Nucleon EDM computation from lattice QCD

Eigo Shintani (RIKEN-AICS)

for RBC/UKQCD collaboration

Program INT-15-3, Intersections of BSM Phenomenology and QCD for New Physics Searches, September 14 - October 23, 2015

b.

- ▶ Approved K project in 2005
- ~\$1 billion budget (2006—2013)
- Research division (Director: A. Ukawa)
	- 19 teams total

Abacus

- Field theory research term (leader: Y. Kuramashi)
- 5 local member (Y. Nakamura, H. Suno, ES, Y. Shimizu, Y. Yoshimura), and 3 visiting member
- **Location: Kobe city** tasty meats, sweets …

K computer

- ▶ Advanced supercomputer for computational science
- ▶ Kei(京) = 10^{16} = 10 Peta magnitude performance
- ▶ 4th ranking in Top500 in 2015 June

Top500 No.1 in June & November 2011 Graph 500 No.1 in June 2014 & July 2015 **HPCG** No 2 in November 2014 & 2015

The K computer strikes a balance between performance in calculation, memory, and communication

Outline

\blacktriangleright Introduction

- Strategy and method in lattice QCD
- ▶ Recent update of RBC/UKQCD work
- ▶ Summary and future work

1. Introduction Neutron EDM

- Discovery of CPV in QCD and the new physics (NP)
- ▶ Since 1960's, sensitivity of experiment has been developed.
	- **Current nEDM upper limit is** $|d_N^{\text{exp}}| < 2.9 \times 10^{-26} \text{ e} \cdot \text{cm}$
- **Theoretical interests**
	- Unnaturally small θ term in QCD. (strong CP problem)
	- ▶ CPV from NP Severe BSM (SUSY, etc) constraints
	- Intensity frontier physics Alternative direction from high energy frontier.

Precision of the SM calculation is necessary.

/wiki/Neutron_electric_dipole_moment

Also see talk by Andrea Shindler

1. Introduction Theoretical estimate of nEDM in EW

- ▶ EW contribution to EDM is very small
	- **Proportional to weak phase,** $\Delta = \text{Im} V_{cs}^* V_{us} V_{cd} V_{ud}^*$
	- \triangleright No CPV phase in 1-loop ($|V_{dq}|^2$) and 2-loop diagram (cancelation).

1. Introduction Theoretical estimate of nEDM in EW

- EW contribution to EDM is very small
	- Proportional to weak phase, $\Delta = \text{Im} V_{cs}^* V_{us} V_{cd} V_{ud}^*$
	- \triangleright No CPV phase in 1-loop ($|V_{dq}|^2$) and 2-loop diagram (cancelation).
	- Three-loop order(short) and pion loop correction (long):

1. Introduction Recent update in EW sector

▶ Charm contribution Mannel, Uraltsev, PRD85 (2012)

- **Loop-less EDM contribution**
- Integrating out the virtual charm,

$$
\tilde{O}_{uds} = (\bar{u}\Gamma_{\mu}d)(\bar{d}\Gamma^{\mu}i\rlap{/}p\Gamma^{\nu}s)(\bar{s}\Gamma_{\nu}u) \qquad d \nearrow s
$$
\n
$$
= (\bar{u}\Gamma_{\mu}d)(\bar{d}\Gamma^{\mu}i\gamma^{\alpha}\Gamma^{\nu}s)i\partial_{\alpha}(\bar{s}\Gamma_{\nu}u) + (\bar{u}\Gamma_{\mu}d)(\bar{d}\Gamma^{\mu}i(\rlap{/}p\Gamma^{\nu}s))(\bar{s}\Gamma_{\nu}u)
$$
\n
$$
\mathcal{L}^{\alpha} \sim \frac{2}{3}\mathcal{O}_{uds}^{\alpha} + i \int d^{3}x J_{em}^{\alpha}O_{uds}, \quad \langle N(q+p)|\mathcal{L}^{\alpha}|N(p)\rangle = d_{N}^{uds}q_{\nu}\bar{u}_{N}i\sigma^{\alpha\nu}\gamma_{5}u_{N}
$$

u

u

 $\begin{array}{ccc} \searrow & c & \nearrow \\ \searrow & \searrow & \searrow \\ \searrow & \searrow & \searrow \end{array}$

d

Using dimensional analysis, $d_N^{uds} \sim \kappa \mu_{\text{had}}^5$, $\kappa \simeq 1/3$

$$
|d_N| = \frac{32}{3} e \frac{G_F^2 \Delta}{m_c^2} |d_N^{uds}| = 3.3 \times 10^{-31} e \cdot \text{cm} \times \kappa \left(\frac{\mu_q}{0.25 \text{GeV}}\right)^6 \left(\frac{0.5 \text{GeV}}{\mu_{\text{had}}}\right)^6
$$

 $\sim 10^{-31} e \cdot \text{cm}$

Indicate that higher order of loop-less charm will be same order as chiral loop. Lattice calculation is helpful, but seems practically hard…

1. Introduction Nucleon EDM in QCD

 \rightarrow θ term in QCD Lagrangian

$$
\mathcal{L} = \bar{q}_L M q_R + \bar{q}_R M^{\dagger} q_L + \theta / (64\pi^2) G \tilde{G}
$$

\n
$$
\Rightarrow \mathcal{L}_{\theta} = \bar{\theta} \frac{1}{64\pi^2} G \tilde{G}, \quad \bar{\theta} = \theta + \arg \det M, \text{ arg det } M \sim \eta \frac{m_u m_d m_s}{m_u m_d + m_d m_s + m_s m_u}
$$

- \triangleright Renormalizable and CPV.
- $\mathbf{d}_{\mathsf{N}}/\theta \sim 10^{-16}$ e · cm (quark model, current algebra, etc) θ and arg det M is *unnaturally* canceled. Crewther, et al. (1979), Ellis, Gaillard (1979)
- ▶ Possible solution
	- *1. Massless quark (m^u = 0)* from lattice QCD+QED, $m_{u} = 2.24(35)$ MeV, $m_{d} = 4.65(35)$ MeV. It is hard to explain $\theta = 0$. Blum, et al. (2010)
	- 2. *Axion model (assumption of PQ symm.),* invisible axion model
	- 3. Spontaneous CP breaking. θ is calculable in loop order.

1. Introduction Nucleon EDM in BSM

Higher dimension operators of CPV

$$
\mathcal{O}_{\text{qEDM}} = d_q \bar{q} (\sigma \cdot F) \gamma_5 q \quad : \text{Quark-photon (5-dim)}
$$
\n
$$
H_{\text{CP}} = \sum_k C_k(\mu) \mathcal{O}_k \qquad \mathcal{O}_{\text{cEDM}} = d_q^c \bar{q} (\sigma \cdot G) \gamma_5 q \quad : \text{Quark-gluon (5-dim)}
$$
\n
$$
\mathcal{O}_{\text{Weinberg}} = d^G G G \widetilde{G} \qquad : \text{Pure gluonic (6-dim)}
$$

- In BSM, $q(c)$ EDM corresponds to CPV phase of heavy particle.
- Need to know low-energy scale matrix element.
- \bullet d_q d_q^c are determined by BSM renormalization
- ▶ QCD effect in nucleon

11

Using baryon CHPT or QCD sum rule, there are several evaluations,

$$
\mathcal{L}_{\text{eff}} = d_q \bar{q} F_{\mu\nu} \sigma_{\mu\nu} \gamma_5 q, \quad \langle N | L_{\text{eff}} | N \rangle = d_N q_\nu \bar{u}_N (p+q) i \sigma_{\mu\nu} \gamma_5 u_N (p) \big|_{q=0}
$$

Hisano, et al. (2009)

 \tilde{b}_B \tilde{b}_L \tilde{d}_{Li}

 $(\delta^d_{RR})_{3i}$ $(\delta^q_{LL})_{i3}$

 \tilde{d}_{Bi}

 d_{Ri}

1. Introduction Constraint on nEDM

$\blacktriangleright \sim 10$ new proposals of EDM experiment

nEDM experiment @ ORNL, ILL, FRM-2, FNAL, PSI/KEK/TRIUMF, … (p,d)EDM experiment @ BNL, Charged particle (d, p)EDM @ COSY 450 Lepton EDM @ J-PARC, FNAL 400

aiming for a sensitivity to 10^{-29} e cm!

▶ SUSY models favor 10⁻²⁵ -- 10⁻²⁷ e cm

$$
d_N \sim \frac{10^{-17} [e \cdot cm] \overline{\theta}}{1.4 - 0.47 d_d - (0.12 - 0.35) d_u + \frac{O(10^{-2}) d_q^c}{O(10^{-25} - 10^{-27}) e \cdot cm}
$$
 Effective mc
Hisano, Shimizu (04), Ellis, Lee, Pilaftsis (08),
Hisano, Lee, Nagata, Shimizu (12)

Non-perturbative test in lattice QCD is important. Ramsey, 0907.2716

1. Introduction What lattice QCD can do ?

- \blacktriangleright In principle
	- Direct estimate of matrix element of neutron and proton EDM for θ term, higher dim. CPV operators
	- **LECs (or condensate) including higher dimension operators**
		- \rightarrow check validity of QCD sum rule, ChPT, ...

Bhattacharya et al, Lattice 2012--2015

1. Introduction What lattice QCD can do ?

- \blacktriangleright In principle
	- Direct estimate of matrix element of neutron and proton EDM for θ term, higher dim. CPV operators
	- ▶ LECs (or condensate) including higher dimension operators
		- \rightarrow check validity of QCD sum rule, ChPT, ...

```
Bhattacharya et al, 
Lattice 2012--2015
```
- In practice there are some difficulties
	- Statistical noise

gauge background (topological charge, sea quark) and *disconnected diagram* (flavor singlet contraction) are intrinsically noisy.

Systematic study

Volume effect may be significant. (e.g. BChPT discussion)

O'Connell, Savage, PLB633(2006), Guo, Meissner, 1210.5887

Chiral behavior is also important, $d_N \sim O(m)$.

Strategy and method in lattice QCD

D

2. Strategy and method in lattice QCD Lattice methods of nEDM

Spectrum method

 \triangleright Aoki and Gocksch, PRL63, 1125 (1989).

Aoki, Gocksch, Manohar, Sharpe, PRL65, 1092 (1990), in which they discussed about the possible lattice artifact in Aoki's paper

- \triangleright ES, et al., for CP-PACS collaboration, PRD75, 034507 (2007)
- ES, Aoki, Kuramashi, PRD78, 014503 (2008)

▶ Form factor

- \triangleright ES, et al., for CP-PACS collaboration, PRD72, 014504 (2005), Berruto, et al. for RBC collaboration, PRD73, 05409 (2006).
- ES et al., RBC Lattice 2008, 2013, Shindler 2015, Izubuchi Lattice 2015.

Imaginary θ

- \triangleright Izubuchi, Lattice 2007.
- \triangleright Horsley et al., arXiv:0808.1428 [hep-lat], Guo et al., PRL115(2015)

2. Strategy and method in lattice QCD Spectrum method Aoki, Gocksch, PRL63(1989); ES, et al., PRD75(2007)

▶ Measurement of energy shift depending on E

 $\Delta H(\theta, E) = \theta d_N \vec{s} \cdot \vec{E}$

▶ given 2-pt function in constant E field

 $m_{\uparrow\text{spin}} - m_{\downarrow\text{spin}} = 2d_{\text{N}}\theta E$

- \rightarrow Linear response, gradient is a signal of EDM.
- \triangleright Ratio of spin up and down

 $R_3 = \frac{\langle N(t)\bar{N}(0)\rangle_{\theta,E}^{\text{up}}}{\langle N(t)\bar{N}(0)\rangle_{\theta,E}^{\text{down}}} \approx 1 + d_N E \theta t$

- Making the spin-projection to up, down, and ratio in θ term ensemble (reweighting).
- Direct extraction without momentum insertion, but error of boundary broken by E field appears.

ES, Aoki, Kuramashi, PRD78 (2008)

2. Strategy and method in lattice QCD EDM Form factor ES, et al., Phys. Rev. D72, 014504 (2005), Berruto, et al., Phys. Rev. D73, 05409 (2006).

$$
\langle n(P_1)|J_{\mu}^{\text{EM}}|n(P_2)\rangle = \bar{u}_N \left[\underbrace{\frac{F_3^{\theta}(q^2)}{2m_N}\gamma_5\sigma_{\mu\nu}q_{\nu}}_{\text{P, T-odd}} + \underbrace{F_4(q^2)(iq^2\gamma_{\mu}\gamma_5 - 2m_Nq_{\mu}\gamma_5)}_{\text{P-odd}}\right]
$$
\n
$$
+ \underbrace{F_1(q^2)\gamma_{\mu} + \frac{F_2(q^2)}{2m_N}\sigma_{\mu\nu}q_{\nu}}_{\text{P, T-even}}\right]u_N
$$

- CP-odd phase including N amplitude should be subtracted from 3pt function.
- CP-odd phase is able to be evaluated from 2pt function in θ term with γ_5 projection.

$$
\sum_{s} u_{N}^{\theta}(s) \bar{u}_{N}^{\theta}(s) = \frac{i p \cdot \gamma + m_{N} e^{i \alpha_{N}^{\theta} \gamma_{5}}}{2E_{N}} \implies \text{obtain CPU phase } \alpha_{N}
$$

• Subtraction formula

$$
\langle 0|\eta_N(t_1) J_\mu^{\rm EM}(t) Q \bar{\eta}_N(t_0) \rangle
$$
\n
$$
= \frac{\alpha_N}{2} \gamma_5 \Big[F_1 \gamma_\mu + F_2 \frac{q_\nu \sigma_{\mu\nu}}{2m_N} \Big] \frac{ip \cdot \gamma + m_N}{2E_N} + \frac{1 + \gamma_4}{2} \Big[F_1 \gamma_\mu + F_2 \frac{q_\nu \sigma_{\mu\nu}}{2m_N} \Big] \frac{\alpha_N}{2} \gamma_5 \Big] \text{ Subtraction}
$$
\n
$$
+ \frac{1 + \gamma_4}{2} F_3 \frac{q_\nu \gamma_5 \sigma_{\mu\nu}}{2m_N} \frac{ip \cdot \gamma + m_N}{2E_N} \Big] \Rightarrow \text{EDM form factor}
$$

2. Strategy and method in lattice QCD Subtraction term and 3pt function

Splitting EDM form factor into two parts:

 $F_3 = F_Q + F_\alpha, F_Q = C(m_N) \langle NJ_t^{\text{EM}} \overline{N}Q \rangle, F_\alpha = F(\alpha_N, F_{1,2})$

 \blacktriangleright F_α is good precision, but statistical fluctuation of F_Q is still large.

2. Strategy and method in lattice QCD Imaginary θ Izubuchi(2007), Horsley et al. (2008), Guo et al., (2015)

Analytical continuation to pure imaginary θ

$$
\langle O \rangle_\theta \to Z_{\theta^I}^{-1} \int dU O e^{-S} e^{-\theta^I Q} = \sum_i p_i [\theta^I] O_i, \quad p[\theta^I] = e^{-S_{QCD} - \theta^I Q}
$$

using $\theta \rightarrow 0^{\dagger}$ and p is distribution function with imaginary theta term.

- There is no sign problem, then expect better signal.
- Need to generate the new QCD ensemble with θ^I : distribution of Q is shifted by θ^{I}

⇒ it will be challenging work when going to realistic lattice (larger lattice and physical quark mass)

2. Strategy and method in lattice QCD Imaginary θ

▶ Recent calculation of EDM form factor

Guo et al., PRL115 (2015)

- \triangleright The slope of imaginary θ dependence for $F_3(\theta^I)$ is regarded as EDM form factor.
- \triangleright Statistical signal is much better. Talk by Schierholz in 3rd week.

Recent update of RBC/UKQCD work

 \blacktriangleright

3. Recent update Lattice setup of RBC/UKQCD group

- ▶ Domain-wall fermion
	- \blacktriangleright Chiral symmetry (χ) is well conserving in lattice QCD.
	- \blacktriangleright χ breaking is represented as m_{res} : chiral limit m+m $_{res}$ \rightarrow 0
	- Precise result is achieved in Kaon physics (e.g. $K\rightarrow \pi\pi$) Blum et al., PRD91(2015)
	- ▶ Development of algorithm to make speed-up computation of correlation function, (e.g. all-mode-averaging) Blum, et al., PRD88(2013), ES et al. PRD91(2015)
	- m_{π} = 170, 330, 420 MeV, lattice size $\simeq 4.6$ fm³, 2.7 fm³
	- **Computational cost is much larger than Wilson-type fermion.**
	- ▶ O(10,000) measurements of EM and EDM form factor

3. Recent update q ² dependence

- ► $d_N = F_3(q^2)/2m_N (q^2 \rightarrow 0)$
- BChPT describe $F_3(q^2)$ with LECs

$$
F_3^i(q^2) = d_N^i - S_i^{\prime}q^2 + H_i(q^2), \, i = \{p+n, p-n\}
$$

$$
S'_{p+n} = -\frac{eg_A\bar{g}_0\pi}{12(2\pi F_\pi)^2 m_\pi^2} \frac{\delta m_N}{m_\pi}
$$

$$
S'_{p-n} = \frac{eg_A\bar{g}_0}{6(2\pi F_\pi)^2 m_\pi^2} \left[1 - \frac{5\pi m_\pi}{4m_N} - \frac{\breve{\delta}m_\pi^2}{m_\pi^2}\right]
$$

Mereghetti et al., PLB696 (2011)

Isoscalar S'_{p+n} << isovector S'_{p-n} at $m_{\pi} \rightarrow 0$

- EDM form factor has opposite sign between p and n, then it tends to be BChPT prediction.
- Lattice QCD (330 MeV pion) gives S_p^{\prime} = -2(2) × 10⁻⁴ e fm³, $S_n^{\prime} = 0.1(1.0) \times 10^{-4}$ e fm³

3. Recent update Mass dependence

 \triangleright Vanishing at chiral limit (CP conserving), but not clear in RBC result.

► BChPT at NLO Mereghetti et al., PLB696 (2011)
\n
$$
|d_n| \simeq |d_p| > \frac{eg_A \delta m_N}{2(2\pi F_\pi)^2 \varepsilon} \Big[\ln \frac{m_N^2}{m_\pi^2} + \frac{\pi m_\pi}{2m_N} - \frac{\delta m_\pi^2}{m_\pi^2} + \pi \frac{\delta m_N}{m_\pi} \Big] \simeq 2 \times 10^{-3} e \cdot \text{fm}
$$

Lattice QCD is O(10) magnitude large at $m_\pi \sim 300$ MeV, strong mass dependence ?

3. Recent update Dependence on topological charge

▶ According to ChPT argument Abada et al., PLB256(1991), Aoki, Hatsuda PRD45(1992)

26

⇒ proportional to magnetic moment and topological charge distribution.

 \triangleright Q distribution should be close to Gaussian. $\triangleright \chi$ ^o has to be mass suppression.

See also Shinlder's talk

3. Recent update Local topology contribution

- I Investigation of local topology effect near the correlation function
	- \triangleright Exploring local topological charge fluctuation in correlation function.

- > Statistical fluctuation depends on the $\bigcup_{-0.03}^{\infty}$ neutron time-slice of t integration for $q(x)$.
- \triangleright Statistical error due to global topological fluctuation is predominant.

3. Recent update Volume effect

▶ BChPT analysis

Guo, Meissner, 1210.5887, Akan et al., PLB736(2014)

 \triangleright In LO, NLO BChPT analysis, there may be 10--20% finite size effect.

 \triangleright EDM is related to axial charge, which may have also visible finite size effect.

3. Recent update Lattice artifact

Fermionic insertion of CPV term (e.g. θ term) into correlation function should be mixed with χ symmetry breaking on the lattice, ⇒ lattice artifact correction, e.g. Wilson-type fermion

 $\mathcal{L}_{\theta} = \bar{m}\theta\bar{q}\gamma_5 q/2 \rightarrow \mathcal{L}_{\theta}^{W} = \bar{m}(1 + \kappa_P)\theta\bar{q}\gamma_5 q, \kappa_P \sim \mathcal{O}(a)$: renom. const.

- $\triangleright \chi$ rotation for valence quark renders valence θ quark unobservable.
	- $\Rightarrow \chi$ breaking affects valence quark with θ term.
	- ⇒ Leading lattice artifact contribution
- \triangleright In topological insertion, lattice artifact appears in seq quark contribution.
	- \Rightarrow rather small, but may be visible near chiral limit.

DWF for both valence and sea quarks is able to suppress as to be $O(a^2)$ correction.

Aoki, Gocksh, Manohar, Sharpe (1990)

4. Summary Summary and future plan

- ▶ Lattice QCD calculation (theta term) is still difficult.
	- \triangleright Nucleon EDM within 40% statistical error is achievable.
	- 3-pt function is noisy, which seems caused of global Q fluctuation.
	- Systematic error of finite size may be visible, but DWF can suppress lattice artifact.
- (Near) physical point of DWF configurations
	- ▶ Ensembles near physical points and large volume. Hantao, Lattice2013
	- Developed algorithm (AMA, Mobius DWF, etc) is helpful.
	- **aim to be less than 10% precision**

Thank you for your attention !

Backup

Correlation function in θ term

Expansion at $O(\theta)$

Källen Lehmann representation of matrix element

$$
\langle C_{J_{\mu}}^{\theta} \rangle (t_1, t, t_0 | p_1, p_0)
$$

=
$$
\sum_{s_0, s_1} \frac{\bar{Z}_N(p_0) Z_N(p_1)}{4E_N(p_1) E_N(p_0)} u_N^{\theta}(\vec{p}_1, s_1) \langle N(p_1, s_1) | J_{\mu}^{\text{EM}} | N(\vec{p}_0, s_0) \rangle_{\theta} \bar{u}_N(\vec{p}_0, t_0)
$$

$$
\times^{-E_N(p_1)(t_1 - t) - E_N(p_0)(t - t_0)} \theta(t_1 - t) \theta(t - t_0) + \text{(time permutation)} + \text{(excited state)}
$$

EDM matrix element is able to be represented by correlation function at $O(\theta)$:

$$
\langle N|J_{\mu}|N\rangle_{\theta} = \frac{d_N}{2m_N} \bar{u}_N q_{\nu} \sigma_{\mu\nu} u_N
$$

$$
\langle C_{J_{\mu}}^{\theta} \rangle (t_1, t, t_0|p_1, p_0)
$$

$$
= Z_{\theta}^{-1} \int dq D A e^{-S_{\text{QCD}} + i\theta Q} \int d^3x d^3y e^{i(\vec{p}_1 \vec{x} + \vec{q}\vec{y})} T \{ \eta_N(t_1, \vec{x}) J_{\mu}^{EM}(t, \vec{y}) \bar{\eta}_N(t_0, 0) \}
$$

$$
= Z^{-1} \int dq D A e^{-S_{\text{QCD}}} \int d^3x d^3y e^{i(\vec{p}_1 \vec{x} + \vec{q}\vec{y})} \left[T \{ \eta_N(t_1, \vec{x}) J_{\mu}^{EM}(t, \vec{y}) \bar{\eta}_N(t_0, 0) \} \right]
$$

$$
+ \underbrace{i\theta Q T \{ \eta_N(t_1, \vec{x}) J_{\mu}^{EM}(t, \vec{y}) \bar{\eta}_N(t_0, 0) \} }_{\text{EDM-term}}
$$

q(c)EDM term into QCD action Bhattacharya et al,

- Plan to do extension toward BSM action
	- Matrix element including BSM operator, quark EDM and chromo EDM (PQ symmetry is assumed)
	- ▶ The q(c)EDM term is CP-violating tensor charge of nucleon, connected diagram should be leading contribution→ statistical signal will be clear.
	- External E filed method may be easy way.
	- qEDM
		- \triangleright Tensor charge matrix element $+$ matrix element with qEDM: $\partial_{A_\mu} \langle N|d_q(\bar{q}\gamma_5\sigma\cdot Fq)|N\rangle_E$
			- $= \langle N|d_q(\bar{q}\gamma_5 q^{\nu}\sigma_{\mu\nu}q)|N\rangle + \langle N|J_{\mu}d_q(\bar{q}\gamma_5 \sigma \cdot Fq)|N\rangle$
	- ▶ Quark chromo EDM
		- ▶ Matrix element with chromo EDM term: $\partial_{A_\mu} \langle N|d_{cq}(\bar{q}\gamma_5\sigma \cdot Gq)|N\rangle_E = \langle N|J_\mu d_{cq}(\bar{q}\gamma_5\sigma \cdot Gq)|N\rangle$

$Imaginary \theta$ Izubuchi(07), Horsley et al. (08)

\blacktriangleright Valence θ term in Wilson-type fermion

$$
Z(\bar{\eta}, \eta) = \int dA \det(\bar{\psi} + m + \theta^I \gamma_5 m) \exp \left[\bar{\eta} (\bar{\psi} + m + \theta^I \gamma_5 m)^{-1} \eta \right]
$$

=
$$
\int dA \det(\bar{\psi} + m + \theta^I \gamma_5 m) \exp \left[\bar{\eta} (\bar{\psi} + m)^{-1} \eta \right] \quad \eta \to e^{-\gamma_5 \theta^I/2} \eta
$$

$$
\Rightarrow Z^W(\eta, \bar{\eta}) = \int dA \det(\bar{\psi} + m + \theta^I \gamma_5 m) \exp \left[\bar{\eta} (\bar{\psi} + m + \theta^I \kappa_P \gamma_5 m) \eta \right]
$$

3. Recent update (preliminary) Error reduction techniques

Blum, Izubuchi, ES, 1208.4349, ES (lattice 2012), Chulwoo, plenary on Fri

- ▶ Covariant approximation averaging (CAA)
	- For original correlator *O,* (unbiased) improved estimator is defined as

$$
\mathcal{O}^{(\text{imp})} = \mathcal{O}^{(\text{rest})} + \frac{1}{N_G} \sum_{g \in G} \mathcal{O}^{(\text{appx}),g}, \quad \mathcal{O}^{(\text{rest})} = \mathcal{O} - \mathcal{O}^{(\text{appx})}
$$

- \triangleright <O> = <O^(imp)> if approximation has covariance under lattice symmetry g
- Improved error $\mathrm{err}^{\mathrm{imp}} \simeq \mathrm{err}/\sqrt{N_G}$
- Computational cost of $O^(imp)$ is cheap.
- ▶ All-mode-averaging (AMA)
	- Relaxed CG solution for approximation $\mathcal{O}^{(\text{appx})} = \mathcal{O}[S_l], S_l = \sum_{l=1}^{N_{\lambda}} v_{\lambda} v_{\lambda}^{\dagger} \frac{1}{\lambda} + P_n(\lambda)|_{|\lambda| > N_{\lambda}}$
	- \blacktriangleright P_n(λ) is polynomial approximation of I/ λ
		- Low mode part : # of eigen mode
		- Mid-high mode : degree of poly.

2. Strategy and method in lattice QCD Choice of lattice fermion

- **There are several kinds of fermion definition on the lattice.** Wilson(-clover), staggered, domain-wall, overlap, …
- Require "realistic" fermion for the precise calculation
	- **good approximated chiral symmetry on the lattice.**
	- suppression of $O(a)$ effect, but trading computational time
	- Domain-wall fermion is appropriate selection.
- ▶ Domain-Wall fermion (DWF)
	- L, R fermion are localized on boundaries Exact chiral symmetry is realized if $L_s \rightarrow \infty$.
	- \cdot In finite L_{s} Violation of chiral symm. is suppressed as $am_{res} \sim \exp(-L_{s}) \ll 1$.

[Blum Soni, (97), RBC/UKQCD. (05 --)]

3-pt function

- (Nucleon)-(EM current)-(Nucleon)
- **Location of operators**
	- $t = 0$ and $t = t_N$: nucleon op.

EM current inserts between nucleon ops.

- Comparison of different t_{sep} is good check of excited state contamination.
- ▶ Ratio of 3-pt and 2-pt

Parameters

DWF

- **→ 24³ × 64 lattice,** $a^{-1} = 1.73$ **GeV (~2.7 fm³ lattice)**
- *L*_s = 16 and *am*_{res} = 0.003
- *m* = 0.005, 0.01 corresponding to m_π = 0.33, 0.42 GeV
- \triangleright Two temporal separation of N sink and source in 3 pt. function

 $t_{\text{sep}} = 12$ ($t_{\text{source}} = 0$, $t_{\text{sink}} = 12$), $t_{\text{sep}} = 8$ ($t_{\text{source}} = 0$, $t_{\text{sink}} = 8$)

▶ # configs = 751 (m=0.005), 700 (m=0.01) $[t_{sep} = 12]$ # configs = 180 (m=0.005), 132 (m=0.01) $[t_{sep} = 8]$ dhe higher excited

Comparison to check state contamination

AMA

- ▶ # of low-mode : $N_2 = 400$ (m=0.005), 180 (m=0.01)
- Stopping condition, $|r| \leq 0.003$
- N_G = 32 (2 separation for spatial, 4 separation for temporal direction of source localtion) \rightarrow effectively O(10⁴) statistics

EM form factor

40

ь

EM form factor

- By using AMA algorithm, statistical error of these observables achieve below 5% level.
- Compared with previous works (RBC PhysRevD79(2009)), computational time can be reduced by factor 5 and more.
- ⇒ higher precision

Comparison with $\mu = t$, z

- ▶ EDM form factor is given from two directions of EM current
- Two signals are consistent, and data in t direction is much stable.

Comparison with different t_{sep}

- The sink and source separation in 3pt function enables us to control the statistical noise and excited state contamination
	- Short: statistical fluctuation < excited state contamination
	- Long: statistical fluctuation > excited state contamination
- Comparison
	- t_{sep} = 12 (blue), $[N_{\text{conf}} = 751]$ t_{sep} = 8 (green) $[N_{conf} = 180]$
	- Good consistency between them.
	- Precision in $t_{sep} = 8$ is much better.

$\alpha_{\rm N}$: CP-odd phase of wave function

- \blacktriangleright Projection with γ_5 for 2 pt in θ term, perform global fitting
- ▶ By using AMA, this factor is determined within I5 % error.
- It does not depend on smearing and momentum, but mass dependence is not so clear.

Statistical error

- **Comparison between AMA error reduction and number of configurations.**
- \blacktriangleright Number of configurations : reduce stat. error and relating to Q distribution AMA error reduction : reduce stat. error

