Proton Decay and other BSM in the lattice

Eigo Shintani (RIKEN-AICS)

Program INT-15-3, Intersections of BSM Phenomenology and QCD for New Physics Searches, September 14 - October 23, 2015

OUTLINE

- I. Introduction
- 2. Matrix element of proton decay on the lattice
- 3. Updated result
- 4. Extension to dark matter model
- 5. Summary

1. Introduction Proton decay

SK: $\tau(pe^+\pi^0) > 1.3 \times 10^{34}$ years, $\tau(pvK) > 5.9 \times 10^{33}$ years SK, PRD90(2014) Hyper-K aims to take $\tau(pe^+\pi^0) > 1.3 \times 10^{35}$ years, $\tau(pvK) > 3.2 \times 10^{34}$ years HyperK-proto, PTEP 2015

Selected as one of 27 top priority projects in "Japan Master Plan of Large Research Project", ~\$650M+\$25M/y for 15y. (also J-PARC, Muon g-2/EDM experiment was) http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-22-t188-1.pdf (in Japanese)

1. Introduction Decay rate

$$\Gamma_{p \to \pi^0 e^+} = \frac{m_p}{32\pi} \Big[1 - \Big(\frac{m_e}{m_p}\Big)^2 \Big]^2 \Big| \sum_i \sum_{j=1}^{N} C_i(p \to P+l) \Big|^2 \sim \frac{\alpha_5^2 m_p^5}{M_X^4}$$

Wilson coefficient, relying on GUTs, + QCD matrix element, summing over quantum number i

1. Introduction Matrix element with BV operator

Transition amplitude

→ QCD matrix element appears in
$$p \rightarrow P(\pi, K, \eta)$$

$$\begin{aligned} \langle \pi^{0}(\vec{p})|(ud)_{\Gamma}(u)_{\Gamma'}|p(\vec{k},s)\rangle &= P_{\Gamma'} \Big[W_{0}^{\Gamma\Gamma'}(q^{2}) - \frac{i\not{q}}{m_{p}} W_{1}^{\Gamma\Gamma'}(q^{2}) \Big] u_{p}(\vec{k},s)\\ &= P_{\Gamma'} u_{p}(\vec{k},s) W_{0}^{\Gamma\Gamma'}(0) + \mathcal{O}(m_{l}/m_{N}) \end{aligned}$$

Aoki et al. (JLQCD), PRD62 (2000); Aoki et al. (RBC), PRD75 (2007)

- \succ W₀ contains the matrix element with effective vertex of BSM operator.
- > 3-quark operator (qqq) forms L, R combination.
- > $m_l/m_N \ll 1 \Rightarrow q^2 = m_l^2 \simeq 0$ is physical kinematics. W_0 is only relevant form factor.

1. Introduction Model calculations

Estimate of LECs from effective models and lattice

2. Matrix element of proton decay on the lattice Method in lattice QCD

- There are two ways on the lattice.
- Called as "indirect" method
 - Measurements of LECs in BChPT.
 - Computation is less cost, and obtain precise value.
 - \sim Neglecting higher order mass correction \rightarrow other systematic error
- Called as "direct" method
 - Measurement extracted from 3-pt function.
 - There is no uncertainty depending on models.
 - Provides each decay mode.

8

Expensive calculation, and large statistical noise appears.

S.Aoki et al. (JLQCD), PRD62 (2000), Y.Aoki et al.(RBC), PRD75,,Y.Aoki et al. (RBC-UKQCD), PRD78 (2008)

2. Matrix element of proton decay on the lattice **Indirect method**

• LECs are defined by amplitude of $p \rightarrow vac$ with BV op.

 $\langle 0|(ud_R)u_L|p\rangle = \alpha_p P_L u_N, \quad \langle 0|(ud_L)u_L|p\rangle = \beta_p P_L u_N$

Two-point function of BV operator and N operator

2. Matrix element of proton decay on the lattice **Direct method**

- 3-pt function
 (PS meson)-(BV operator)-(Nucleon)
- Ratio of 3-pt and 2-pt

 $R_3(t, t_s, p) = \frac{\langle 0 | \{ \eta_\pi(t_{\rm PS}, p) [(ud_R)u_L](t_s, -p)\bar{\eta}_N(0) \}_T | 0 \rangle}{C_\pi(t_{\rm PS} - t_s, p) C_{NN}(t_s, 0)}$

$$\operatorname{Tr}\left[R_{3}(t,t_{s},p)P_{L}P_{4}\right] \simeq W_{0}^{L} - \frac{iq_{4}}{m_{N}}W_{1}^{L}$$
$$\operatorname{Tr}\left[R_{3}(t,t_{s},p)P_{L}iP_{4}\gamma_{j}\right] \simeq \frac{q_{j}}{m_{N}}W_{1}^{L}$$

- Pion and BV op have momentum, however N does not.
- To suppress the excited state, t_s and t_s - t_{PS} should be large.
- Because excited state effect is unknown, we investigate by varying t_s with several values.

 $t_{\rm s} = t_{\rm p} - t_{\rm PS}$

u

 t_{PS}

S

 t_p

u

d

| 10

2. Matrix element of proton decay on the lattice **Renormalization**

Renormalization for (qqq) operator (also other kind of high D op.) is also given from matching lattice scheme with MSbar scheme.

See Buchoff's talk

- RI-(s)MOM is easy way to evaluate on present gauge configurations.
 - Non-perturbatively compute three-quark vertex function amputated by quark propagator in Landau gauge fixing.
 - Setting window of p^2 where is small O((ap)²) at $p \gg \Lambda$, and fitting with function A + B (ap)²
 - > One-loop matching

$$U^{\overline{MS}}(\mu) = U^{\overline{MS}}(\mu; p) \underbrace{\frac{Z^{\overline{MS}}(p)}{Z^{MOM}(p)}}_{\text{one loop perturbation}} \underbrace{\frac{Z_{ND}(p)}{Lattice}}_{\text{Lattice}}$$
$$U^{\overline{MS}}(\mu; p) = \left[\frac{\alpha_s(\mu)}{\alpha_s(p)}\right]^{\gamma_0/2\beta_0} \left[1 + \left(\frac{\gamma_1}{2\beta_0} - \frac{\beta_1\gamma_0}{2\beta_0^2}\right)\frac{\alpha_s(\mu) - \beta_1\gamma_0}{4\gamma_0}\right]$$

3. Updated results Lattice setting

Domain-wall fermion (DWFs) Nf=2+1

See also, Blum's talk

- > $24^3 \times 64$ size at $a^{-1} = 1.73$ GeV (2.5 fm³ box size)
- Light quark mass m=0.005, 0.01, 0.02, 0.03 ($m_{\pi} = 0.3 0.6 \text{ GeV}$)
- Strange quark mass $m_s = 0.04$ ($m_K = 0.5$ GeV)
- > 5th dimension, $L_s = 16$ in which $am_{res} = 0.003$
- AMA with low-mode deflation Blum, Izubuchi, ES (2013--2014)
- Renormalization constant
 - The mixing with different chirality due to $am_{res} \neq 0$ is negligible.

 $U_L^{\overline{MS}}(\mu = 2 \text{GeV}) = 0.705(10), \quad U_R^{\overline{MS}}(\mu = 2 \text{GeV}) = 0.706(11)$

Error is statistical one. In addition, truncation error in one-loop matching is around 8% (roughly), so this will be not negligible.

3. Updated results LECs in BChPT

Statistical precision is good, but systematic error of finite size is predominant. \Rightarrow need to use larger volume than L=3.5fm.

| |3

3. Updated results Behavior on and off physical kinematics

- Straight line: linear extrapolation function in physical pion
- > Red line: BChPT using lattice value of α_p .
- Lattice result is not much different from BChPT lines, roughly 10 -- 20%.

| |4

3. Updated results W_0 in physical point

			-		
Matrix element	$W_0^r \ { m GeV^2}$	fit	artifact	Δ_Z	Δ_a
$-\langle \pi^0 (ud)_R u_L p \rangle$	0.124(6)(14)	0.008	0.006	0.010	0.001
$\langle \pi^0 (ud)_L u_L p \rangle$	0.127(7)(19)	0.016	0.006	0.010	0.001
$\langle K^0 (us)_R u_L p\rangle$	0.099(4)(13)	0.010	0.005	0.008	0.001
$\langle K^0 (us)_L u_L p \rangle$	0.057(3)(6)	0.003	0.003	0.004	0.000
$-\langle K^+ (us)_R d_L p\rangle$	0.046(2)(5)	0.003	0.002	0.004	0.000
$\langle K^+ (us)_L d_L p \rangle$	0.038(2)(8)	0.008	0.002	0.003	0.000
$-\langle K^+ (ud)_R s_L p\rangle$	0.128(6)(14)	0.009	0.006	0.010	0.001
$\langle K^+ (ud)_L s_L p \rangle$	0.136(7)(21)	0.018	0.007	0.010	0.001
$-\langle K^+ (ds)_R u_L p\rangle$	0.052(2)(7)	0.006	0.003	0.004	0.000
$-\langle K^+ (ds)_L u_L p\rangle$	0.097(4)(13)	0.010	0.005	0.007	0.001
$\overline{\langle \eta (ud)_R u_L p \rangle}$	0.006(3)(5)	0.005	0.000	0.000	0.000
$\langle \eta (ud)_L u_L p \rangle$	0.109(6)(14)	0.011	0.005	0.008	0.001

	Extrapolation error,	Truncation error of renormalization	
	finite size correction		
	is rather large.	constant.	
15	C		

3. Updated results Comparison with BChPT

- Systematic error are now dominating in total error.
- Decay width (p→π) : factor 1.3 difference,
 ⇒ impact to p lifetime is about factor 2.

| 16

- 4. Extension to dark matter model Induced n decay model Davoudiasl et al., PRL105(2010), PRD84(2011), Davoudiasl PRL114(2015)
- Assume the dark matter (Φ, Ψ) annihilate nucleon, producing energetic meson,

 $\Phi N \to \bar{\Psi} P(\pi, K, \eta), \quad \Psi N \to \Phi^{\dagger} P(\pi, K, \eta)$

• Assume DM has B number, total $B_{\Phi} + B_{\Psi} = -1$, then its coupling is

$$\mathcal{L}_{\text{eff}} = M^{-2} u_R u_R d_R \Psi_R \Phi + h.c.$$

- DM mass is estimated from $\Omega_{DM}/\Omega_N \simeq 5$, $m_{\Phi,\Psi} = 1.7 2.9$ GeV.
- Proton can decay into meson and DM (induced nucleon decay)
 - Proton decay cross section is evaluated as a function of DM mass based on chiral Lagrangian,

 $\mathcal{L}_{\rm IND} = \beta_p \operatorname{Tr}[c\xi^{\dagger}(B_R \Psi_R) \Phi \xi]$

In the IND model, the QCD matrix element is same as ordinal p decay.

| 17

4. Extension to dark matter model Matrix element in IND model

- Matrix element involves two relevant form factor W_{0} and W_{1} $\langle \pi^0(\vec{p})|(ud)_{\Gamma}(u)_{\Gamma'}|p(\vec{k},s)\rangle = P_{\Gamma'} \left[W_0^{\Gamma\Gamma'}(q^2) + \frac{m_l}{m_p} W_1^{\Gamma\Gamma'}(q^2) \right] u_p(\vec{k},s)$ Standard:

18

IND:

5. Summary Summary

- Improved the precision of matrix element for p decay.
- Limitation of the BChPT became apparent.
- It may increase p lifetime to factor 3.
- Lattice QCD allows to provide more reliable estimate in other kinematics, e.g. induced DM model
- Approaching to physical pion is more important for p decay amplitude.
 Martin and Stavenga, PRD85(2012)
 - There may appear significant effect of pion mass dependence.
 An order of magnitude may be different.
 - ▶ Computation close to physical pion (~170 MeV) is underway.

Backup

BV effective operators at low-energy

4-fermi BV operators in the SM

\mathcal{O}^1_{abcd}	=	$(D_a^i, U_b^j)_R (q_c^{k\alpha}, l_d^\beta)_L \varepsilon^{ijk} \varepsilon^{\alpha\beta},$: (q,q) _R (q,l) _L	
\mathcal{O}^2_{abcd}	=	$(q_a^{i\alpha}, q_b^{j\beta})_L (U_c^k, l_d)_R \varepsilon^{ijk} \varepsilon^{\alpha\beta},$	$(q,q)_{L} (q,l)_{R}$	a h c d : generation
$\widetilde{\mathcal{O}}^4_{abcd}$	=	$(q_a^{i\alpha}, q_b^{j\beta})_L (q_c^{k\gamma}, l_d^{\delta})_L \varepsilon^{ijk} \varepsilon^{\alpha\delta} \varepsilon^{\beta\gamma},$: (q,q) _L (q,l) _L	$\alpha,\beta,\gamma,\delta$: SU(2) indices,
\mathcal{O}^{5}_{abcd}	=	$(D_a^i, U_b^j)_R (U_c^k, l_d)_R \varepsilon^{ijk}$: (q,q) _R (q,l) _R	i,j,k: color indices

Weinberg, PRL43, 1566(1979), Wilczek and Zee, PRL43, 1571(1979)

> 3-quark operator

$$\mathcal{O}_{abc}^{\Gamma\Gamma'} = (q_a q_b)_{\Gamma} q_{c\Gamma'} = (q_a^{Ti} C P_{\Gamma} q_b^j) P_{\Gamma'} q_c^k \varepsilon^{ijk}$$

Reduced number of matrix element with Parity and flavor SU(2) symmetry

$$\begin{split} \langle PS; \vec{p} | \mathcal{O}^{LL} | N; \vec{k}, s \rangle &= \gamma_4 \langle PS; -\vec{p} | \mathcal{O}^{RR} | N; -\vec{k}, s \rangle, \\ \langle PS; \vec{p} | \mathcal{O}^{LR} | N; \vec{k}, s \rangle &= \gamma_4 \langle PS; -\vec{p} | \mathcal{O}^{RL} | N; -\vec{k}, s \rangle \\ \langle \pi^+ | \mathcal{O}^{L/R}_{udu} | p \rangle &= \sqrt{2} \langle \pi^0 | \mathcal{O}^{L/R}_{udu} | p \rangle \end{split}$$

 \Rightarrow Total matrix element is 12.