}}(\mu) U_{I}(\mu, p_{0}) Q_{I}^{RI}(p_{0})$$

$$U_{I}(\mu, p_{0}) = \left(\frac{\alpha_{s}(p_{0})}{\alpha_{s}(\mu)}\right)^{-\gamma_{I}^{(0)}/2\beta_{0}} \left[1 - r_{I}^{(0)} \frac{\alpha_{s}(p_{0})}{4\pi} + \left(\frac{\beta_{1}\gamma_{I}^{(0)}}{2\beta_{0}^{2}} - \frac{\gamma_{I}^{(1)}}{2\beta_{0}}\right) \frac{\alpha_{s}(p_{0}) - \alpha_{s}(\mu)}{4\pi} + O(\alpha_{s}^{2})\right]$$
One-loop matching Two-loop running, needed for $\alpha_{s}(p_{0})$ accuracy Negligible
$$\mathsf{Lattice QCD} \qquad p_{0} \qquad \mathsf{Renormalization Group} \qquad \mu \quad M \text{ BSM}$$

$$\lesssim 1 \text{ GeV} \qquad \text{few GeV} \qquad \gtrsim 1 \text{ TeV} \underset{\mathsf{BSM}}{\mathsf{physics?}}$$

7

Regularization-Independent Renormalization

RI-MOM scheme: apply momentum subtraction to vertex functions Λ_I at lattice matching scale p_0 Martinelli et al (1995)

$$\begin{split} [\Lambda_I]_{ijklmn}^{\alpha\beta\gamma\delta\eta\zeta}(p) &= \left. \frac{1}{5} \left\langle Q_I(0) \,\bar{u}_i^{\alpha}(p) \bar{u}_j^{\beta}(p) \bar{d}_k^{\gamma}(p) \bar{d}_l^{\delta}(-p) \bar{d}_m^{\eta}(-p) \bar{d}_n^{\zeta}(-p) \right\rangle \right|_{amp} \\ &+ \left. \frac{3}{5} \left\langle Q_I(0) \,\bar{u}_i^{\alpha}(p) \bar{u}_j^{\beta}(-p) \bar{d}_k^{\gamma}(p) \bar{d}_l^{\delta}(p) \bar{d}_m^{\eta}(-p) \bar{d}_n^{\zeta}(-p) \right\rangle \right|_{amp} \\ &+ \left. \frac{1}{5} \left\langle Q_I(0) \,\bar{u}_i^{\alpha}(-p) \bar{u}_j^{\beta}(-p) \bar{d}_k^{\gamma}(p) \bar{d}_l^{\delta}(p) \bar{d}_m^{\eta}(p) \bar{d}_n^{\zeta}(-p) \right\rangle \right|_{amp} \end{split}$$

Syritsyn (2015)

RI-MOM condition applicable to lattice and dim reg operators

$$\mathcal{P}_I$$
 projects out contribution $- \mathcal{P}_I \Lambda_J(p_0, \mu = p_0)] = \delta_{IJ}$ from tree-level $\Lambda_I^{(0)}$

One-Loop Matching

15 one-loop Feynman diagrams contribute

One quark pair is not involved in the interaction. Identical diagrams contribute to four-quark weak matrix elements and proton decay

Two-Loop Running

Need $\ln \mu^2$ coefficients of 320 two-loop Feynman diagrams

Covers all diagram topologies needed for two-loop running of any operator built from spin singlet quark pairs 10

Evanescent Operators

Operator basis incomplete in dim reg, Fierz identities broken

 $Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AAS}$

Vanishes in D = 4 $E_1^a \equiv (\psi C P_R \sigma_{\mu\nu} i\tau_2 \psi) (\psi C P_R \sigma_{\mu\nu} i\tau_2 \psi) (\psi C P_R i\tau_2 \tau_+ \psi) T^{SSS} - 12Q_1$

Complete basis for one-loop counterterms found by adding evanescent operators

Buras and Weisz (1990), Dugan and Grinstein (1991), Herrlich and Nierste (1995), ...

$$\frac{1}{\overline{\varepsilon}}(\psi CP_R\sigma_{\mu\nu}i\tau_2\psi)(\psi CP_R\sigma_{\mu\nu}i\tau_2\psi)(\psi CP_Ri\tau_2\tau_+)T^{SSS} + (\overline{\mathrm{MS}} \text{ counterterm}) \\
= \frac{1}{\overline{\varepsilon}}12Q_1 + \frac{1}{\overline{\varepsilon}}E_1^a$$

Evanescent Operators

Complication: evanescent counterterms have different color structures than corresponding two-loop subdiagrams

 $(\psi CP_R \sigma_{\mu\nu} i\tau_2 \psi)(\psi CP_R \sigma_{\mu\nu} i\tau_2 \psi)(\psi CP_R i\tau_2 \tau_+ \psi)T^{SSS} \equiv 12Q_1 + E_1^a$

Non-local divergences don't cancel diagram-by-diagram

Solution: change of evanescent basis

 $(\psi CP_R \sigma_{\mu\nu} i\tau_2 \psi)(\psi CP_R \sigma_{\mu\nu} i\tau_2 \psi)(\psi CP_R i\tau_2 \tau_+ \psi)T^{SSS}$ $\equiv 8(\psi^{\alpha} [CP_R]^{\alpha\delta} i\tau_2 \psi^{\beta})(\psi^{\gamma} [CP_R]^{\gamma\beta} i\tau_2 \psi^{\delta})(\psi^{\eta} [CP_R]^{\eta\zeta} i\tau_2 \tau_+ \psi^{\zeta})T^{SSS} + E_1^{a\prime}$ $= 12Q_1 - 6(Q_1 - \tilde{Q}_1) + E_1^{a\prime}$

Results

Operator	$\gamma^{(0)}$	$\gamma^{(1)}$	$r^{(0)}$
Q_1	4	$335/3 - 34N_f/9$	$101/30 + 8/15 \ln 2$
Q_2	-4	$91/3 - 26N_f/9$	$-31/6 + 88/15 \ln 2$
Q_3	0	$64 - 10N_f/3$	$-9/10 + 16/5 \ln 2$
Q_4	24	$229 - 46N_f/3$	$177/10 - 64/5 \ln 2$
Q_5	12	$238 - 14N_f$	$49/10 - 24/5 \ln 2$
\widetilde{Q}_1	4	$797/3 - 118N_f/9$	$-109/30 + 8/15 \ln 2$
\widetilde{Q}_3	0	$218 - 38N_f/3$	$-79/10 + 16/5 \ln 2$

Perturbative Renormalization Results – Theory View

Perturbative Renormalization Results – Experimental View

Relative Size of NNLO Corrections

Example BSM Application

Tree-level BSM matching for a simplified model Arnold, Fornal, and Wise (2013)

Assuming all dimensionless couplings =1 at $\mu = M$

$$\mathcal{H}_{\text{eff}} = \frac{1}{16M^5} \left[Q_4^{\overline{MS}}(M) + \frac{3}{5} \widetilde{Q}_1^{\overline{MS}}(M) \right]$$
$$= \frac{1}{16M^5} \left[U_4(M, p_0) Q_4^{RI}(p_0) + \frac{3}{5} \widetilde{U}_1(M, p_0) \widetilde{Q}_1^{RI}(p_0) \right]$$

Example BSM Application

d

LO error:
$$O\left(\frac{\alpha_s(p_0)}{\pi}\ln(M^2/p_0^2)\right) \sim 2.46$$

Uncontrolled perturbative errors
without NLO 1-loop running
NLO error: $O\left(\frac{\alpha_s(p_0)}{\pi}\right) \sim 0.09$ $O\left(\frac{\alpha_s(p_0)^2}{\pi^2}\ln(M^2/p_0^2)\right) \sim 0.23$
Assuming
 $M = 500 \text{ TeV}$
 $1/\tau_{n\bar{n}} < 2 \times 10^{-33} \text{ GeV}$
 $M > (\underbrace{402}_{\text{LO}} \underbrace{-34}_{\text{NLO}} \underbrace{\pm 3}_{\text{Lattice Statistical}}) \text{ TeV}$

Preliminary lattice QCD matrix elements: Buchoff, Schroeder, and Wasem (2012) See Sergey Syritsyn Lattice 2015 talk and Michael Buchoff INT Workshop talk next week for updated lattice results by Buchoff, Schroeder, Syritsyn, and Wasem 18

Example BSM Application

Bound reaches M > 500 TeV with factor of 5.4 tighter lifetime bound

Bounds with fully quantified uncertainties can be made once lattice systematics are included Buchoff, Schroeder, Syritsyn and Wasem

Summary

Color and flavor structure matter when determining bounds for particular BSM models:

At M = 500 TeV, perturbative renormalization multiplies lattice results by (1.54) for Q_2 vs (0.05) for Q_4

2-loop running and 1-loop matching correct 1-loop running result of Caswell et~al. by $\lesssim 26\%$

Assuming same rate of convergence, remaining perturbative uncertainty $\lesssim 7\%$

Summary

21