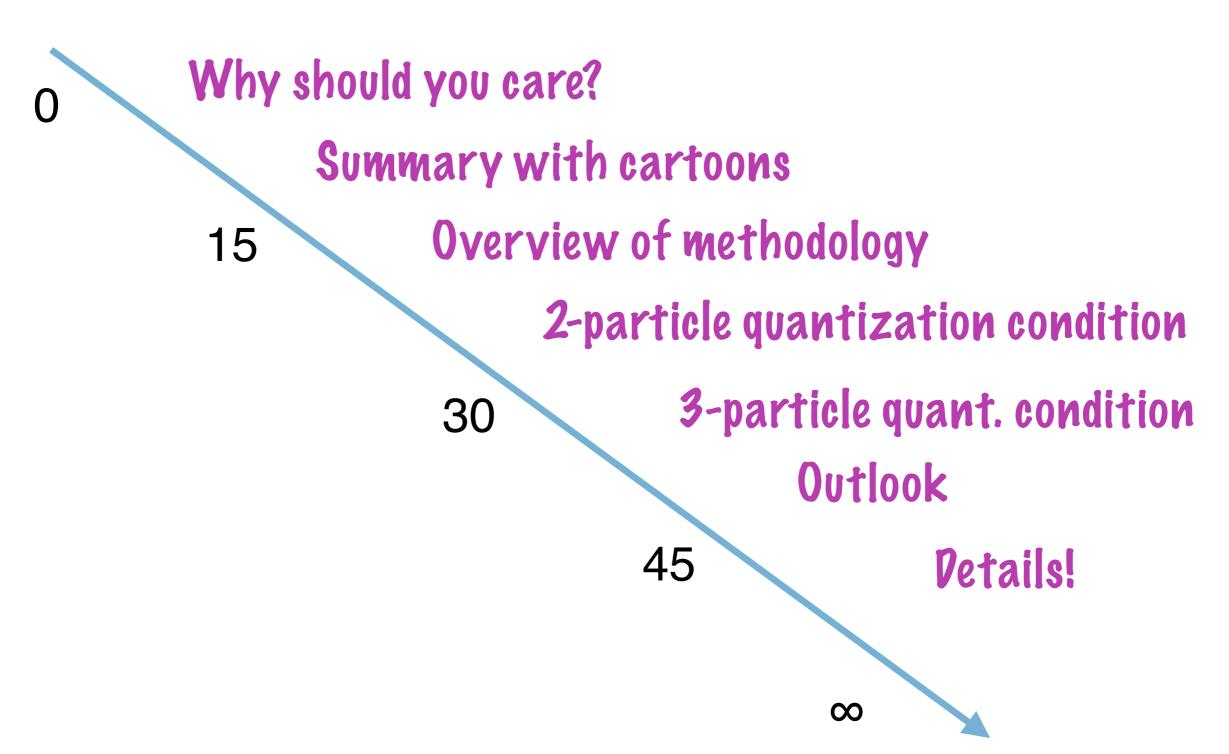
Multiparticle processes from the lattice

Steve Sharpe University of Washington

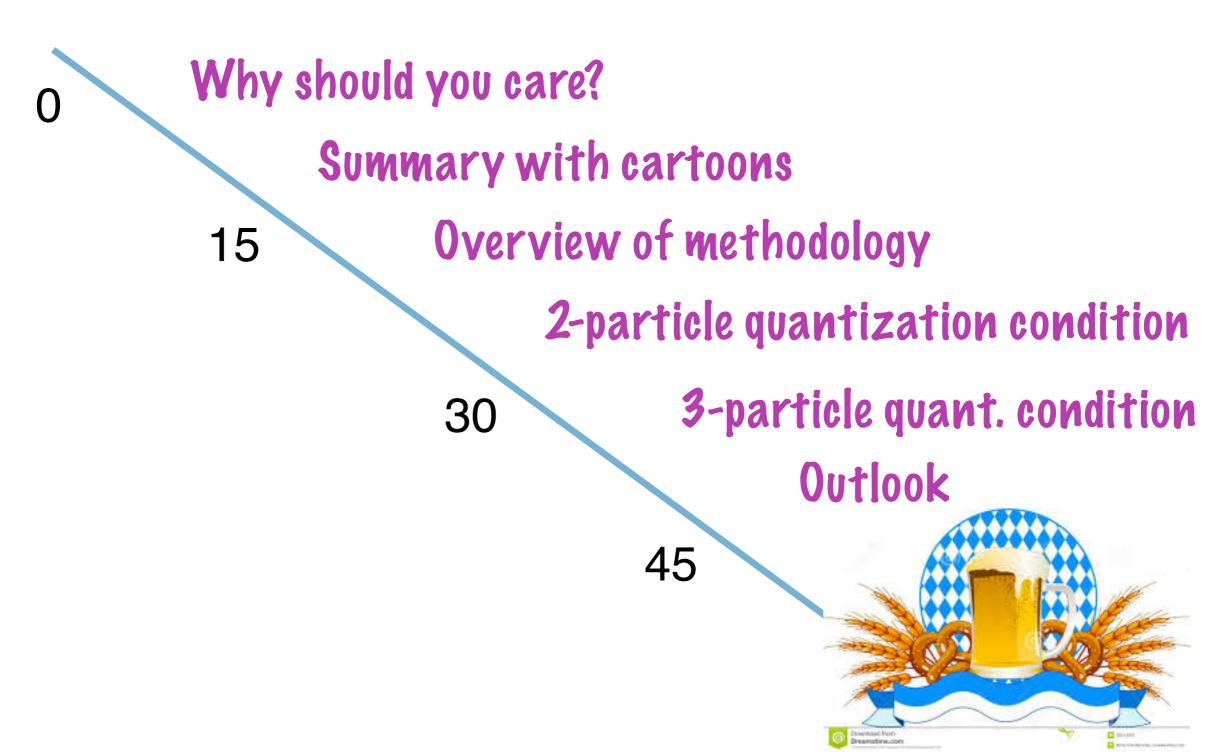
Overview

- This talk is more like a review
 - Aim to show where field stands and the major obstacles to progress
- Focus will be on theoretical issues (not simulations)
 - Though I will not go into many technical details
- The key theoretical issue is the impact of working in a finite spatial volume (always the case in simulations)
 - Discretization of space-time is not the issue, so can use continuum QFT
 - Use of Euclidean time in simulations is not (directly) the issue either

Outline



Outline



What is the relation to "QCD FOR NEW PHYSICS AT THE PRECISION FRONTIER"?

"QCD FOR NEW PHYSICS AT THE PRECISION FRONTIER"?

- Weak decay and mixing amplitudes allow tests of the SM and thus indirect searches for BSM physics
- Many of these involve multiparticle final or intermediate states, e.g.
 - $K \rightarrow \pi \pi (\Delta I = \frac{1}{2} \text{ rule and } \epsilon' / \epsilon)$
 - $K_0 \overline{K_0}$ mixing (ΔM_K)
 - $\mathbf{B} \rightarrow \mathbf{K} \pi (+ \vec{l} \cdot \vec{l})$
 - K→πππ
 - D→ππ, KK, ηη, 4π,
 - $D_0 \overline{D_0}$ mixing
 -
- Tests require lattice QCD (LQCD) calculations of corresponding hadronic matrix elements
- These need both theoretical developments (finite-volume QFT) and advances in simulations

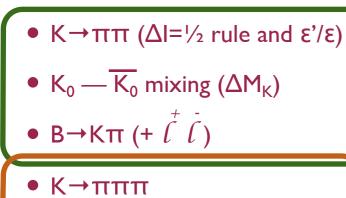
"QCD FOR NEW PHYSICS AT THE PRECISION FRONTIER"?

- Weak decay and mixing amplitudes allow tests of the SM and thus indirect searches for BSM physics
- Many of these involve multiparticle final or intermediate states, e.g.
 - $K \rightarrow \pi \pi (\Delta I = \frac{1}{2} \text{ rule and } \epsilon'/\epsilon)$ • $K_0 - \overline{K_0} \text{ mixing } (\Delta M_K)$
 - B→Kπ (+ ℓ⁺ℓ[¯])
 - Κ→πππ
 - D→ππ, KK, ηη, 4π,
 - $D_0 \overline{D_0}$ mixing
 -
- Tests require lattice QCD (LQCD) calculations of corresponding hadronic matrix elements
- These need both theoretical developments (finite-volume QFT) and advances in simulations

Theory developed; fully controlled LQCD results in a few years [RBC/UKQCD, Meinel,...]

"QCD FOR NEW PHYSICS AT THE PRECISION FRONTIER"?

- Weak decay and mixing amplitudes allow tests of the SM and thus indirect searches for BSM physics
- Many of these involve multiparticle final or intermediate states, e.g.



- D→ππ, KK, ηη, 4π,
- $D_0 \overline{D_0}$ mixing
-

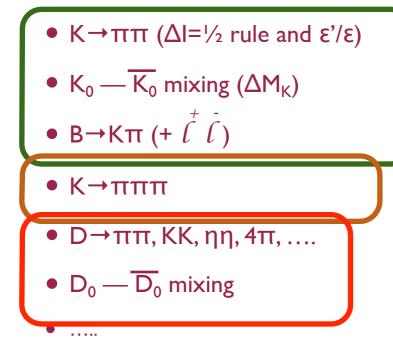
Theory developed; fully controlled LQCD results in a few years [RBC/UKQCD, Meinel,...]

Theory partially developed; no simulations yet

- Tests require lattice QCD (LQCD) calculations of corresponding hadronic matrix elements
- These need both theoretical developments (finite-volume QFT) and advances in simulations

"QCD FOR NEW PHYSICS AT THE PRECISION FRONTIER"?

- Weak decay and mixing amplitudes allow tests of the SM and thus indirect searches for BSM physics
- Many of these involve multiparticle final or intermediate states, e.g.



Theory developed; fully controlled LQCD results in a few years [RBC/UKQCD, Meinel,...]

Theory partially developed; no simulations yet

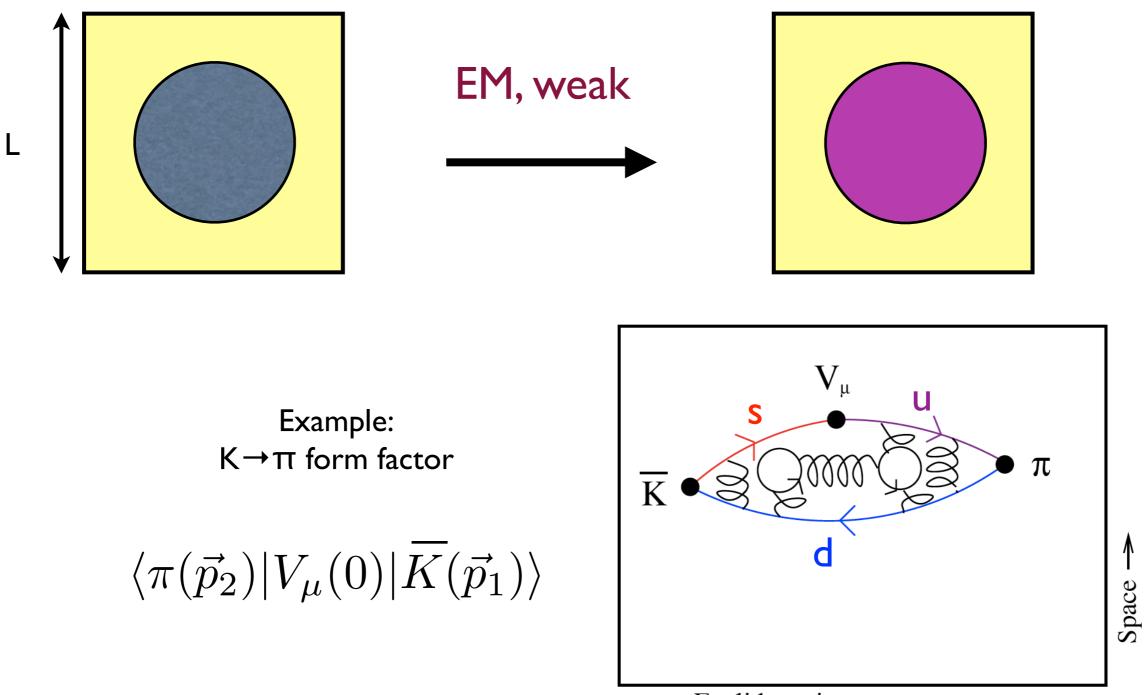
Theory remains to be developed

- Tests require lattice QCD (LQCD) calculations of corresponding hadronic matrix elements
- These need both theoretical developments (finite-volume QFT) and advances in simulations

Summary with cartoons

Well-controlled LQCD calculations

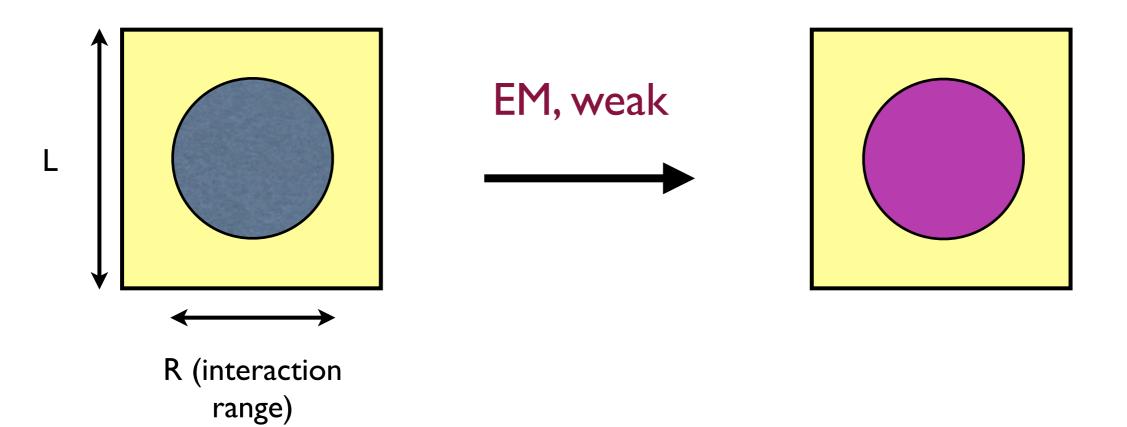
Discussed in Aida's talk; averages for many quantities presented by FLAG



Euclidean time ->

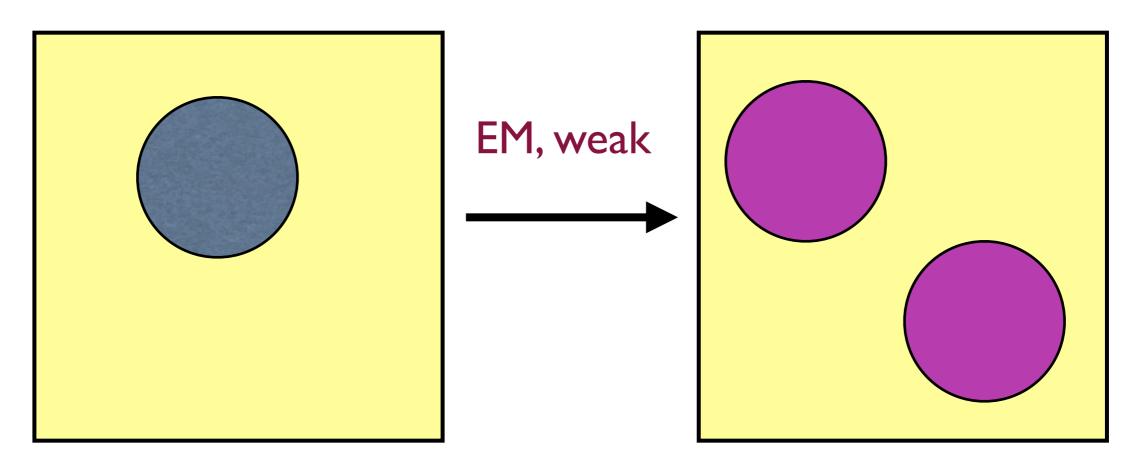
Well controlled LQCD calculations

Discussed in Aida's talk; averages for many quantities presented by FLAG



For large enough boxes (L>2R) dominant finite-volume effects for singleparticle states fall as $exp(-M_{\pi}L)$ [Lüscher] and can be made small

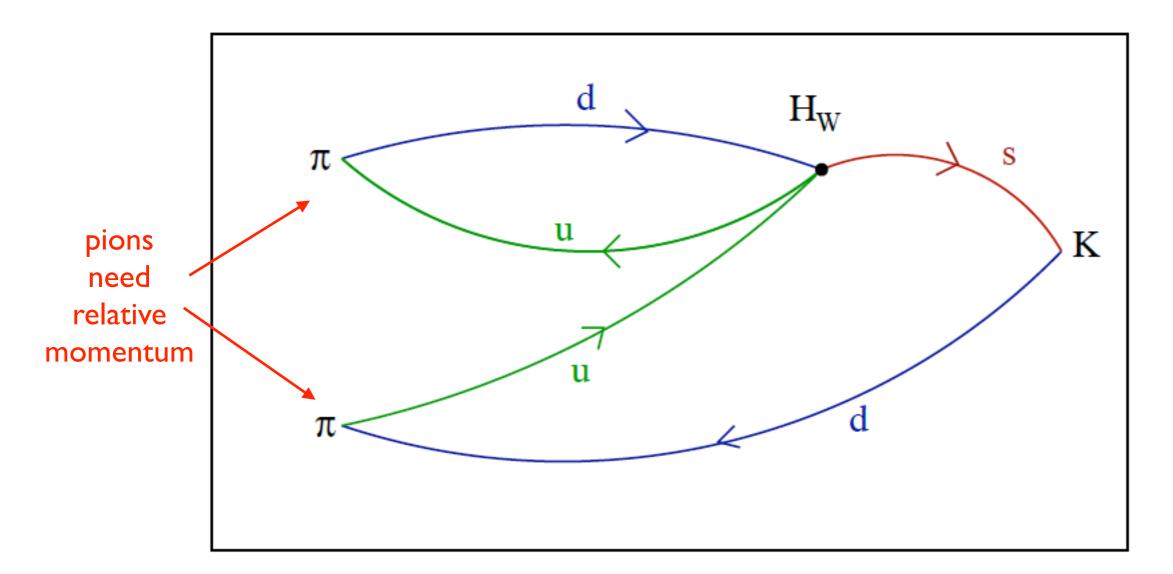
Present frontier (1)



e.g. $K \rightarrow \pi\pi$ (I=0 & 2) [RBC/UKQCD]

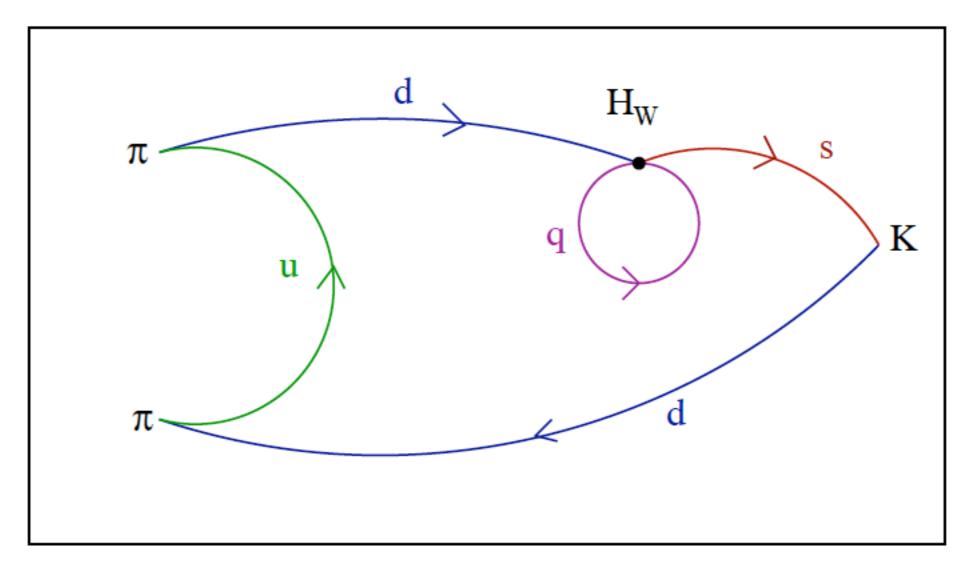
- Issues associated with 2 particles (I/Lⁿ finite-volume effects,...) are theoretically understood [Lüscher, Lellouch & Lüscher, ...]
- Numerical implementations expanding despite computational challenges

Computational challenges



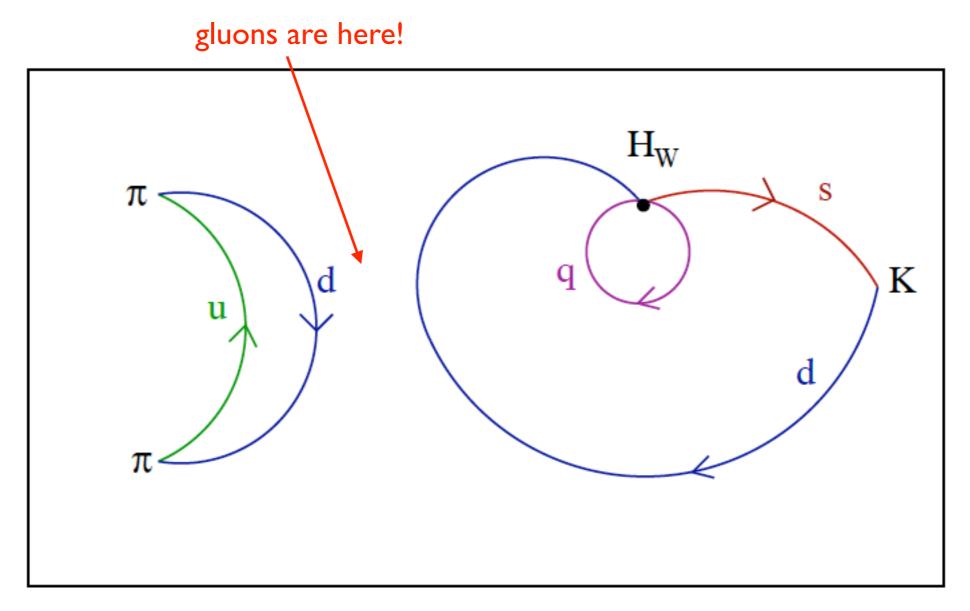
Four-point function

Computational challenges



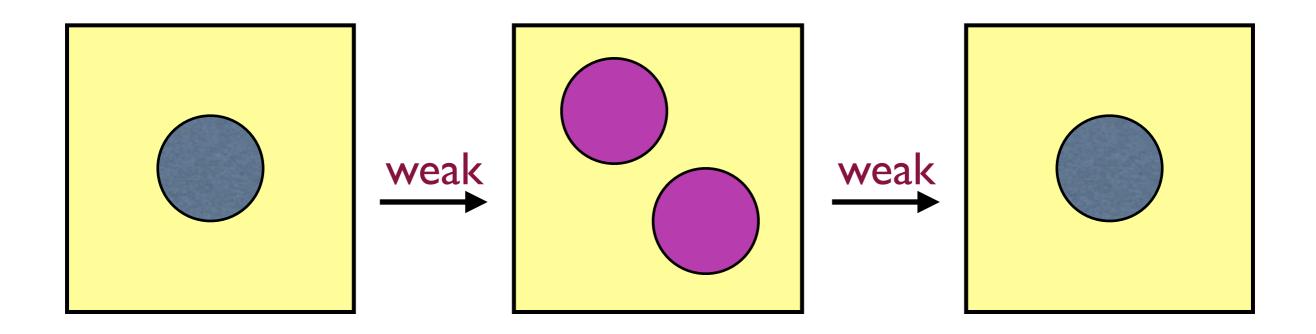
Partially quark-disconnected contractions

Computational challenges



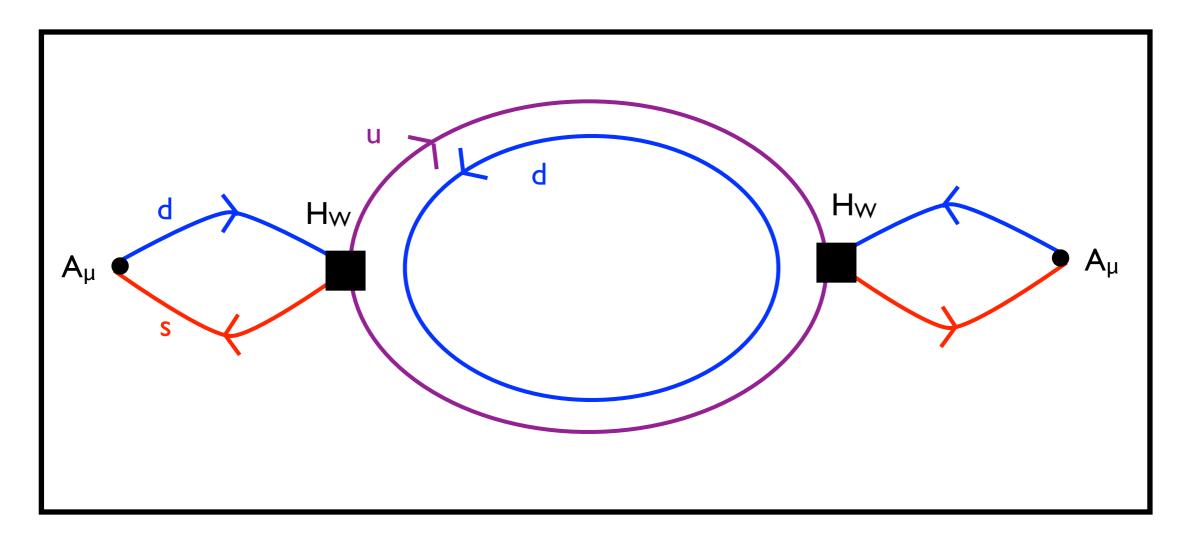
Fully quark-disconnected contractions

Present frontier (2) $\Delta M_{K}: K_{0} \rightarrow \pi \pi \text{ (virtual)} \rightarrow \overline{K}_{0} \text{ [RBC/UKQCD]}$



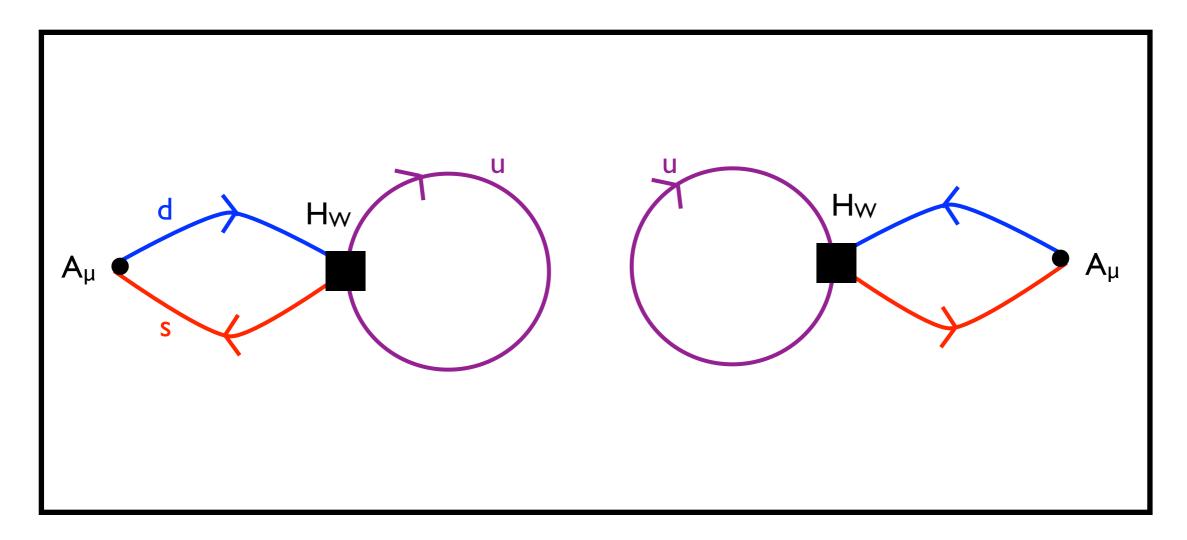
- Issues associated with intermediate two-particle states are theoretically understood [Christ, Feng, Martinelli, Sachrajda]
- Pilot numerical calculation [RBC/UKQCD]

Present frontier (2) $\Delta M_{K}: K_{0} \rightarrow \pi\pi \text{ (virtual)} \rightarrow \overline{K}_{0} \text{ [RBC/UKQCD]}$



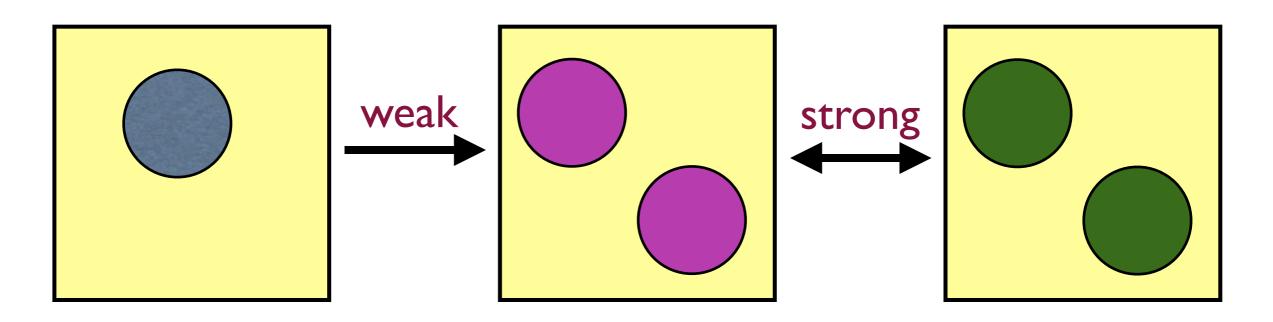
Four-point function involving two weak currents

Present frontier (2) $\Delta M_{K}: K_{0} \rightarrow \pi\pi \text{ (virtual)} \rightarrow \overline{K}_{0} \text{ [RBC/UKQCD]}$



Quark-disconnected contributions

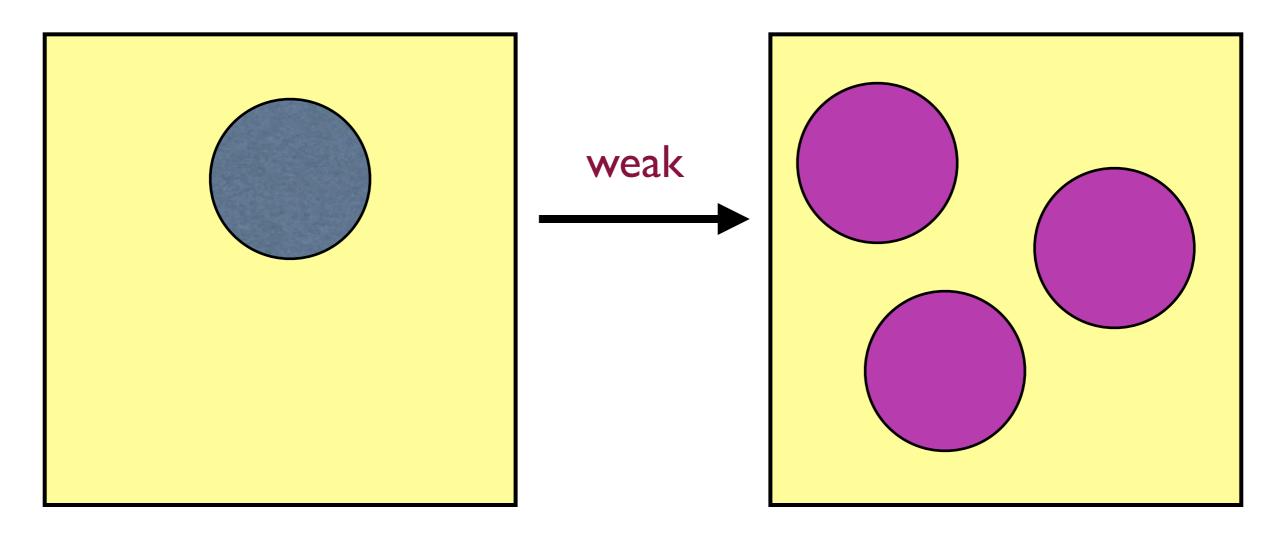
Present frontier (3)



e.g. $K_0 \rightarrow \pi_+ \pi_- \& \pi_0 \pi_0$ in presence of isospin breaking

- Theoretical challenge: finite-volume eigenstates are inevitably mixtures of final states
- Formalism for disentangling this mixing and obtaining correct (infinite volume) normalization and phases for amplitudes exists [Hansen & SS; Briceño, Hansen & Walker-Loud]

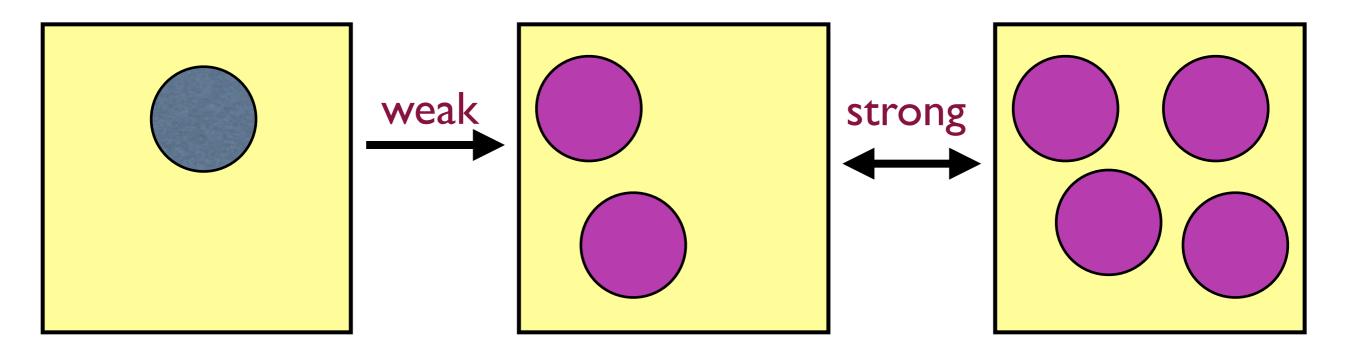
Pushing the frontier



e.g. $K_0 \rightarrow \pi \pi \pi$

- Theoretical challenge: removing I/Lⁿ finite-volume effects
- Partial progress (3 particle quantization condition) [Hansen & SS]

Beyond the frontier



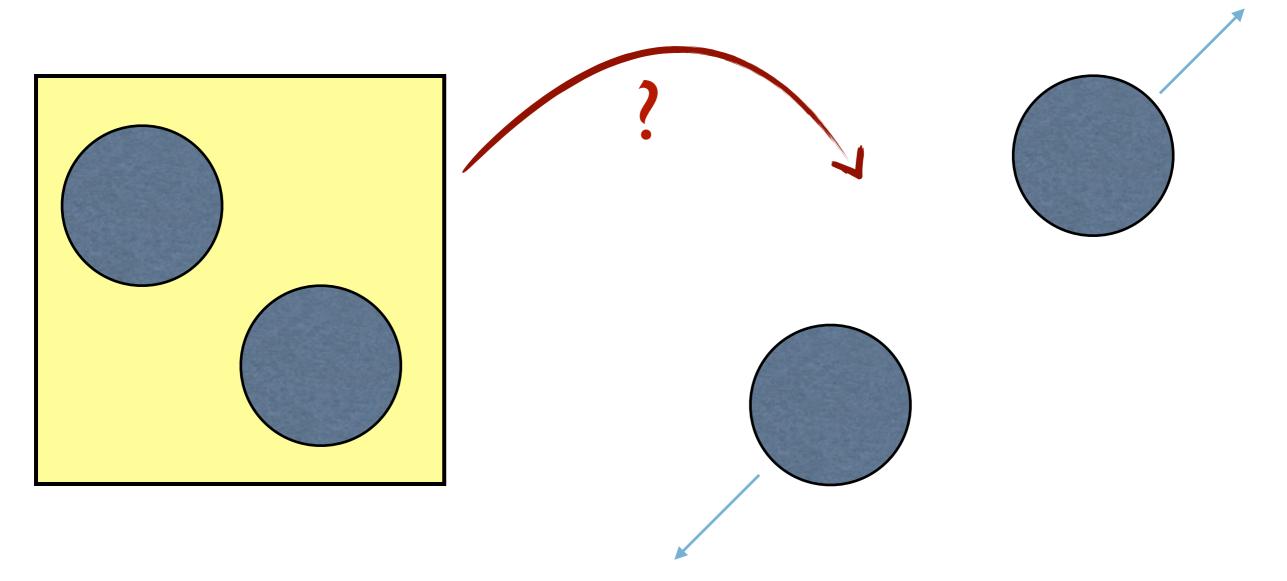
e.g. D→ππ & 4π & KK & ηη & 6π

- Finite-volume eigenstates at $E=M_D$ are inevitably mixtures of all open channels
- Need to separate these (to get individual "out" states)
- Similar issues arise in D—D mixing for virtual intermediate states
- Open theoretical problem
- Issues for simulations are also challenging (but less so?)

Overview of methodology

The fundamental issues

- Lattice QCD can calculate energy levels of multiparticle systems in a box and matrix elements involving these states
- How are these related to infinite-volume scattering amplitudes and decay amplitudes?



1st fundamental issue

- Lattice QCD car calculate energy levels of multiparticle systems in a box and matrix elements involving these states
- How are these related to infinite-volume scattering amplitudes and decay amplitudes?

$E_2(L)$ $E_1(L)$ $E_0(L)$	$i\mathcal{M}_{n \to m}$
Discrete energy	Scattering
spectrum	amplitudes

2nd fundamental issue

- Lattice QCD can calculate energy levels of multiparticle systems in a box and matrix elements involving these states
- How are these related to infinite-volume scattering amplitudes and decay amplitudes?

finite-volume state interpolated by two pion operator with $E_n = M_D$

 $L\langle n|\mathcal{H}_W|D\rangle_L$

 $_{\mathrm{out}}\langle \pi\pi|\mathcal{H}_W|D
angle$

desired infinite-volume matrix element including phase

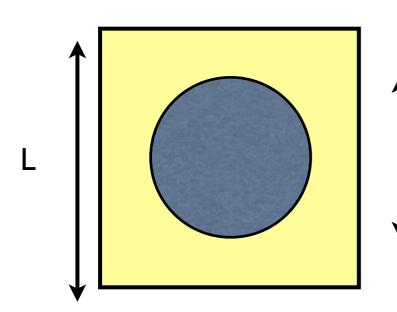
The fundamental issues

- Lattice QCD can calculate energy levels of multiparticle systems in a box and matrix elements involving these states
- How are these related to infinite-volume scattering amplitudes and decay amplitudes?

Must understand first issue before one can address the second

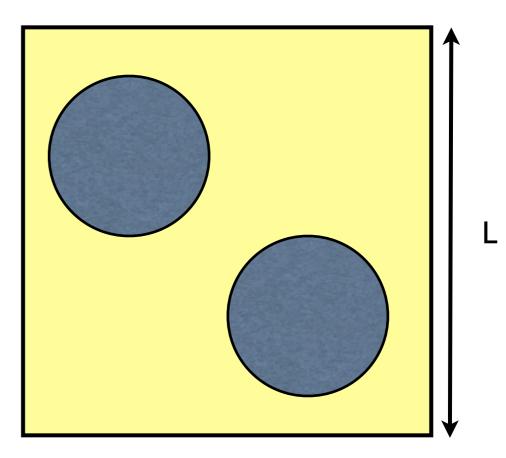
Two-particle quantization condition

When is spectrum related to scattering amplitudes?



R (interaction range)

Single (stable) particle with L>R Particle not "squeezed" Spectrum same as in infinite volume up to corrections proportional to $e^{-M_{\pi}L}$ [Lüscher]



L>2R

There is an "outside" region. Spectrum is related to scatt. amps. up to corrections proportional to $e^{-M_{\pi}L}$

[Lüscher,...]

Single-channel 2-particle quantization condition [Lüscher 86 & 91; Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 05; ...]

- Two particles (say pions) in cubic box of size L with PBC and total momentum P
- Below inelastic threshold (4 pions), the finite-volume spectrum E₁, E₂, ... is given by solutions to a secular equation in partial-wave (*l*,*m*) space (up to exponentially suppressed corrections)

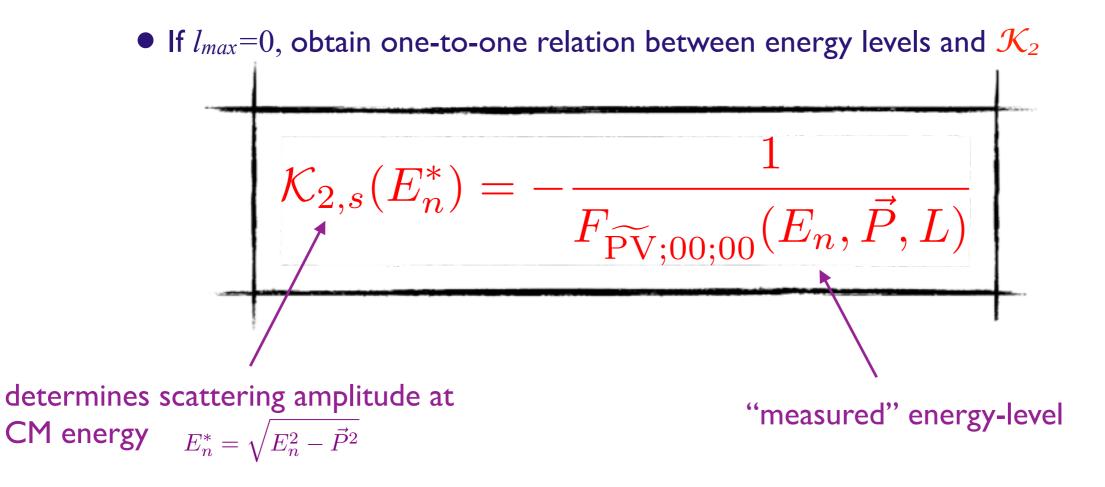
$$\det\left[(F_{\widetilde{\mathrm{PV}}})^{-1} + \mathcal{K}_2\right] = 0$$

- $\mathcal{K}_2 \sim \tan \delta/q$ is the K-matrix, which is diagonal in *l,m* space
- F_{PV} is a known kinematical zeta-function, depending on the box shape & E; It is an off-diagonal matrix in *l,m*, since the box violates rotation symmetry

Single-channel 2-particle quantization condition

$$\det\left[(F_{\widetilde{\mathrm{PV}}})^{-1} + \mathcal{K}_2\right] = 0$$

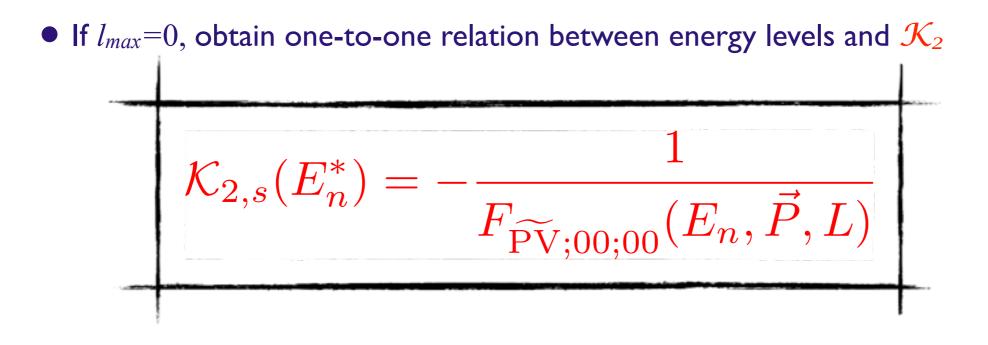
• Infinite dimensional determinant must be truncated to be practical; truncate by assuming that \mathcal{K}_2 vanishes above l_{max}



Single-channel 2-particle quantization condition

$$\det\left[(F_{\widetilde{\mathrm{PV}}})^{-1} + \mathcal{K}_2\right] = 0$$

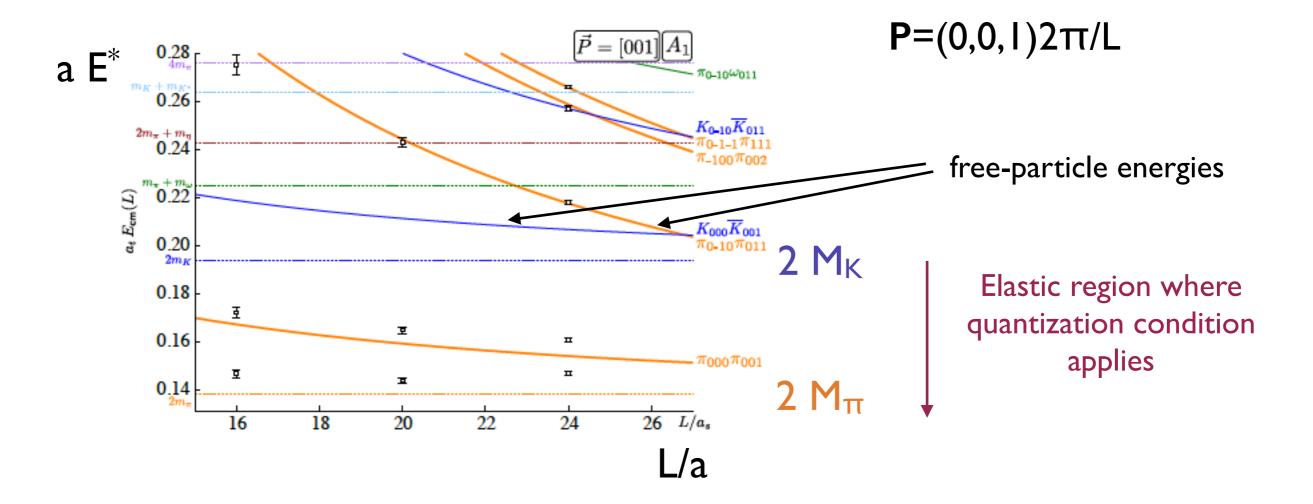
• Infinite dimensional determinant must be truncated to be practical; truncate by assuming that \mathcal{K}_2 vanishes above l_{max}



Equivalent to: $\tan[\delta(q^*)] = -\tan[\phi^P(q^*)],$

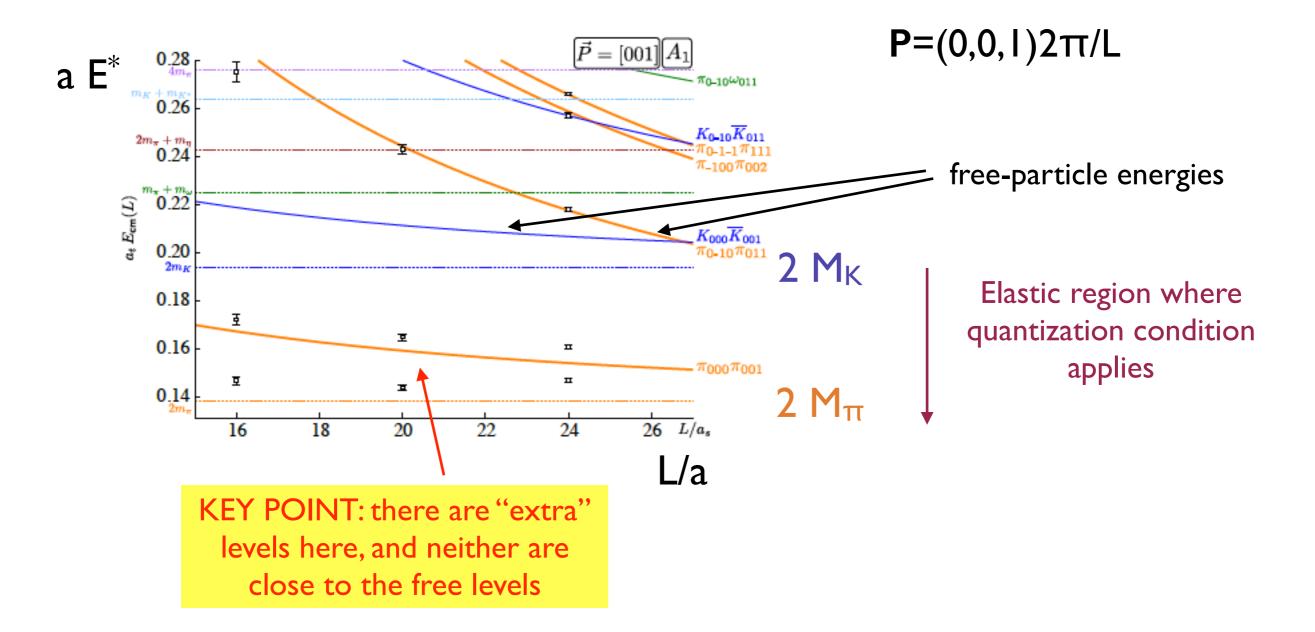
[Dudek, Edwards & Thomas, 1212.0830]

• Proof of principle calculation with $M_{\pi} \sim 400$ MeV, several P, many spectral levels

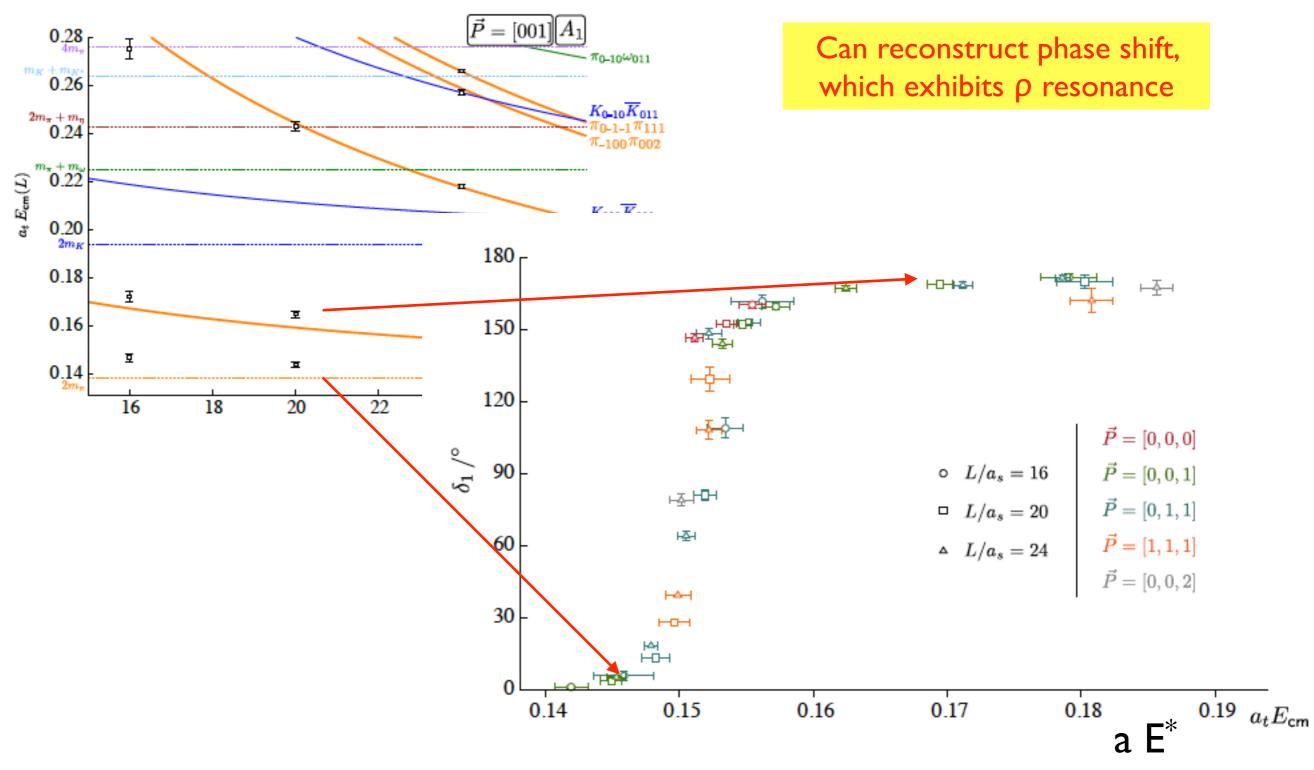


[Dudek, Edwards & Thomas, 1212.0830]

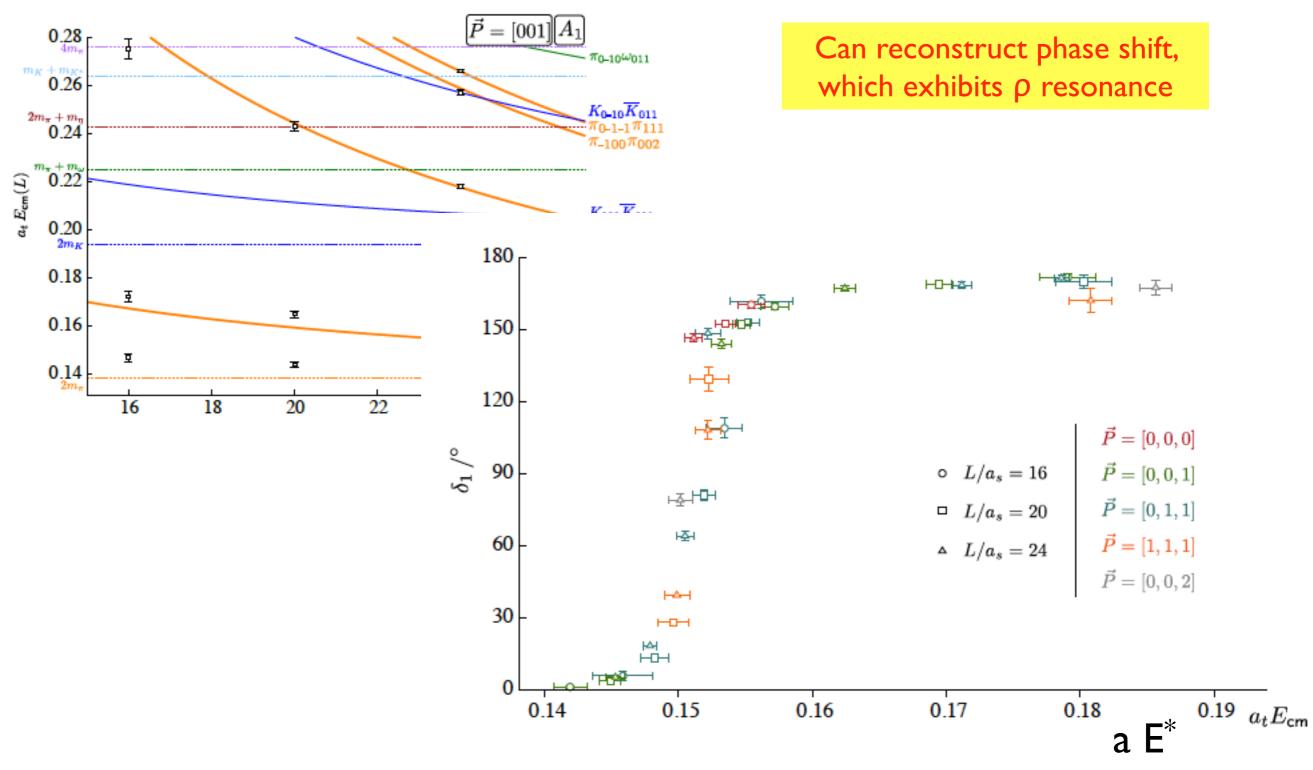
• Proof of principle calculation with $M_{\pi} \sim 400$ MeV, several P, many spectral levels



[Dudek, Edwards & Thomas, 1212.0830]



[Dudek, Edwards & Thomas, 1212.0830]



Status for 2 particles

- Long understood in NRQM [Huang & Yang 57,]
- 1st
 Quantization formula in QFT for energies below inelastic threshold converted into NRQM problem and solved by [Lüscher 86 & 91]
 - Solution generalized to arbitrary total momentum P, multiple (2 body) channels, general BCs and arbitrary spins [Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 05; Bernard, Lage, Meißner & Rusetsky 08; Hansen & SS 12; Briceño & Davoudi 12; ...]

Status for 2 particles

• Long understood in NRQM [Huang & Yang 57,]

2nd

issue

- 1st
 Quantization formula in QFT for energies below inelastic threshold converted into NRQM problem and solved by [Lüscher 86 & 91]
 - Solution generalized to arbitrary total momentum P, multiple (2 body) channels, general BCs and arbitrary spins [Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 05; Bernard, Lage, Meißner & Rusetsky 08; Hansen & SS 12; Briceño & Davoudi 12; ...]
 - Relation between finite volume I→2 weak amplitude (e.g. K→ππ) and infinite volume decay amplitude determined [Lellouch & Lüscher 00]
 - LL formula generalized to general P, to multiple (2 body) channels, to arbitrary currents, general BCs & arbitrary spin (e.g. γ^{*}π→ρ→ππ, γ^{*}N→Δ→πN, γD→NN) [Kim, Sachrajda & SS 05; Christ, Kim & Yamazaki 05; Meyer 12; Hansen & SS 12; Briceño & Davoudi 12; Agadjanov, Bernard, Meißner & Rusetsky 14; Briceño, Hansen & Walker-Loud 14; Briceño & Hansen 15;...]

Status for 2 particles

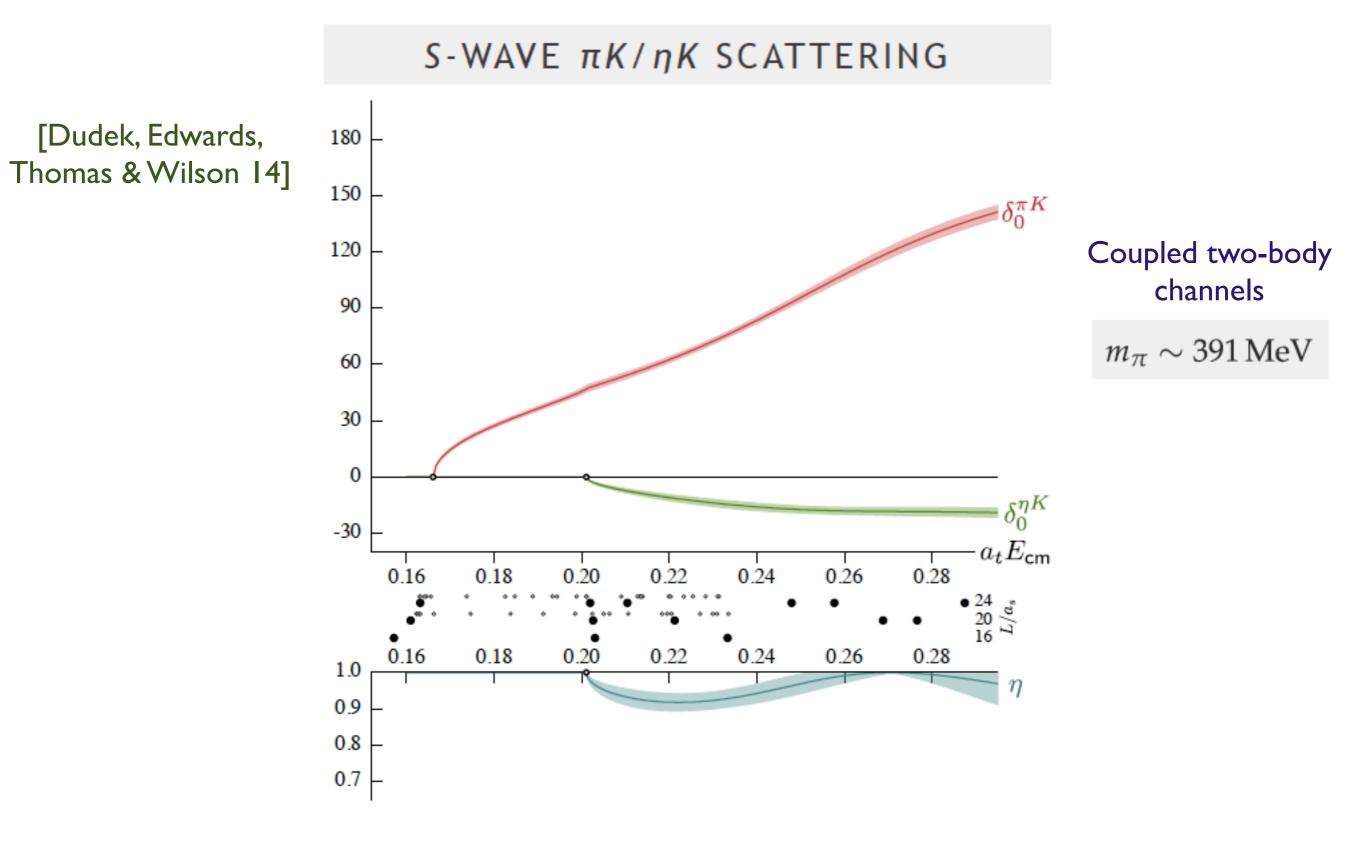
• Long understood in NRQM [Huang & Yang 57,]

2nd

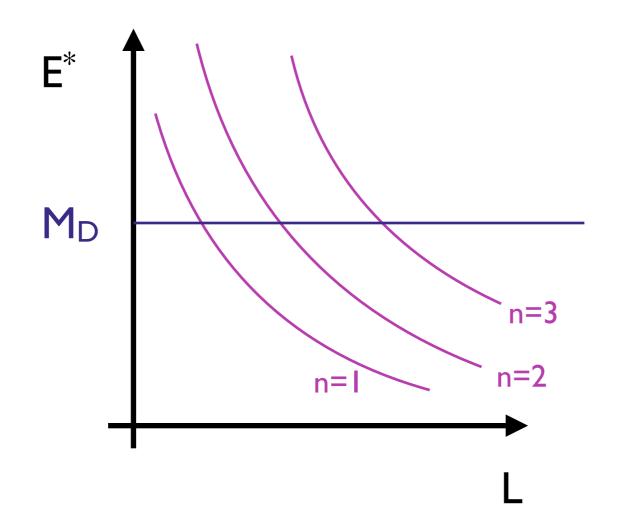
issue

- 1st
 Quantization formula in QFT for energies below inelastic threshold converted into NRQM problem and solved by [Lüscher 86 & 91]
 - Solution generalized to arbitrary total momentum P, multiple (2 body) channels, general BCs and arbitrary spins [Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 05; Bernard, Lage, Meißner & Rusetsky 08; Hansen & SS 12; Briceño & Davoudi 12; ...]
 - Relation between finite volume I→2 weak amplitude (e.g. K→ππ) and infinite volume decay amplitude determined [Lellouch & Lüscher 00]
 - LL formula generalized to general P, to multiple (2 body) channels, to arbitrary currents, general BCs & arbitrary spin (e.g. γ^{*}π→ρ→ππ, γ^{*}N→Δ→πN, γD→NN) [Kim, Sachrajda & SS 05; Christ, Kim & Yamazaki 05; Meyer 12; Hansen & SS 12; Briceño & Davoudi 12; Agadjanov, Bernard, Meißner & Rusetsky 14; Briceño, Hansen & Walker-Loud 14; Briceño & Hansen 15;...]
 - Leading order QED effects on quantization condition determined; do NOT fit into general formalism [Beane & Savage 14]

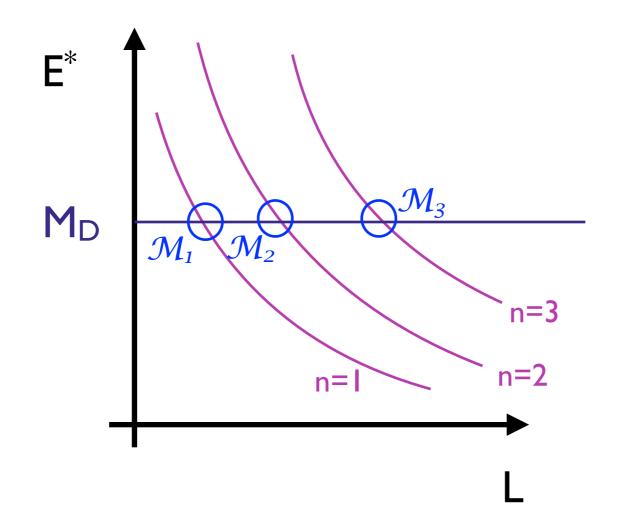
State of the art: multiple 2-particle channels



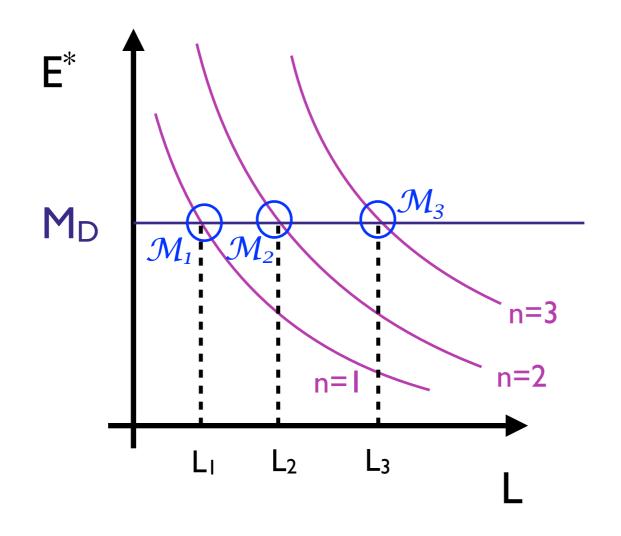
- Illustrate with an unphysical scenario:
 - Consider $D \rightarrow$ strange weak decays, and assume $D \rightarrow K\pi \& K\eta$ only
- Calculate amplitudes $\mathcal{M}_n = |A| = |A$
- Calculate values of L_n and slopes S_n of same three spectral lines at $E_n^*=M_D$



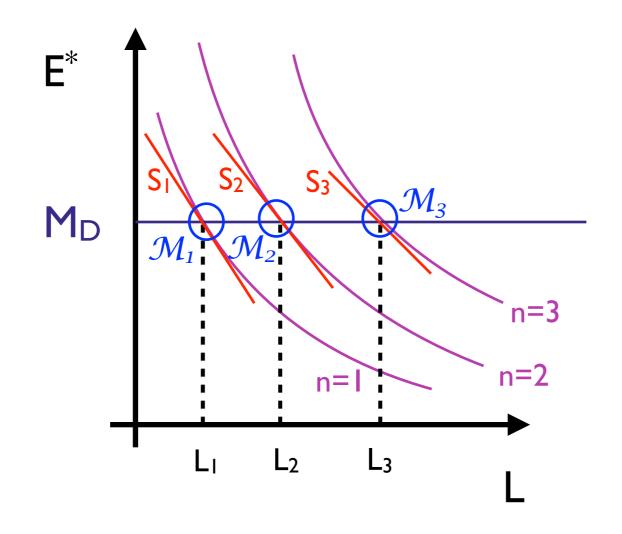
- Illustrate with an unphysical scenario:
 - Consider $D \rightarrow$ strange weak decays, and assume $D \rightarrow K\pi \& K\eta$ only
- Calculate amplitudes $\mathcal{M}_n = |A| = |A$
- Calculate values of L_n and slopes S_n of same three spectral lines at $E_n^*=M_D$



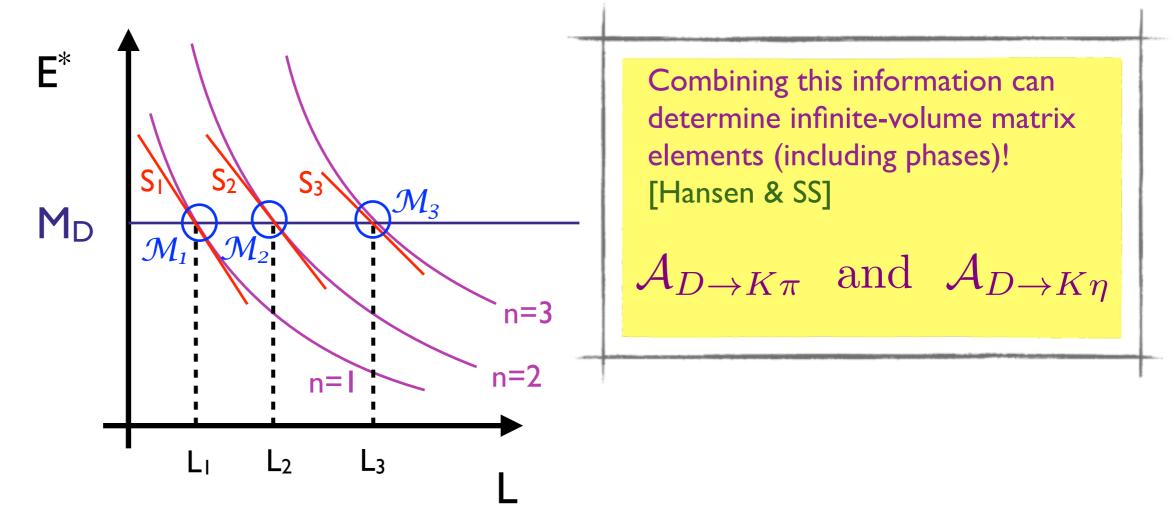
- Illustrate with an unphysical scenario:
 - Consider $D \rightarrow$ strange weak decays, and assume $D \rightarrow K\pi \& K\eta$ only
- Calculate amplitudes $\mathcal{M}_n = |A| = |A$
- Calculate values of L_n and slopes S_n of same three spectral lines at $E_n^*=M_D$



- Illustrate with an unphysical scenario:
 - Consider $D \rightarrow$ strange weak decays, and assume $D \rightarrow K\pi \& K\eta$ only
- Calculate amplitudes $\mathcal{M}_n = |A| = |A$
- Calculate values of L_n and slopes S_n of same three spectral lines at $E_n^*=M_D$



- Illustrate with an unphysical scenario:
 - Consider $D \rightarrow$ strange weak decays, and assume $D \rightarrow K\pi \& K\eta$ only
- Calculate amplitudes $\mathcal{M}_n = |A| = |A$
- Calculate values of L_n and slopes S_n of same three spectral lines at $E_n^*=M_D$



Three-particle quantization condition

Applications of 3-particle formalism

• Studying resonances with three particle decay channels

 $\omega(782) \to \pi\pi\pi \qquad K^* \longrightarrow K\pi\pi \qquad N(1440) \to N\pi\pi$

 Calculating weak decay amplitudes/form factors involving 3 particles, e.g. K→πππ

Determining NNN interactions

- Input for effective field theory treatments of larger nuclei & nuclear matter
- Similarly, $\pi\pi\pi$, $\pi K\overline{K}$, ... interactions needed for study of pion/kaon condensation

Status for 3 particles

- [Beane, Detmold & Savage 07 and Tan 08] derived threshold expansion for n particles in NRQM, and argued it applied also in QFT
- [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum determined by infinite-volume scattering amplitudes, using integral equation
- [Briceño & Davoudi 12] used a dimer approach in NREFT, with s-wave interactions only, to determine relation between spectrum and a finite volume quantity, itself related to infinite-volume amplitudes by an integral equation
- [Hansen & SS 14, 15] derived quantization condition in (fairly) general, relativistic QFT relating spectrum and \mathcal{M}_2 and 3-body scattering quantity K_{df,3}; relation between K_{df,3} & \mathcal{M}_3 via integral equations now known
- [Meißner, Rios & Rusetsky 14] determined volume dependence of 3-body bound state in unitary limit
- [HALQCD: Aoki *et al.* 13] use alternative method based on Bethe-Salpeter wavefunction: potentially more powerful but based on certain assumptions

Status for 3 particles

- [Beane, Detmold & Savage 07 and Tan 08] derived threshold expansion for n particles in NRQM, and argued it applied also in QFT
- [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum determined by infinite-volume scattering amplitudes, using integral equation
- [Briceño & Davoudi 12] used a dimer approach in NREFT, with s-wave interactions only, to determine relation between spectrum and a finite volume quantity, itself related to infinite-volume amplitudes by an integral equation
- [Hansen & SS 14, 15] derived quantization condition in (fairly) general, relativistic QFT relating spectrum and \mathcal{M}_2 and 3-body scattering quantity K_{df,3}; relation between K_{df,3} & \mathcal{M}_3 via integral equations now known
- [Meißner, Rios & Rusetsky 14] determined volume dependence of 3-body bound state in unitary limit
- [HALQCD: Aoki et al. 13] use alternative method based on Bethe-Salpeter wavefunction: potentially more powerful but based on certain assumptions

Theory considered for 3 particles

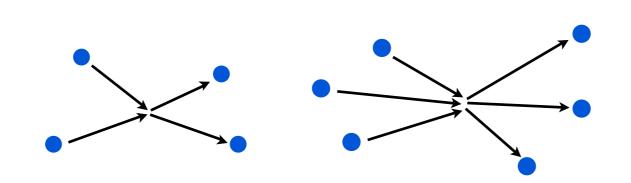
• Work in continuum (assume that LQCD can control discretization errors)

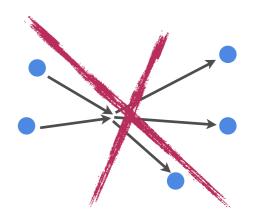
- Cubic box of size L with periodic BC, and infinite (Minkowski) time
 - Spatial loops are sums:

$$\frac{1}{L^3}\sum_{\vec{k}} \qquad \vec{k} = \frac{2\pi}{L}\vec{n}$$

L

- Consider identical particles with physical mass m, interacting <u>arbitrarily</u> except for a Z₂ (G-parity-like) symmetry
 - Only vertices are $2 \rightarrow 2, 2 \rightarrow 4, 3 \rightarrow 3, 3 \rightarrow 1, 3 \rightarrow 5, 5 \rightarrow 7$, etc.
 - Even & odd particle-number sectors decouple





S. Sharpe, "Multiparticle processes" 09/28/15 INT workshop

3-particle quantization condition [Hansen & SS]

• Spectrum is determined (for given L, P) by solutions of

$$\det\left[F_3^{-1} + \mathcal{K}_{\mathrm{df},3}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{\mathrm{PV}}}} \right]$$

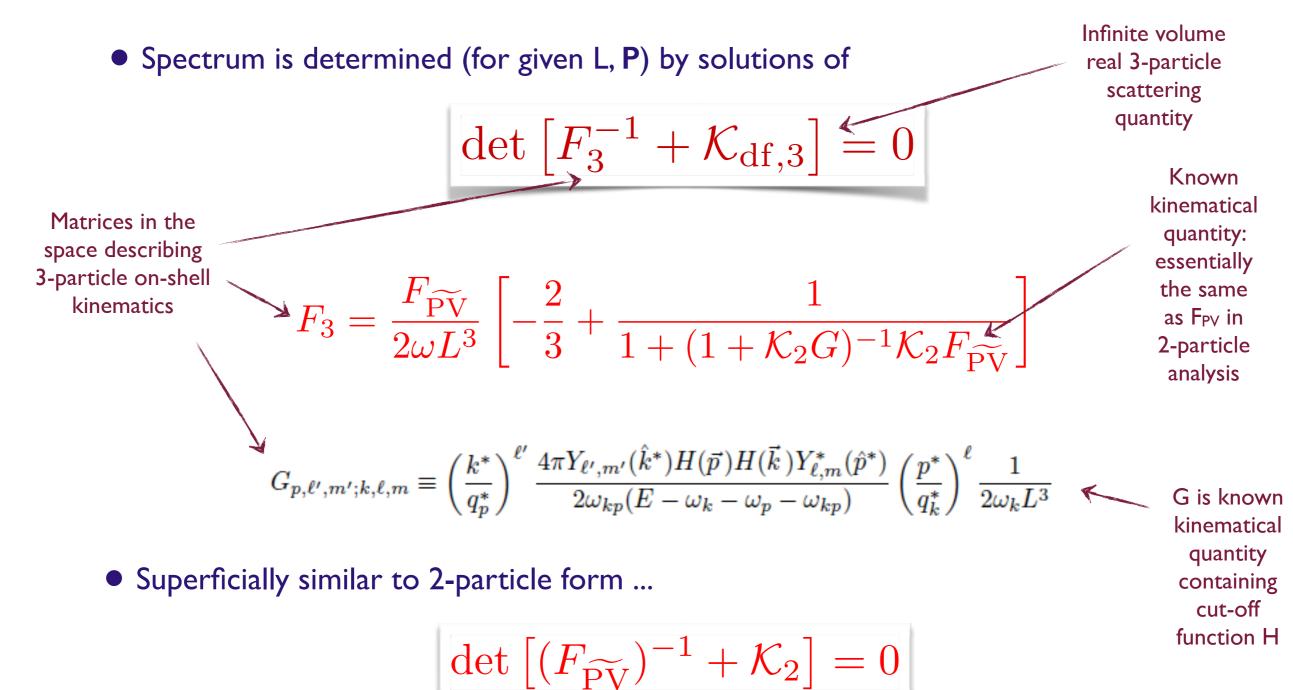
$$G_{p,\ell',m';k,\ell,m} \equiv \left(\frac{k^*}{q_p^*}\right)^{\ell'} \frac{4\pi Y_{\ell',m'}(\hat{k}^*)H(\vec{p}\,)H(\vec{k}\,)Y_{\ell,m}^*(\hat{p}^*)}{2\omega_{kp}(E-\omega_k-\omega_p-\omega_{kp})} \left(\frac{p^*}{q_k^*}\right)^{\ell} \frac{1}{2\omega_k L^3}$$

• Superficially similar to 2-particle form ...

$$\det\left[(F_{\widetilde{\mathrm{PV}}})^{-1} + \mathcal{K}_2\right] = 0$$

• ... but F₃ contains both kinematical, finite-volume quantities (F_{PV} & G) and the dynamical, infinite-volume quantity \mathcal{K}_2

3-particle quantization condition [Hansen & SS]



• ... but F₃ contains both kinematical, finite-volume quantities (F_{PV} & G) and the dynamical, infinite-volume quantity \mathcal{K}_2

Final result for 3 particles

$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

• All quantities are (infinite-dimensional) matrices, e.g. (F₃)_{klm;pl'm'}, with indices

[finite volume "spectator" momentum: $k=2\pi n/L$] x [2-particle CM angular momentum: l,m]

Three on-shell particles with total energy-momentum (E, P)

 For large k other two particles are below threshold; must include such configurations by analytic continuation up to a cut-off at k~m [provided by H(k)] Final result for 3 particles

$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- Important limitation: our present derivation requires that all two-particle subchannels lie below resonance poles at the spectral energy under consideration
 - Resonances imply that \mathcal{K}_2 has a pole, and this leads to additional finite volume dependence not accounted for in the derivation
 - We only have an ugly solution—searching for something better

Truncation in 3 particle case

$$\det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- For fixed E & P, as spectator momentum |k| increases, remaining two-particle system drops below threshold, so F_{PV} becomes exponentially suppressed
 - Smoothly interpolates to $F_{PV}=0$ due to H factors; same holds for G
- Thus k sum is naturally truncated (with, say, N terms required)
- I is truncated if both \mathcal{K}_2 and $\mathcal{K}_{df, 3}$ vanish for $I > I_{max}$
- Yields determinant condition truncated to $[N(2l_{max}+I)]^2$ block

Truncation in 3 particle case

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3} \right] = 0$$
$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}} \right]$$

- Given prior knowledge of \mathcal{K}_2 (e.g. from 2-particle quantization condition) each energy level E_i of the 3 particle system gives information on $\mathcal{K}_{df,3}$ at the corresponding 3-particle CM energy E_i^{*}
- Probably need to proceed by parameterizing $\mathcal{K}_{df,3\rightarrow 3}$, in which case one would need at least as many levels as parameters at given energy
- Given \mathcal{K}_2 and $\mathcal{K}_{df,3}$ one can reconstruct \mathcal{M}_3
- The locality of $\mathcal{K}_{df,3}$ is crucial for this program
- Clearly very challenging in practice, but there is an existence proof....

Isotropic approximation

- Assume $\mathcal{K}_{df,3}$ depends only on E^{*} (and thus is indep. of k, l, m)
- Also assume \mathcal{K}_2 only non-zero for s-wave ($\Rightarrow I_{max}=0$) and known
- Truncated [N x N] problem simplifies: $\mathcal{K}_{df,3}$ has only 1 non-zero eigenvalue, and problem collapses to a single equation:

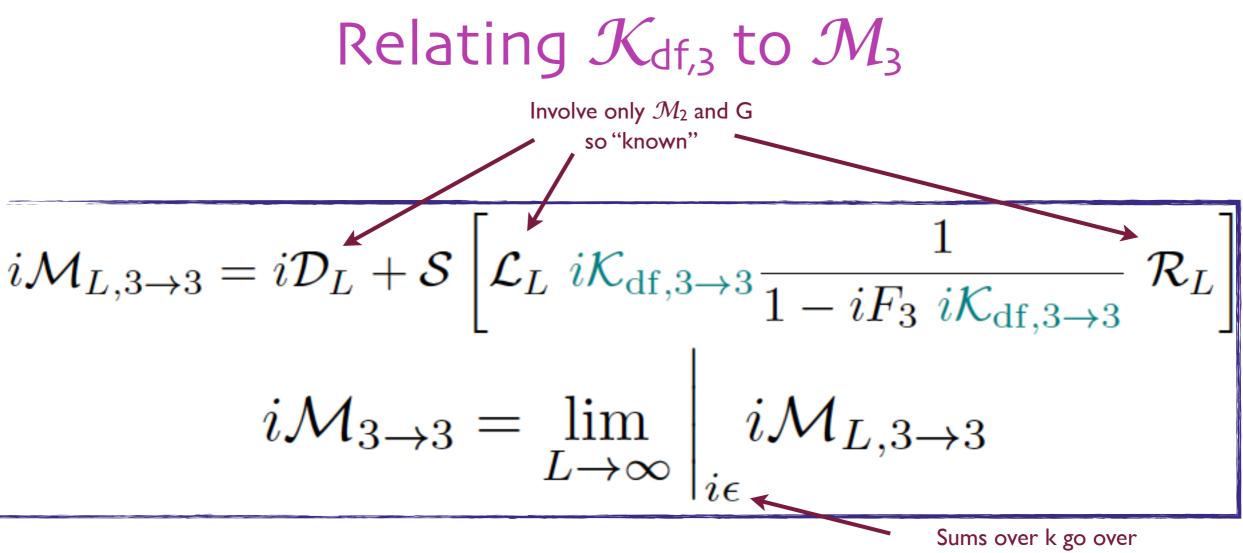
$$1 + F_3^{\text{iso}} \mathcal{K}_{\text{df},3}^{\text{iso}}(E^*) = 0$$

Known in terms of two particle scattering amplitude

$$F_3^{\rm iso} \equiv \sum_{\vec{k},\vec{p}} \frac{1}{2\omega_k L^3} \left[F_{\widetilde{\rm PV}}^s \left(-\frac{2}{3} + \frac{1}{1 + [1 + \mathcal{K}_2^s G^s]^{-1} \mathcal{K}_2^s F_{\widetilde{\rm PV}}^s} \right) \right]_{k,p}$$

Relating $\mathcal{K}_{df,3}$ to \mathcal{M}_3

- Three particle quantization condition depends on $\mathcal{K}_{df,3}$ rather than the three particle scattering amplitude \mathcal{M}_3
- $\mathcal{K}_{df,3}$ is an infinite volume quantity (loops involve integrals) but is not physical
 - Has a very complicated, unwieldy definition
 - Depends on the cut-off function H
 - It was forced on us by the analysis, and is some sort of local vertex
- \bullet To complete the quantization condition we must relate $\mathcal{K}_{df,3}$ to \mathcal{M}_3



to integrals with it pole prescription

- Result is an integral equation giving \mathcal{M}_3 in terms of $\mathcal{K}_{df,3}$
- Requires knowing \mathcal{M}_2 (including continued below threshold)
- Completes formalism—shows that finite volume spectrum is given by infinite-volume scattering amplitudes

Summary & Outlook

Outlook: many challenges remain!

- Tremendous progress over last decade (theory & simulations)
 - Two-particle cases theoretically understood & simulations underway
 - Key examples: $K \rightarrow \pi\pi$ [RBC/UKQCD], $\gamma\pi \rightarrow \rho \rightarrow \pi\pi$ [JLAB]
- Frontier is 3 particles: need to fully develop 3 body formalism
 - Allow two particle sub-channels to be resonant
 - Extend to non-identical particles, particles with spin
 - Generalize LL factors to $I \rightarrow 3$ decay amplitudes (e.g. for $K \rightarrow \pi \pi \pi$)
 - Include $1 \rightarrow 2, 2 \rightarrow 3, \dots$ vertices
- Develop models of amplitudes so that new results can be implemented in simulations
- Onwards to 4 or more particles?!?

Thank you! Questions?

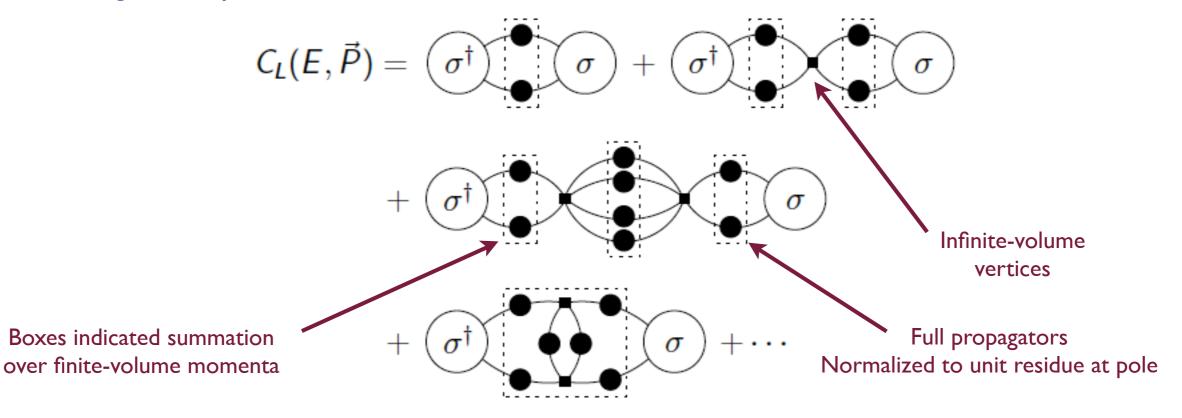
Backup slides: the details!

Set-up & main ideas

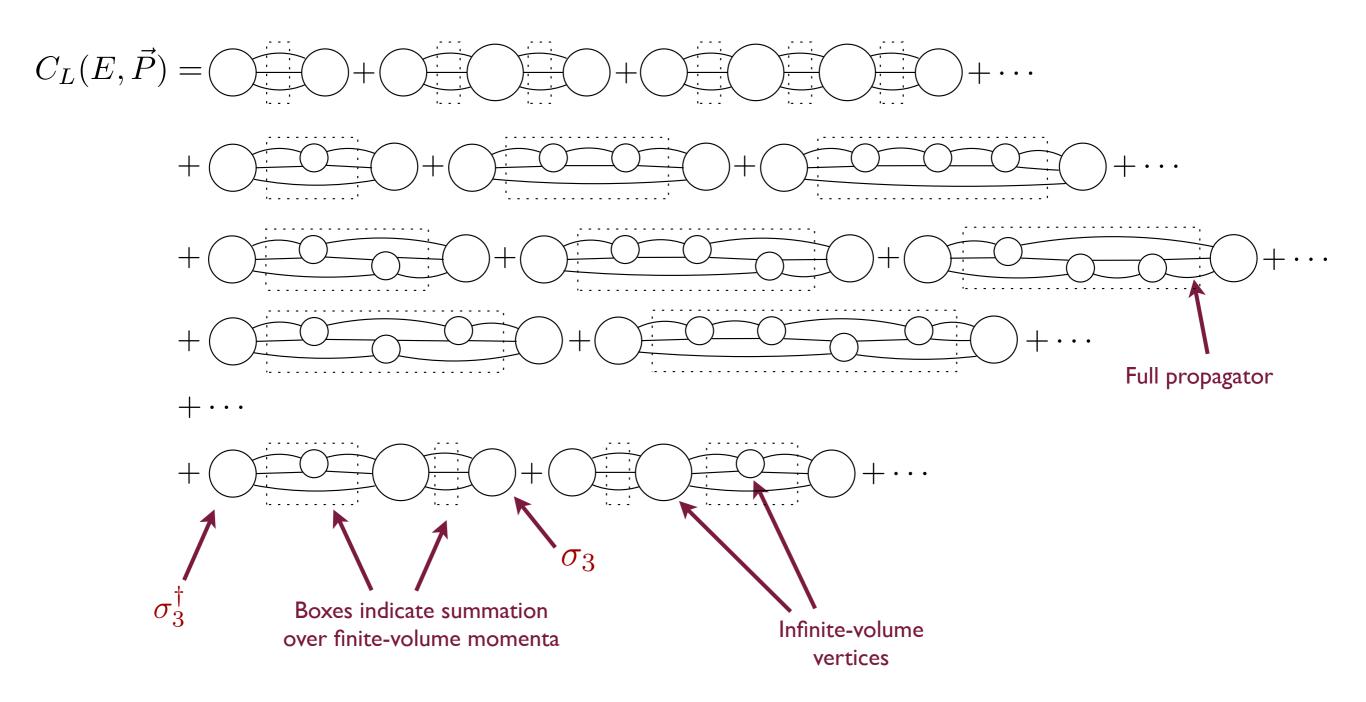
Methodology

• Calculate (for some P=2TTn_P/L) $C_{L}(E, \vec{P}) \equiv \int_{L} d^{4}x \ e^{-i\vec{P}\cdot\vec{x}+iEt} \langle \Omega | T\sigma(x)\sigma^{\dagger}(0) | \Omega \rangle_{L}$ CM energy is $E^{*} = \sqrt{(E^{2}-P^{2})}$

- Poles in C_L occur at energies of finite-volume spectrum
- For 2 & 3 particle states, $\sigma \sim \pi^2$ & π^3 , respectively
- E.g. for 2 particles:



3-particle correlator



- Replace loop sums with integrals where possible
 - Drop exponentially suppressed terms (~e^{-ML}, e^{-(ML)^2}, etc.) while keeping power-law dependence

$$\frac{1}{L^3} \sum_{\vec{k}} g(\vec{k}) = \int \frac{d^3k}{(2\pi)^3} g(\vec{k}) + \sum_{\vec{l} \neq \vec{0}} \int \frac{d^3k}{(2\pi)^3} e^{iL\vec{l}\cdot\vec{k}} g(\vec{k})$$

- Replace loop sums with integrals where possible
 - Drop exponentially suppressed terms (~e^{-ML}, e^{-(ML)^2}, etc.) while keeping power-law dependence

$$\frac{1}{L^3} \sum_{\vec{k}} g(\vec{k}) = \int \frac{d^3k}{(2\pi)^3} g(\vec{k}) + \sum_{\vec{l} \neq \vec{0}} \int \frac{d^3k}{(2\pi)^3} e^{iL\vec{l}\cdot\vec{k}} g(\vec{k})$$

Exp. suppressed if g(k) is smooth and scale of derivatives of g is ~1/M

• Use "sum=integral + [sum-integral]" if integrand has pole, with [Kim,Sachrajda,SS 05]

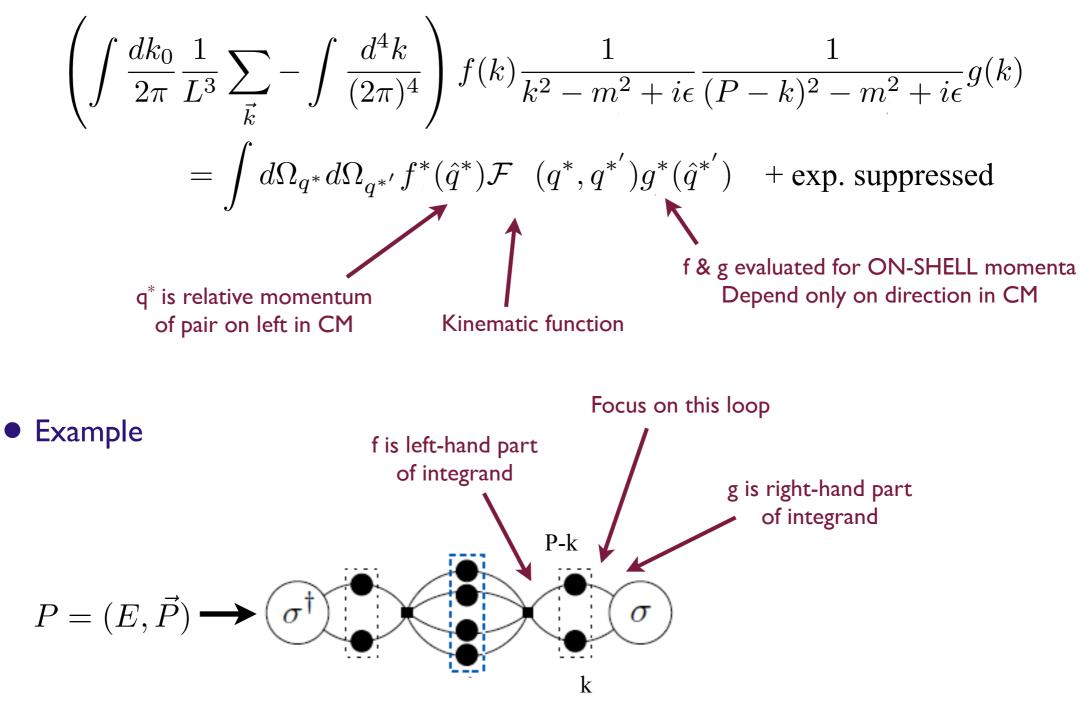
$$\begin{pmatrix} \int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} - \int \frac{d^4k}{(2\pi)^4} \end{pmatrix} f(k) \frac{1}{k^2 - m^2 + i\epsilon} \frac{1}{(P - k)^2 - m^2 + i\epsilon} g(k)$$

$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F} \quad (q^*, q^{*'}) g^*(\hat{q}^{*'}) \quad + \text{exp. suppressed}$$

$$f \& \text{g evaluated for ON-SHELL momenta}$$

$$\text{Depend only on direction in CM}$$

• Use "sum=integral + [sum-integral]" if integrand has pole, with [Kim,Sachrajda,SS 05]



• Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

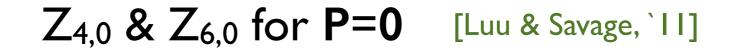
$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} - \int \frac{d^4k}{(2\pi)^4} \right) f(k) \frac{1}{k^2 - m^2 + i\epsilon} \frac{1}{(P-k)^2 - m^2 + i\epsilon} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F} \ (q^*, q^{*'}) g^*(\hat{q}^{*'})$$

• Decomposed into spherical harmonics, $\mathcal F$ becomes

$$F_{\ell_{1},m_{1};\ell_{2},m_{2}} \equiv \eta \left[\frac{\operatorname{Re}q^{*}}{8\pi E^{*}} \delta_{\ell_{1}\ell_{2}} \delta_{m_{1}m_{2}} + \frac{i}{2\pi EL} \sum_{\ell,m} x^{-\ell} \mathcal{Z}_{\ell m}^{P}[1;x^{2}] \int d\Omega Y_{\ell_{1},m_{1}}^{*} Y_{\ell,m}^{*} Y_{\ell_{2},m_{2}} \right]$$

 $x_{\ell} \equiv q^* L/(2\pi)$ and $\mathcal{Z}^P_{\ell m}$ is a generalization of the zeta-function

Kinematic functions



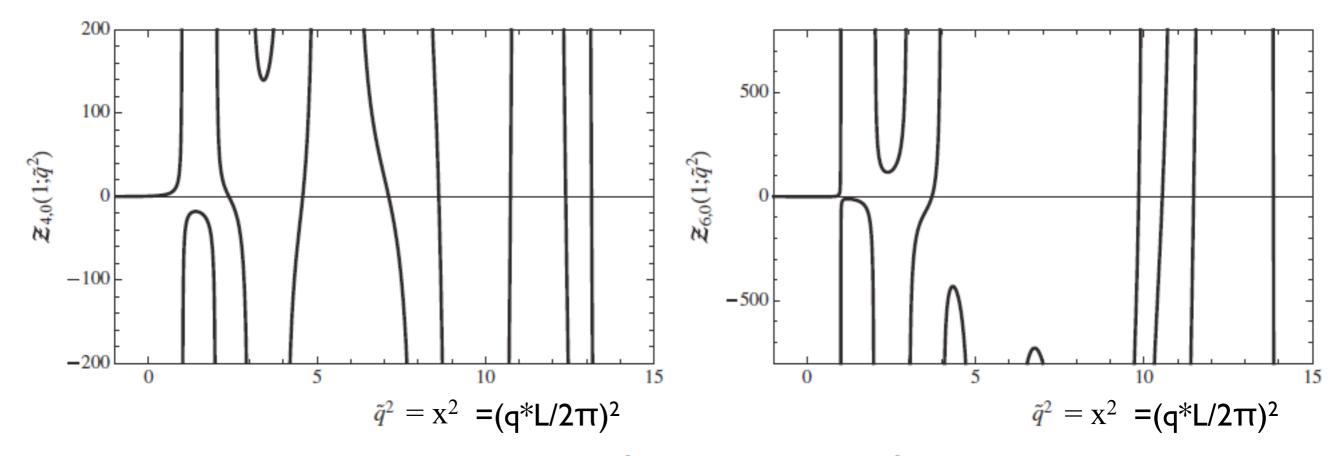
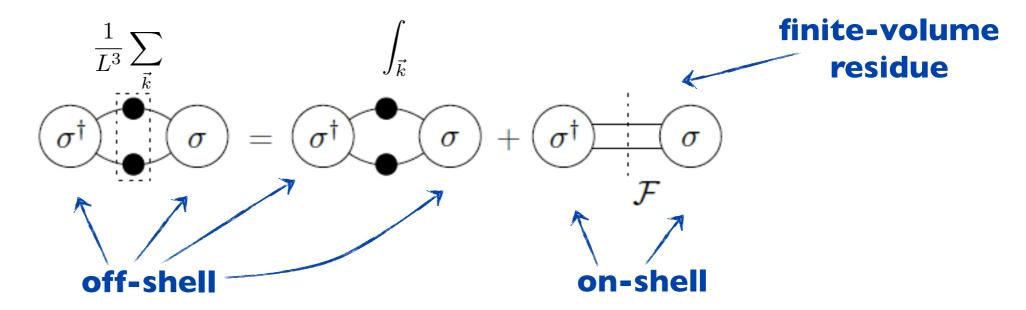


FIG. 29. The functions $Z_{4,0}(1; \tilde{q}^2)$ (left panel) and $Z_{6,0}(1; \tilde{q}^2)$ (right panel).

• Use "sum=integral + [sum-integral]" where integrand has pole, with [KSS]

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} -\int \frac{d^4k}{(2\pi)^4} \right) f(k) \frac{1}{k^2 - m^2 + i\epsilon} \frac{1}{(P - k)^2 - m^2 + i\epsilon} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F} \ (q^*, q^{*'}) g^*(\hat{q}^{*'})$$

• Diagrammatically



Variant of key step 2

• For generalization to 3 particles use (modified) PV prescription instead of iε

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} - \int \frac{\widetilde{PV}}{(2\pi)^4} \right) f(k) \frac{1}{k^2 - m^2} + \underbrace{\swarrow}_{(P-k)^2 - m^2} + \underbrace{\swarrow}_{(P-k)^2 - m^2} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F}_{\widetilde{PV}}(q^*, q^{*'}) g^*(\hat{q}^{*'})$$

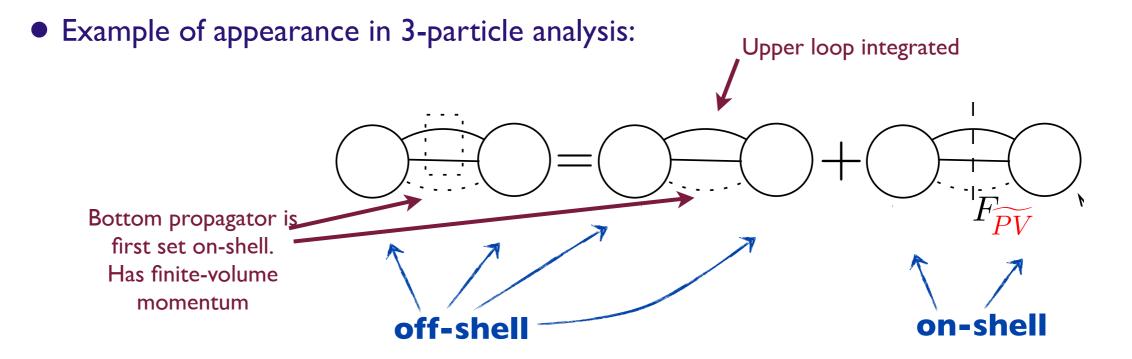
• Key properties of FPV (discussed below): real and no unitary cusp at threshold

Variant of key step 2

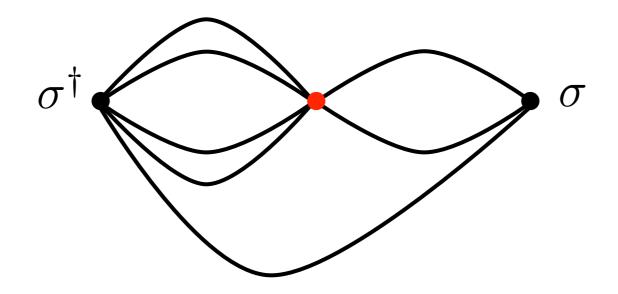
• For generalization to 3 particles use (modified) PV prescription instead of iε

$$\left(\int \frac{dk_0}{2\pi} \frac{1}{L^3} \sum_{\vec{k}} -\int \frac{\widetilde{PV}}{(2\pi)^4} d^4k \right) f(k) \frac{1}{k^2 - m^2} + \mathbf{K} \frac{1}{(P-k)^2 - m^2} + \mathbf{K} g(k)$$
$$= \int d\Omega_{q^*} d\Omega_{q^{*'}} f^*(\hat{q}^*) \mathcal{F}_{\widetilde{PV}}(q^*, q^{*'}) g^*(\hat{q}^{*'})$$

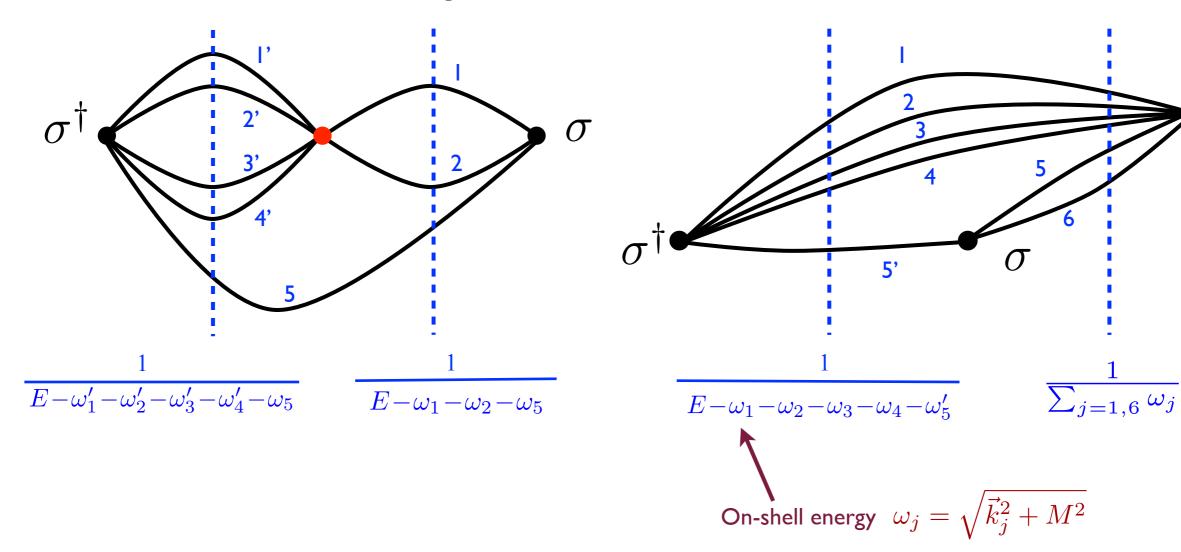
• Key properties of FPV (discussed below): real and no unitary cusp at threshold



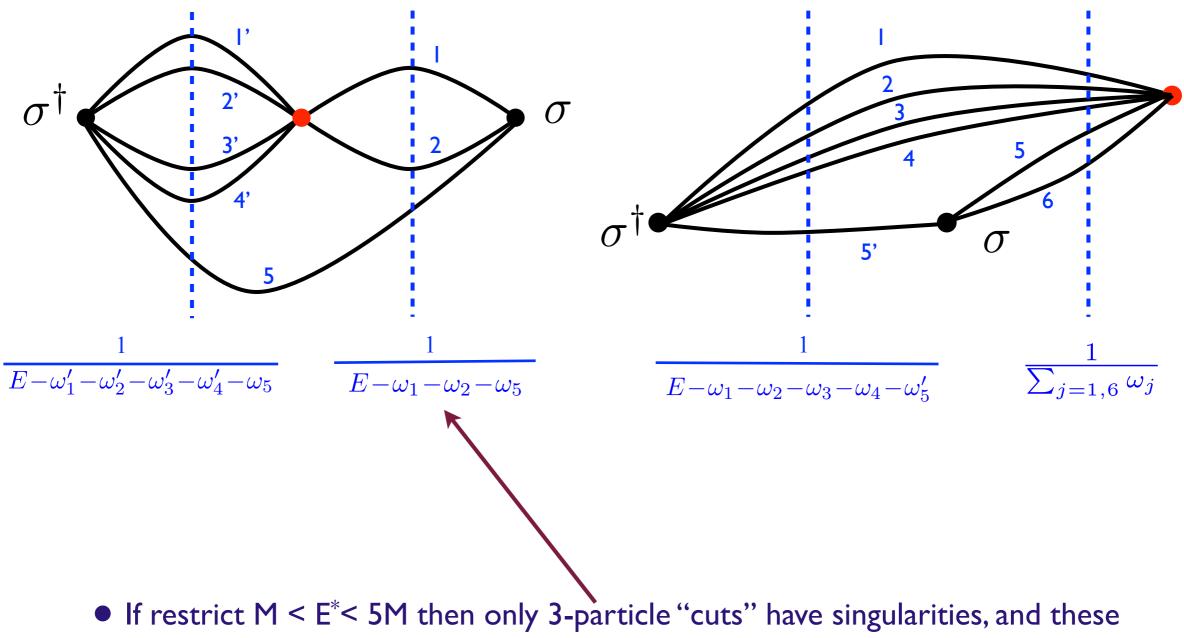
- Identify potential singularities: can use time-ordered PT (i.e. do k₀ integrals)
- Example



• 2 out of 6 time orderings:



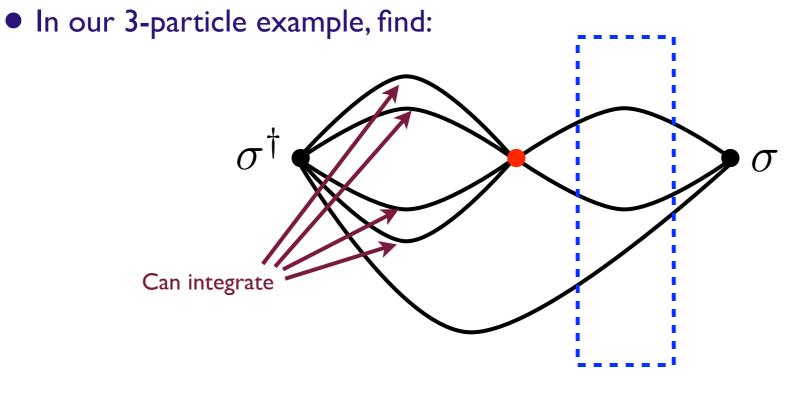
• 2 out of 6 time orderings:



occur only when all three particles to go on-shell

Combining key steps 1-3

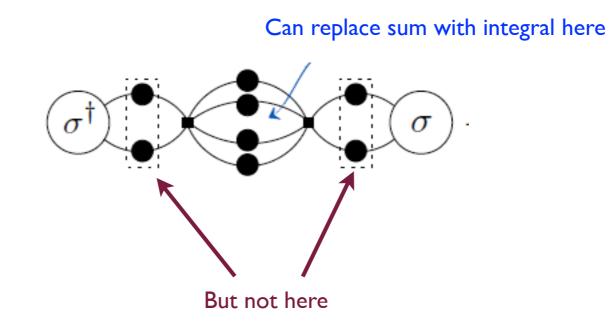
• For each diagram, determine which momenta must be summed, and which can be integrated



Must sum momenta passing through box

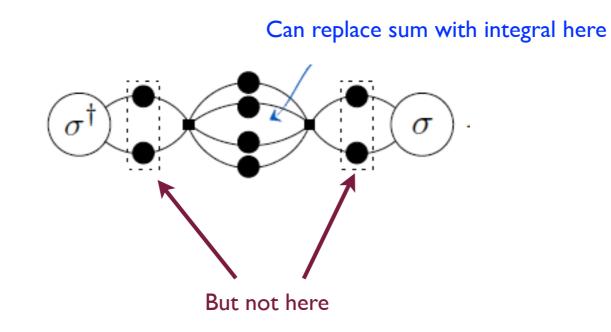
Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:



Combining key steps 1-3

- For each diagram, determine which momenta must be summed, and which can be integrated
- In our 2-particle example, find:



• Then repeatedly use sum=integral + "sum-integral" to simplify

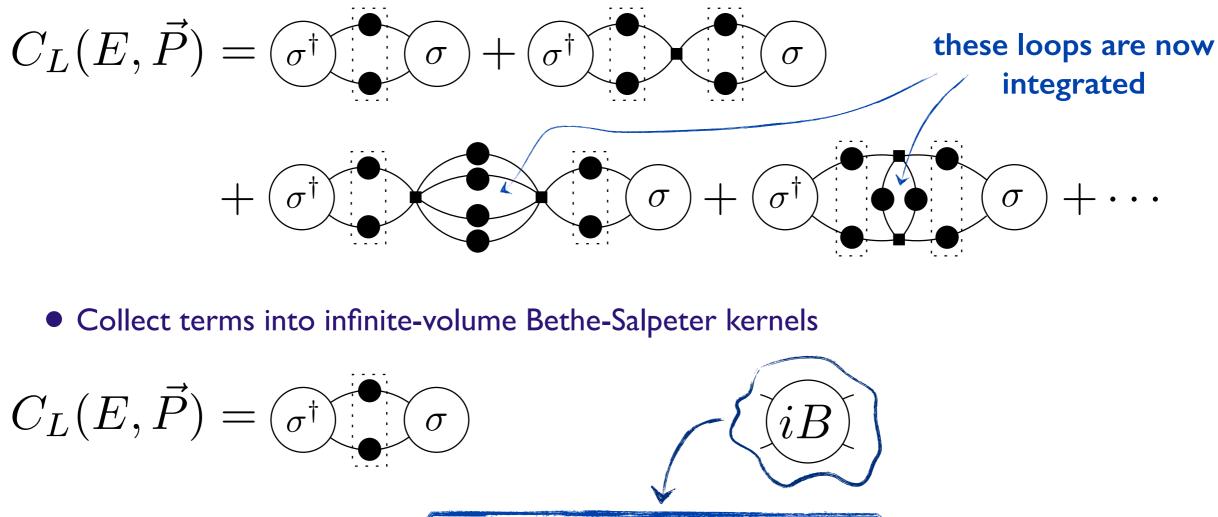
Key issues 4-6

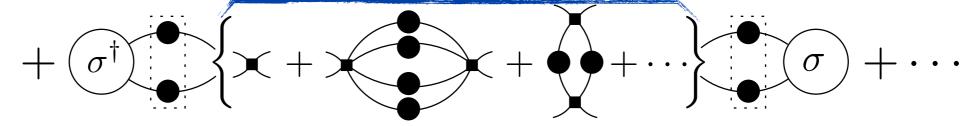
- Dealing with cusps, avoiding divergences in 3-particle scattering amplitude, and dealing with breaking of particle interchange symmetry
- Discuss later!

2-particle quantization condition

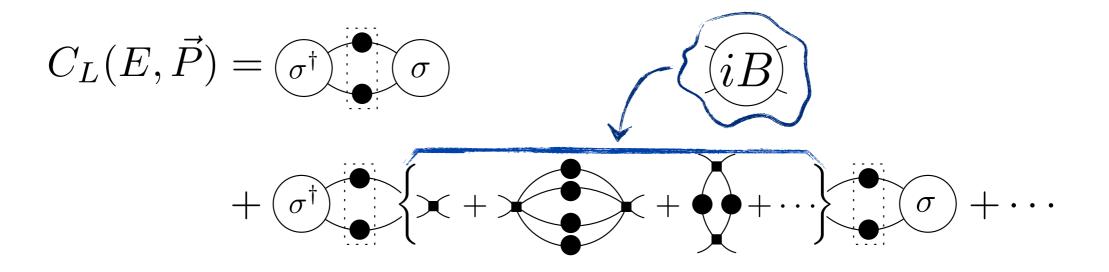
Following method of [Kim, Sachrajda & SS 05]

• Apply previous analysis to 2-particle correlator ($0 < E^* < 4M$)

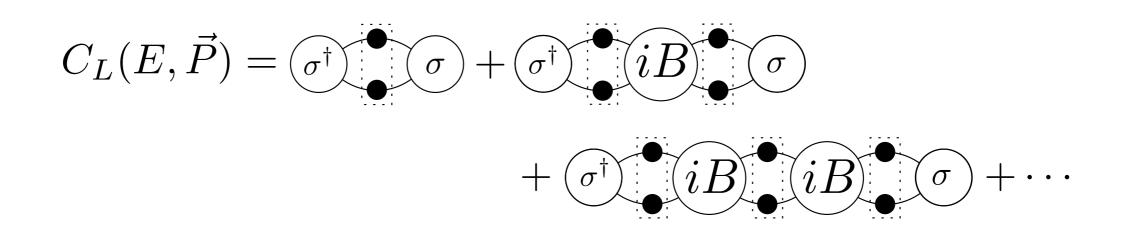




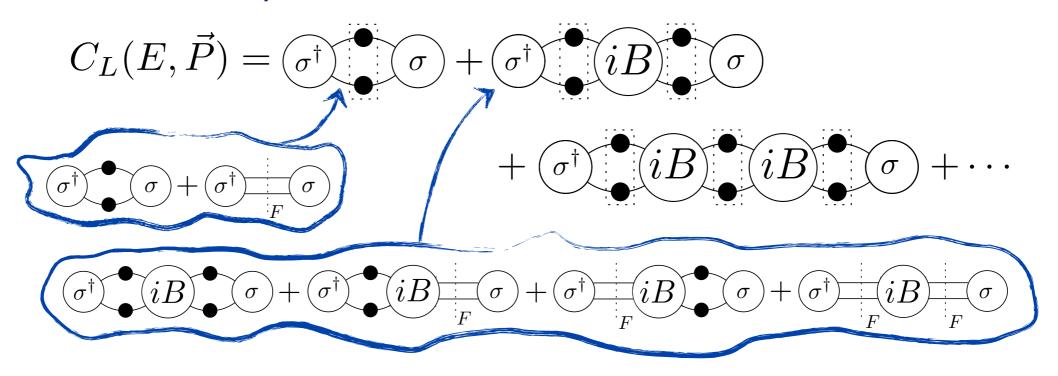
- Apply previous analysis to 2-particle correlator
- Collect terms into infinite-volume Bethe-Salpeter kernels



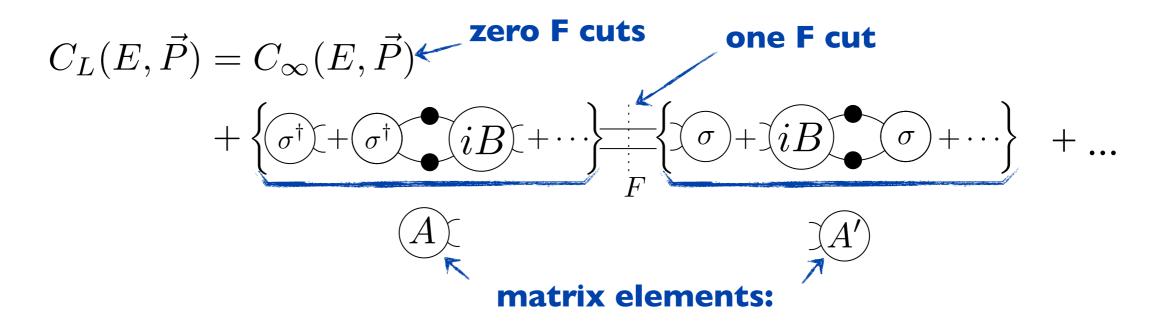
• Leading to



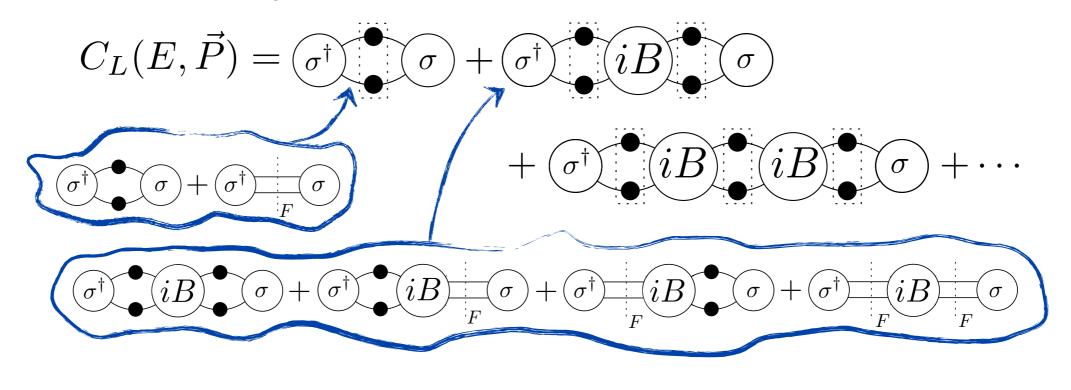
• Next use sum identity



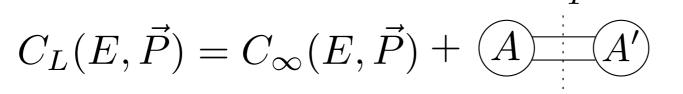
• And regroup according to number of "F cuts"

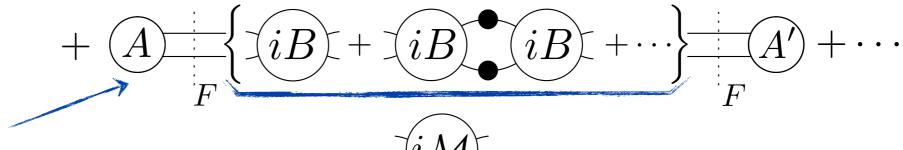


• Next use sum identity



• And keep regrouping according to number of "F cuts"

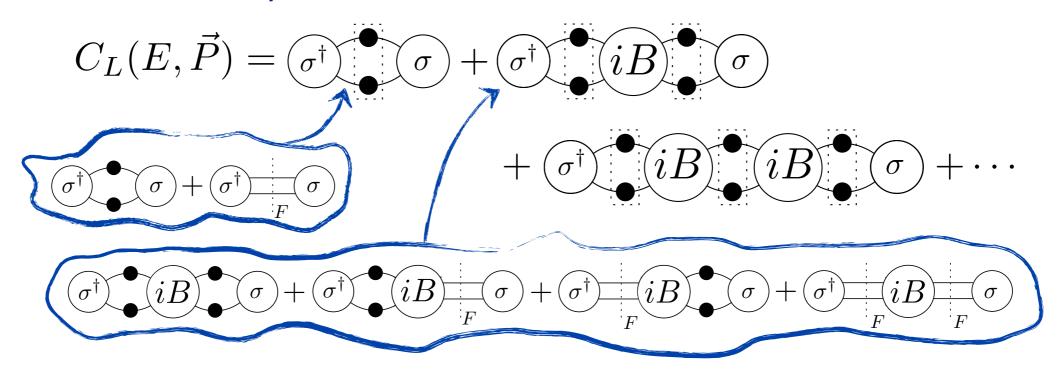




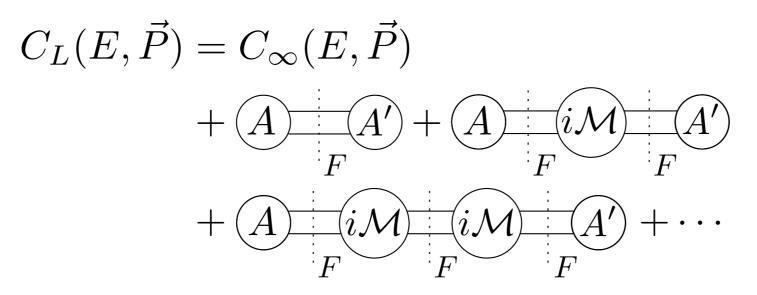
two F cuts

the infinite-volume, on-shell 2→2 scattering amplitude

• Next use sum identity



• Alternate form if use PV-tilde prescription: $C_{L}(E, \vec{P}) = C_{\infty}^{\widetilde{PV}}(E, \vec{P}) + (A_{\overline{PV}}) + (A_{\overline{PV$



•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$

 Correlator is expressed in terms of infinite-volume, physical quantities and kinematic functions encoding the finite-volume effects

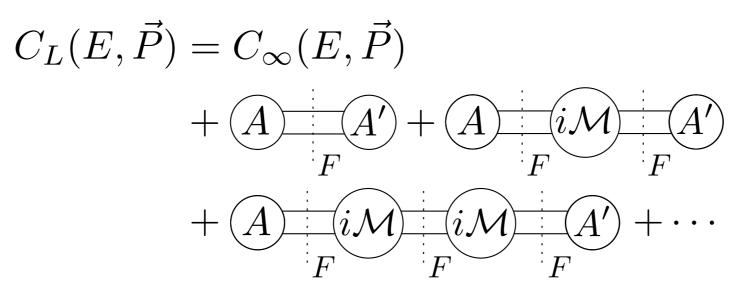
$$C_{L}(E, \vec{P}) = C_{\infty}(E, \vec{P})$$

$$+ (A) + (A)$$

•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$

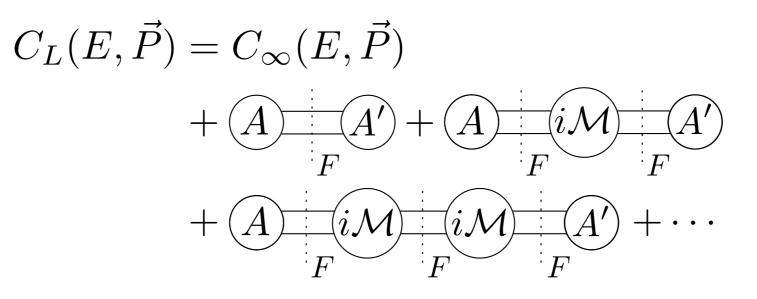
•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + A'iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF} A$$
 no poles,
only cuts matrices in l,m space

•
$$C_L(E, \vec{P})$$
 diverges whenever $iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF}$ diverges

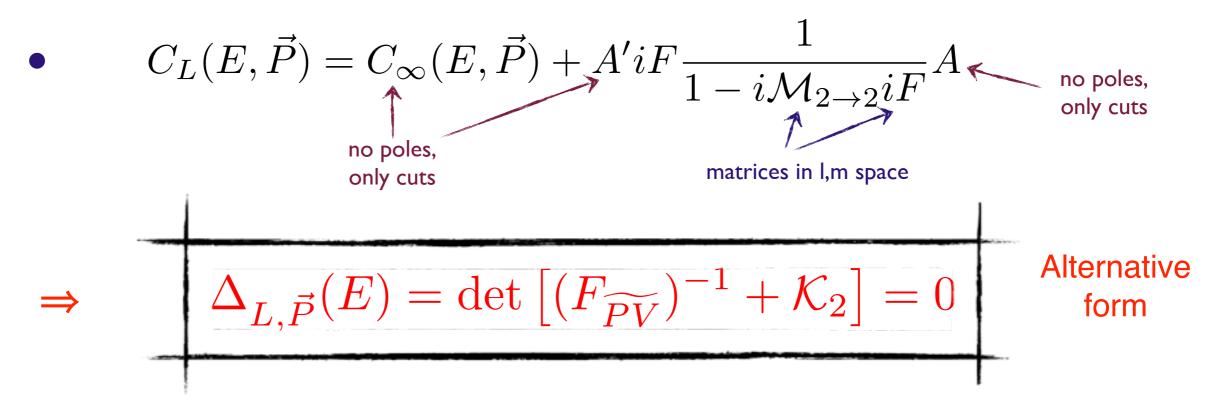


•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$

•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + A'iF \frac{1}{1 - i\mathcal{M}_{2 \to 2}iF} A$$
 no poles,
only cuts matrices in l,m space
 $\Delta_{L, \vec{P}}(E) = \det \left[(iF)^{-1} - i\mathcal{M}_{2 \to 2} \right] = 0$

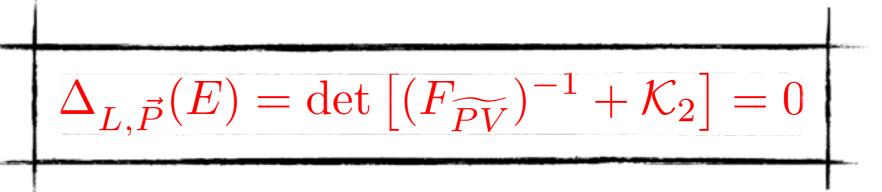


•
$$C_L(E, \vec{P}) = C_{\infty}(E, \vec{P}) + \sum_{n=0}^{\infty} A' i F[i\mathcal{M}_{2\to 2}iF]^n A$$



2-particle quantization condition

• At fixed L & P, the finite-volume spectrum E₁, E₂, ... is given by solutions to



- \mathcal{K}_2 , F_{PV} are matrices in *l,m* space
- \mathcal{K}_2 is diagonal in *l,m*
- F_{PV} is off-diagonal, since the box violates rotation symmetry
- To make useful, truncate by assuming that \mathcal{K}_2 vanishes above I_{max}

$$i\mathcal{K}_{2;00;00}(E_n^*) = \left[iF_{\widetilde{PV};00;00}(E_n,\vec{P},L)\right]$$

Equivalent to generalization of s-wave Lüscher equation to moving frame [Rummukainen & Gottlieb]

S. Sharpe, "Multiparticle processes" 09/28/15 INT workshop

-1

3-particle quantization condition

Following [Hansen & SS 14]

Recall Final result

$$\Delta_{L,P}(E) = \det \left[F_3^{-1} + \mathcal{K}_{df,3}\right] = 0$$

$$F_3 = \frac{F_{\widetilde{PV}}}{2\omega L^3} \left[-\frac{2}{3} + \frac{1}{1 + (1 + \mathcal{K}_2 G)^{-1} \mathcal{K}_2 F_{\widetilde{PV}}}\right]$$

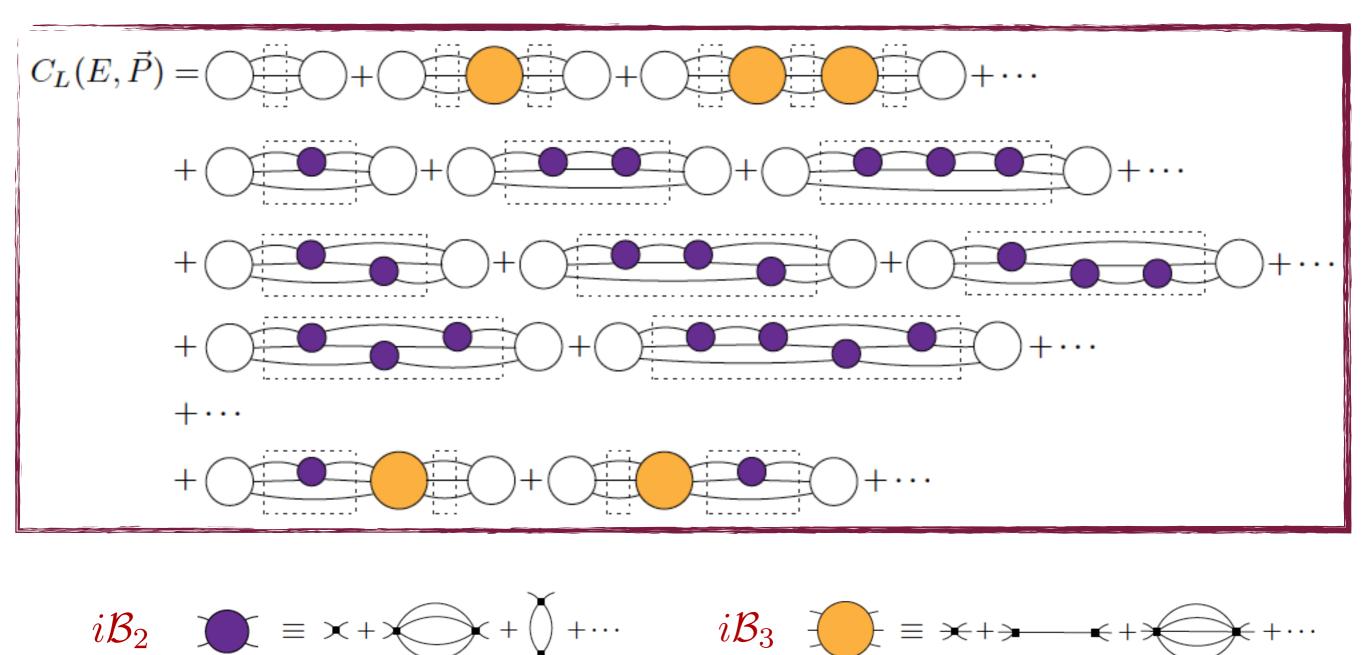
. .

- Successfully separated infinite volume quantities from finite volume kinematic factors, but....
 - What is $\mathcal{K}_{df,3}$?
 - How do we obtain this result?
 - How can it be made useful?

Key issue 4: dealing with cusps

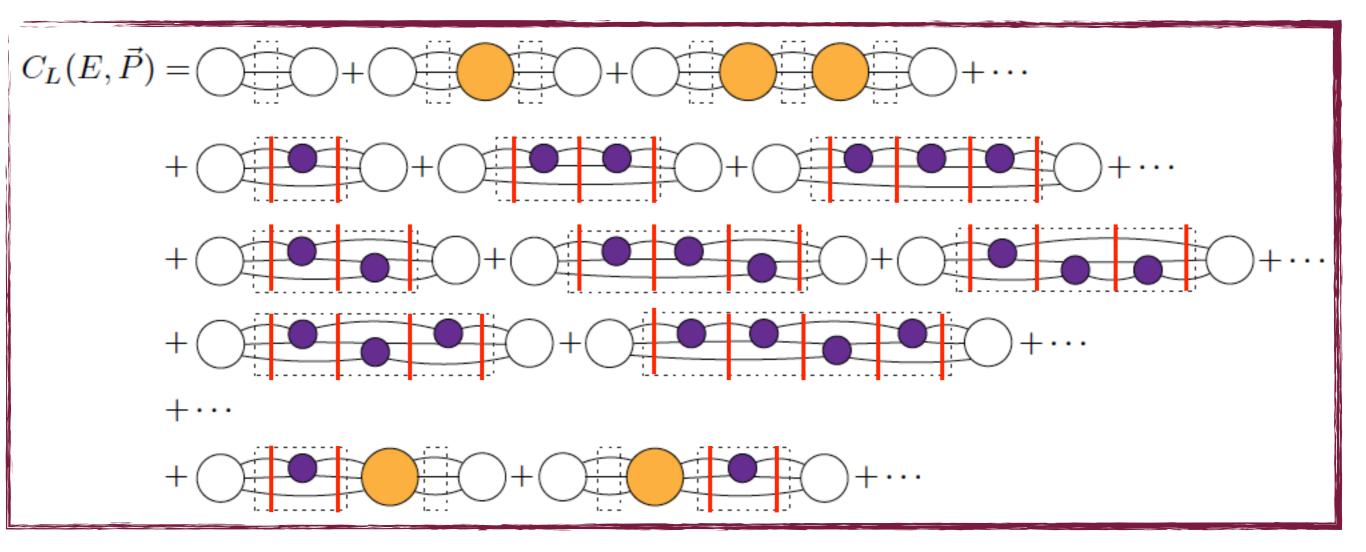
• Can sum subdiagrams without 3-particle cuts into Bethe-Salpeter kernels

 \Rightarrow Skeleton expansion in terms of Bethe-Salpeter kernels

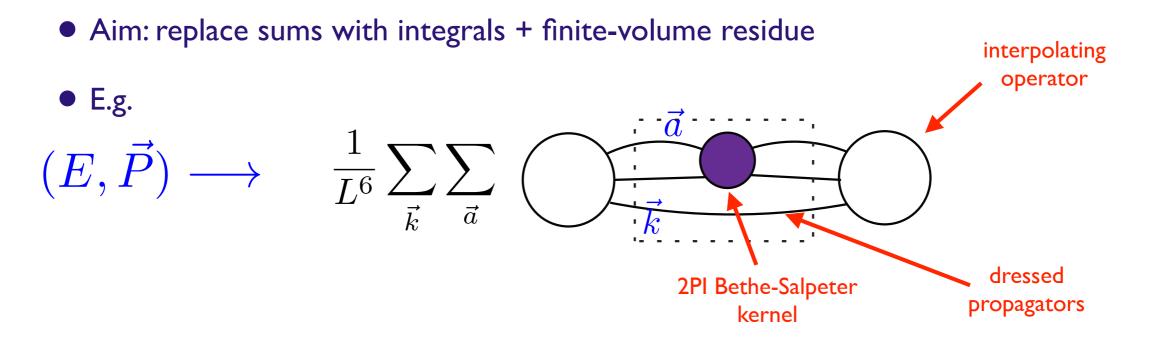


Key issue 4: dealing with cusps

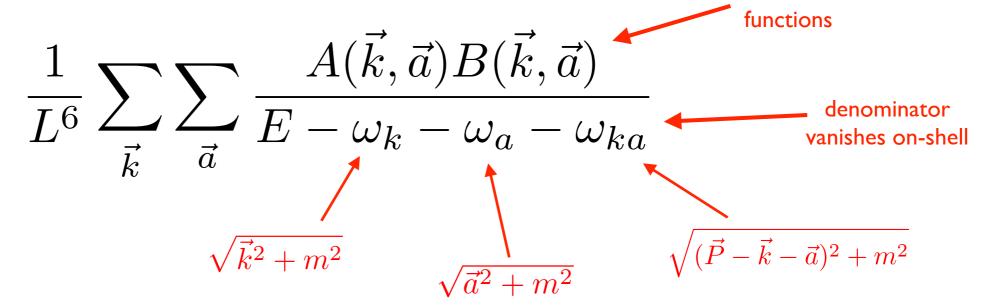
- Want to replace sums with integrals + F-cuts as in 2-particle analysis
- Straightforward implementation fails when have 3 particle intermediate states adjacent to 2→2 kernels



Cusp analysis (1)



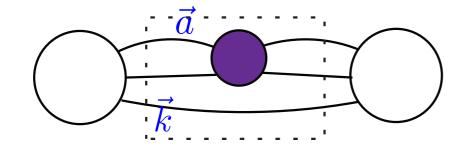
- Can replace sums with integrals for smooth, non-singular parts of summand
- Singular part of left-hand 3-particle intermediate state



S. Sharpe, "Multiparticle processes" 09/28/15 INT workshop

smooth

Cusp analysis (2)



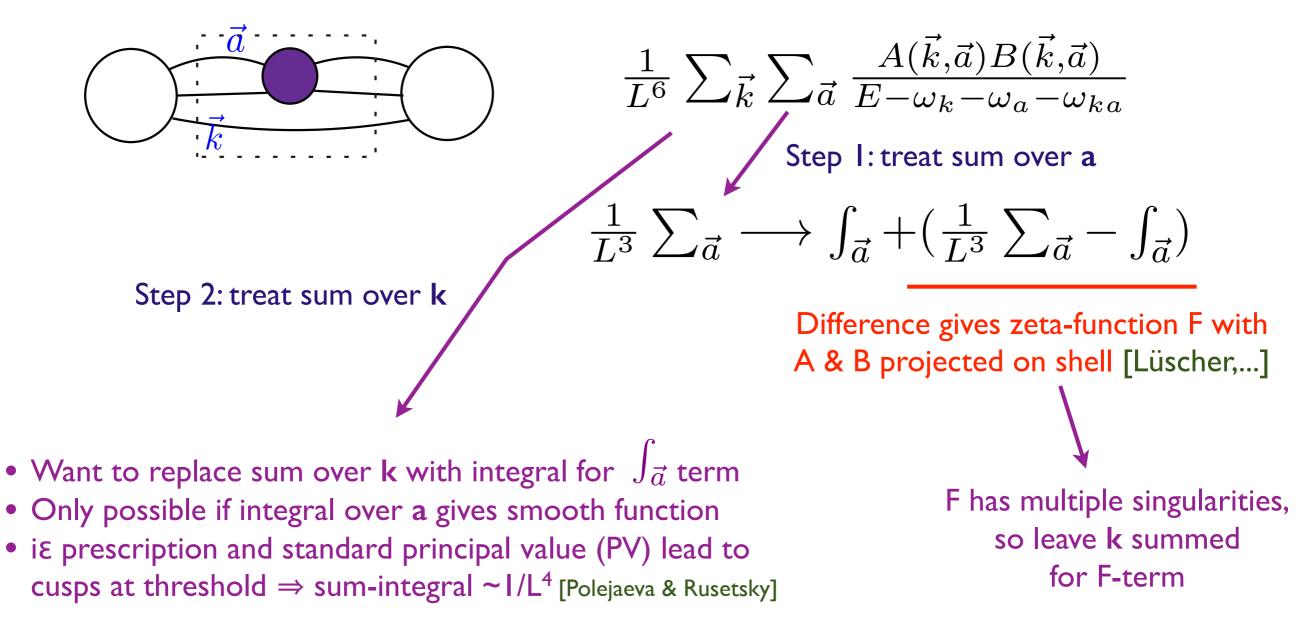
$$\frac{1}{L^{6}} \sum_{\vec{k}} \sum_{\vec{a}} \frac{A(\vec{k}, \vec{a}) B(\vec{k}, \vec{a})}{E - \omega_{k} - \omega_{a} - \omega_{ka}}$$
Step I: treat sum over a

$$\frac{1}{L^3} \sum_{\vec{a}} \longrightarrow \int_{\vec{a}} + \left(\frac{1}{L^3} \sum_{\vec{a}} - \int_{\vec{a}}\right)$$

Difference gives zeta-function F with A & B projected on shell [Lüscher,...]

F has multiple singularities, so leave k summed for F-term

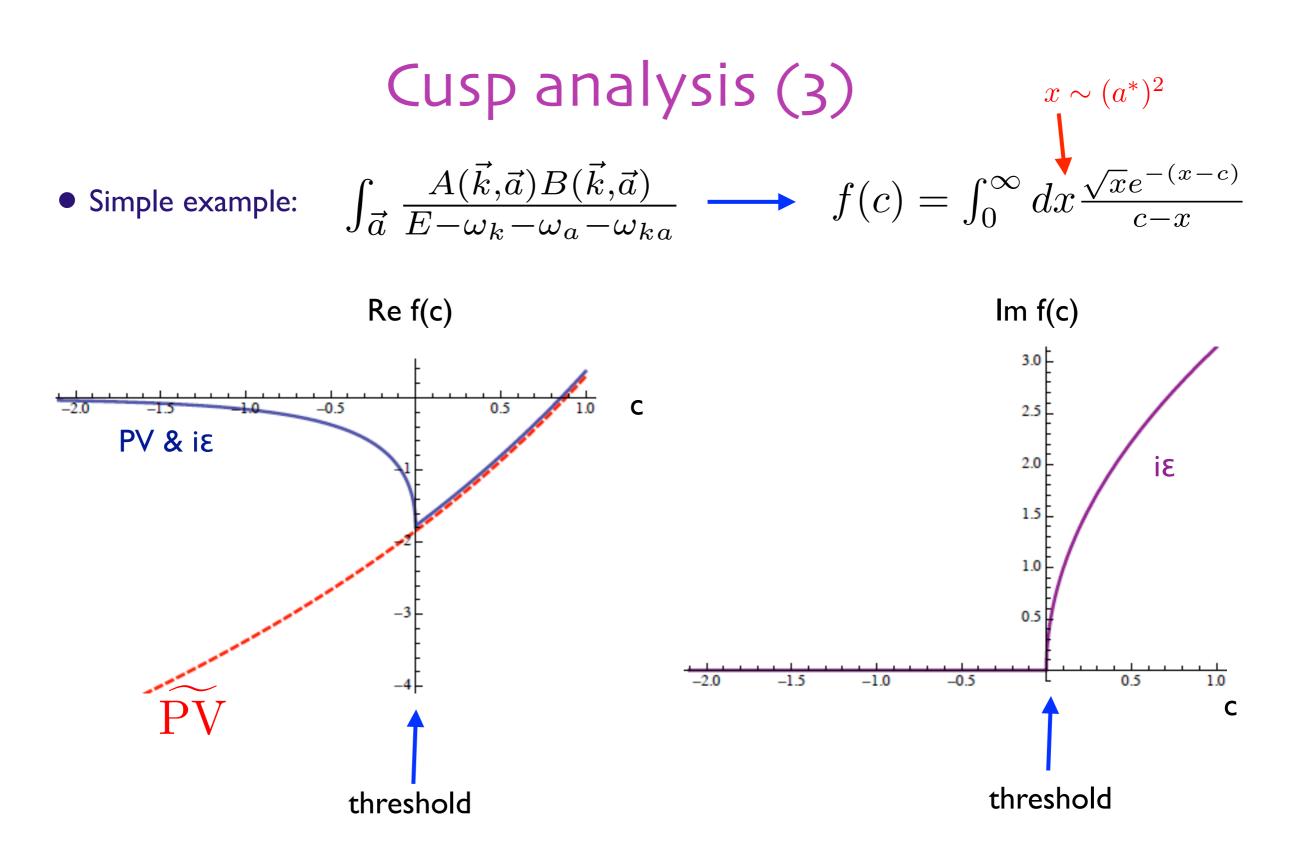
Cusp analysis (2)



- Requires use of modified $\widetilde{PV}\xspace$ prescription

Result:

$$\frac{1}{L^6} \sum_{\vec{k}} \sum_{\vec{a}} = \int_{\vec{k}} \int_{\vec{a}} + \sum_{\vec{k}}$$
"F term"

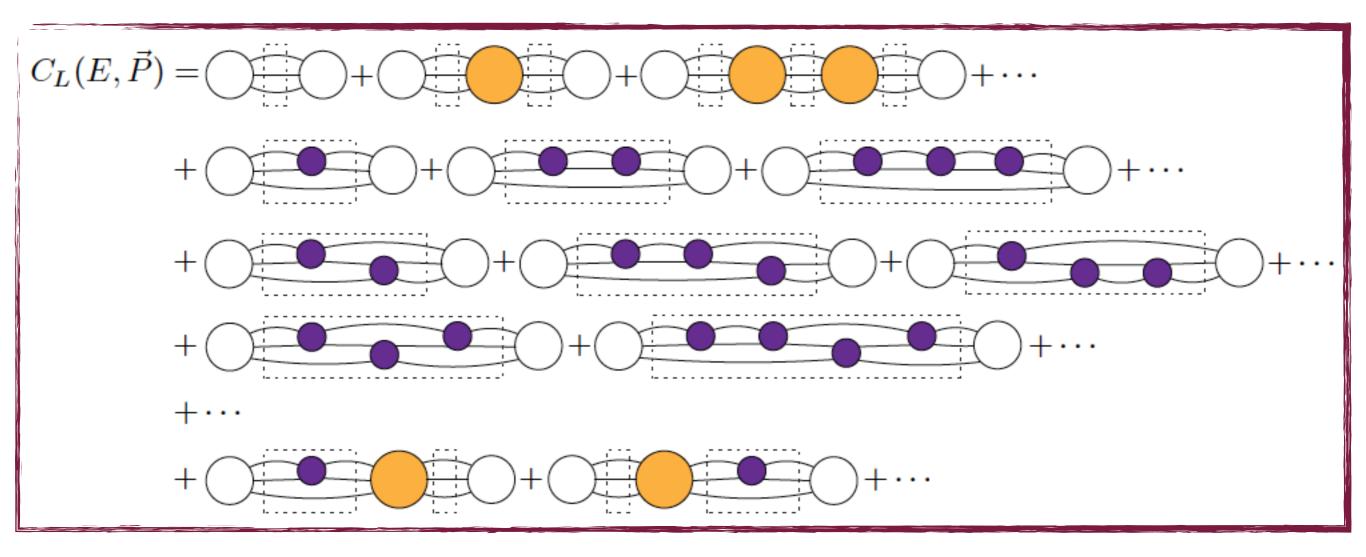


• Far below threshold, \overline{PV} smoothly turns back into PV

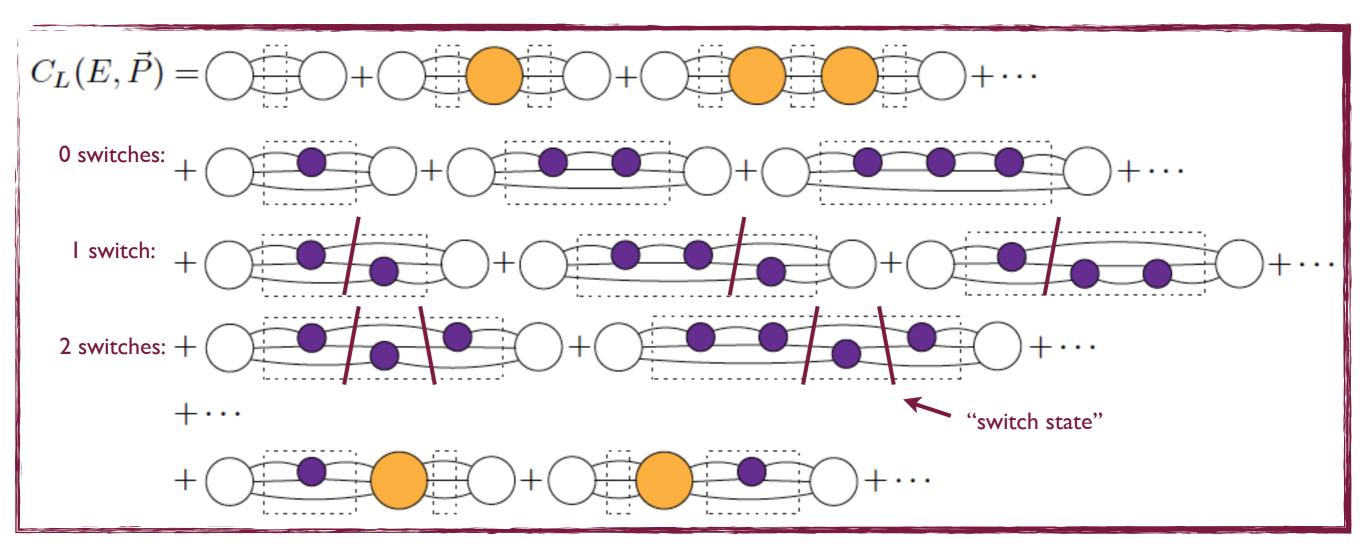
Cusp analysis (4)

- \bullet Bottom line: must use \widetilde{PV} prescription for all loops
- This is why K-matrix \mathcal{K}_2 appears in 2-particle summations
- \mathcal{K}_2 is standard above threshold, and given below by analytic continuation (so there is no cusp)
- This prescription is that used previously when studying finite-volume effects on bound-state energies using two-particle quantization condition [Detmold, Savage,...]
- Far below threshold smoothly turns into \mathcal{M}_2^{ℓ}

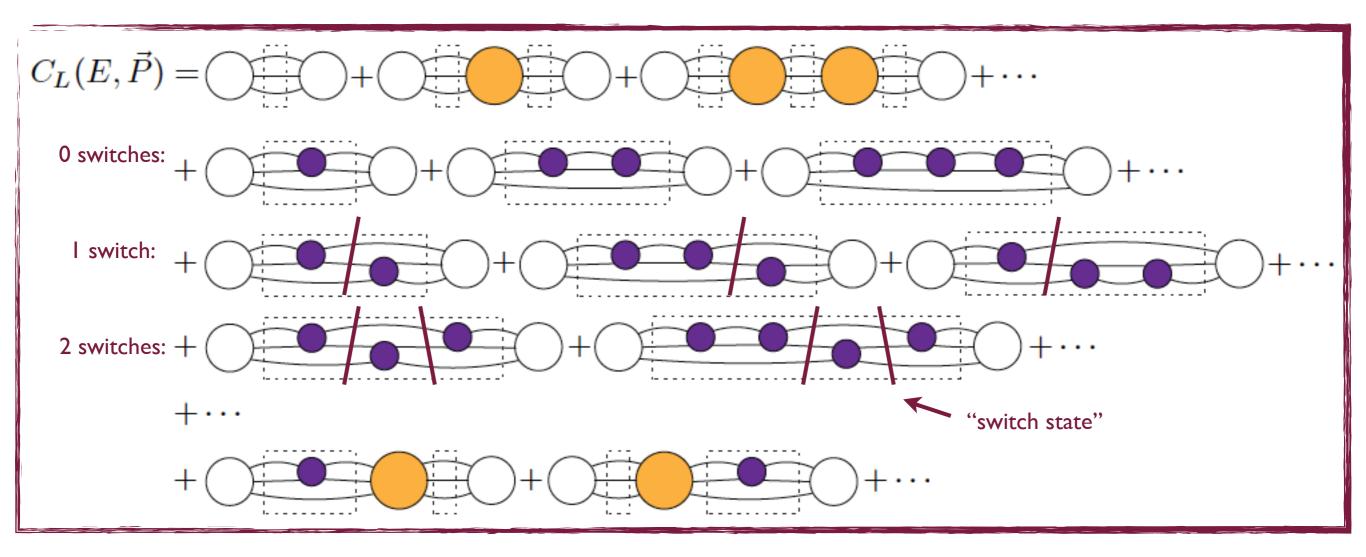
Key issue 5: dealing with "switches"



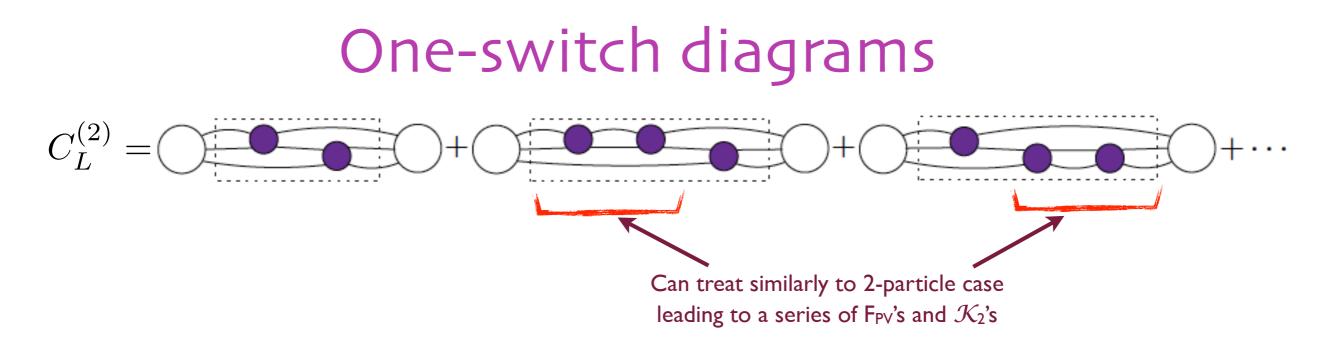
Key issue 5: dealing with "switches"



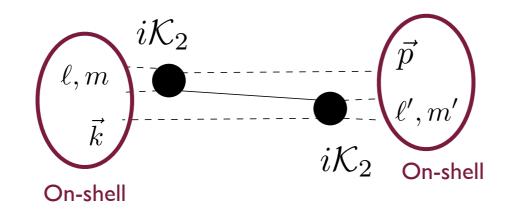
Key issue 5: dealing with "switches"



- With cusps removed, no-switch diagrams can be summed as for 2-particle case
- "Switches" present a new challenge

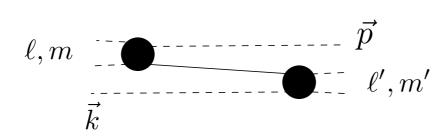


• End up with L-dependent part of $C^{(2)}$ having at its core:

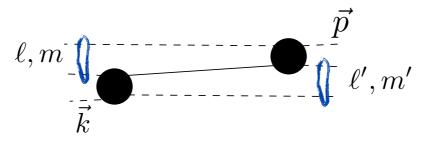


• This is our first contribution to the infinite-volume 3 particle scattering amplitude

One-switch problem



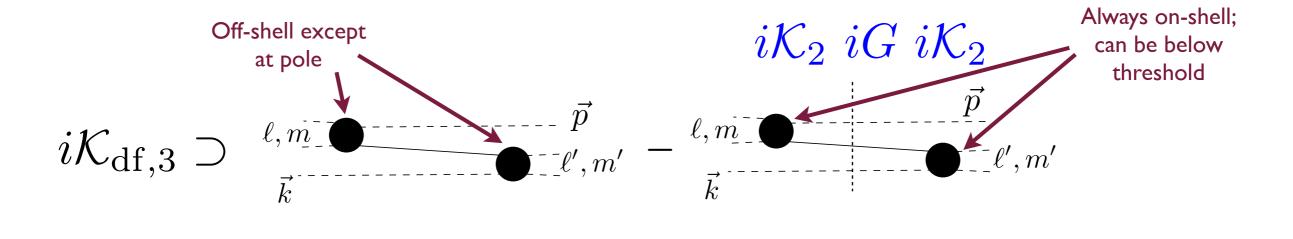
- Amplitude is singular for some choices of k, p in physical regime
 - Propagator goes on shell if top two (and thus bottom two) scatter elastically
- Not a problem per se, but leads to difficulties when amplitude is symmetrized
 - Occurs when include three-switch contributions



- Singularity implies that decomposition in $Y_{l,m}$ will not converge uniformly
 - Cannot usefully truncate angular momentum expansion

One-switch solution

- Define divergence-free amplitude by subtracting singular part
 - Utility of subtraction noted in [Rubin, Sugar & Tiktopoulos, '66]

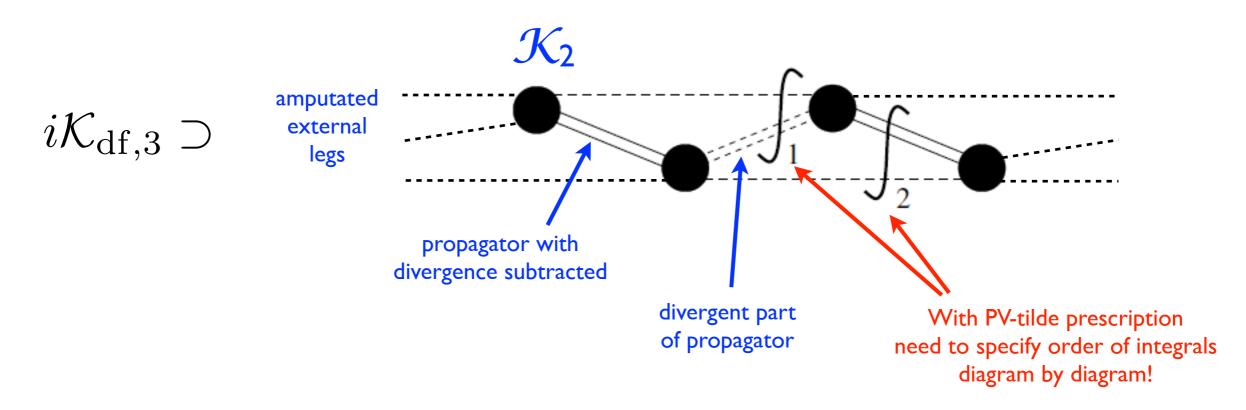


$$G_{p,\ell',m';k,\ell,m} \equiv \left(\frac{k^*}{q_p^*}\right)^{\ell'} \frac{4\pi Y_{\ell',m'}(\hat{k}^*)H(\vec{p}\,)H(\vec{k}\,)Y_{\ell,m}^*(\hat{p}^*)}{2\omega_{kp}(E-\omega_k-\omega_p-\omega_{kp})} \left(\frac{p^*}{q_k^*}\right)^{\ell} \frac{1}{2\omega_k L^3}$$

- Key point: $\mathcal{K}_{df,3}$ is local and its expansion in harmonics can be truncated
- Subtracted term must be added back---leads to G contributions to F_3
- Can extend divergence-free definition to any number of switches

Key issue 6: symmetry breaking

- $\bullet \mbox{ Using } PV$ prescription breaks particle interchange symmetry
 - Top two particles treated differently from spectator
 - Leads to very complicated definition for $\mathcal{K}_{df,3}$, e.g.



• Can extend definition of $\mathcal{K}_{df,3}$ to all orders, in such a way that it is symmetric under interchange of external particles

Key issue 6: symmetry breaking

- Final definition of $\mathcal{K}_{df,3}$ is, crudely speaking:
 - Sum all Feynman diagrams contributing to \mathcal{M}_3
 - Use $\widetilde{\mathrm{PV}}$ prescription, plus a (well-defined) set of rules for ordering integrals
 - Subtract leading divergent parts
 - Apply a set of (completely specified) extra factors ("decorations") to ensure external symmetrization
- $\mathcal{K}_{df,3}$ is an UGLY infinite-volume quantity related to scattering
- At the time of our initial paper, we did not know the relation between $\mathcal{K}_{df,3}$ and \mathcal{M}_3 & \mathcal{M}_2 , although we had reasons to think that such a relationship exists
- Now we know the relationship

Infinite volume relation between $\mathcal{K}_{df,3}$ & \mathcal{M}_3

[Hansen & SS 15, in preparation]

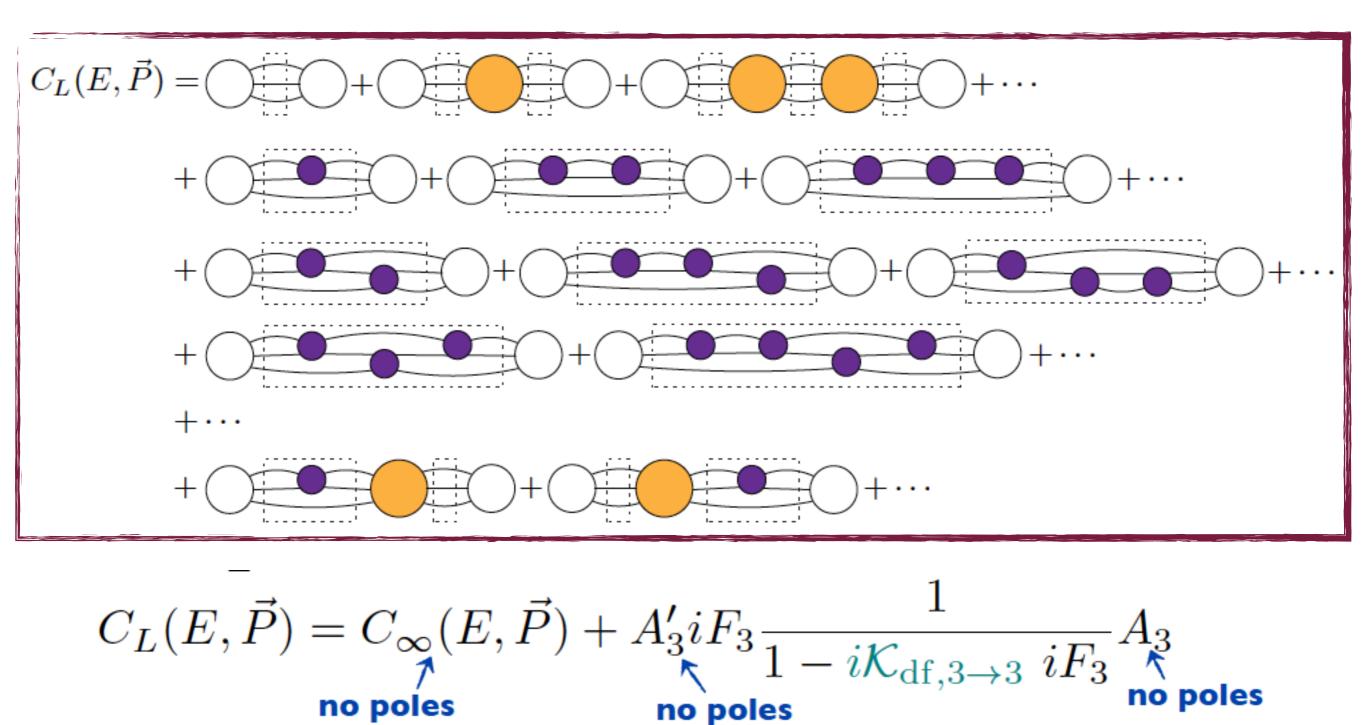
The issue

- Three particle quantization condition depends on $\mathcal{K}_{df,3}$ rather than the three particle scattering amplitude \mathcal{M}_3
- $\mathcal{K}_{df,3}$ is an infinite volume quantity (loops involve integrals) but is not physical
 - Has a very complicated, unwieldy definition
 - Depends on the cut-off function H
 - However, it was forced on us by the analysis, and is some sort of local vertex
- \bullet To complete the quantization condition we must relate $\mathcal{K}_{df,3}$ to \mathcal{M}_3

The method

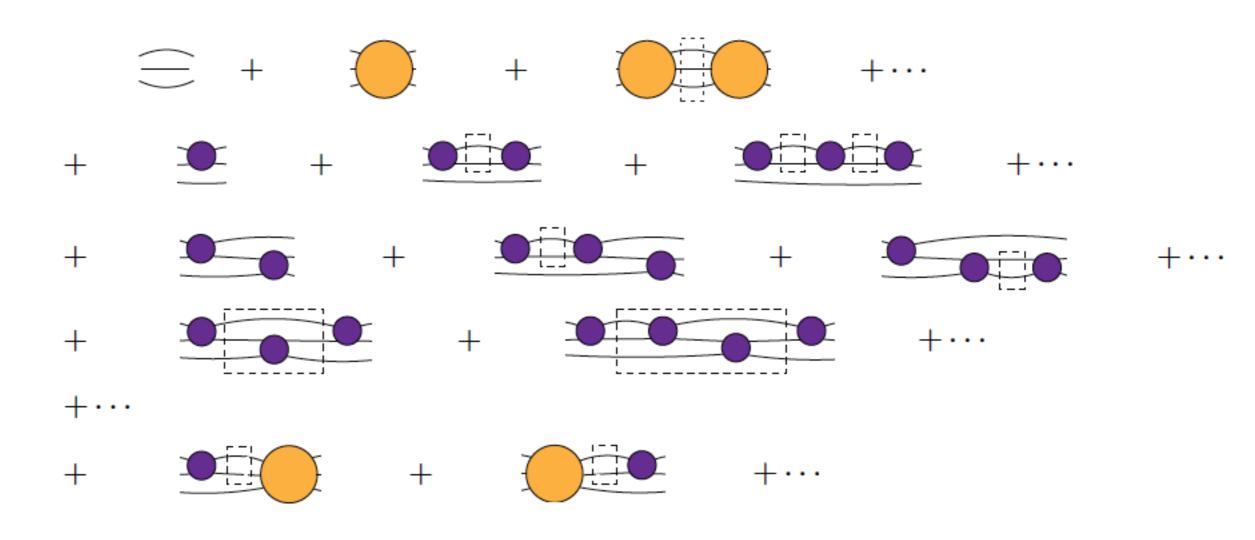
- Define a "finite volume scattering amplitude" $\mathcal{M}_{L,3}$ which goes over to \mathcal{M}_3 in an (appropriately taken) $L \rightarrow \infty$ limit
- Relate $\mathcal{M}_{L,3}$ to $\mathcal{K}_{df,3}$ at finite volume—which turns out to require a small generalization of the methods used to derive the quantization condition
- Take $L \rightarrow \infty$, obtaining nested integral equations

Modifying CL to obtain $\mathcal{M}_{\mathrm{L,3}}$



S. Sharpe, "Multiparticle processes" 09/28/15 INT workshop

Modifying CL to obtain $\mathcal{M}_{L,3}$



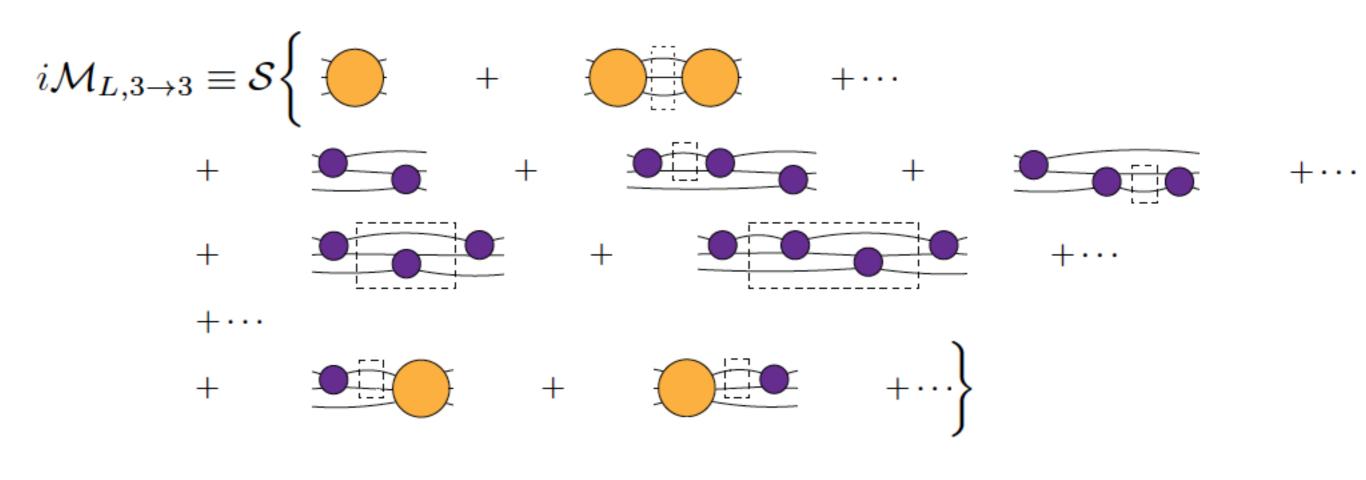
Step I: "amputate"

Modifying CL to obtain $\mathcal{M}_{L,3}$



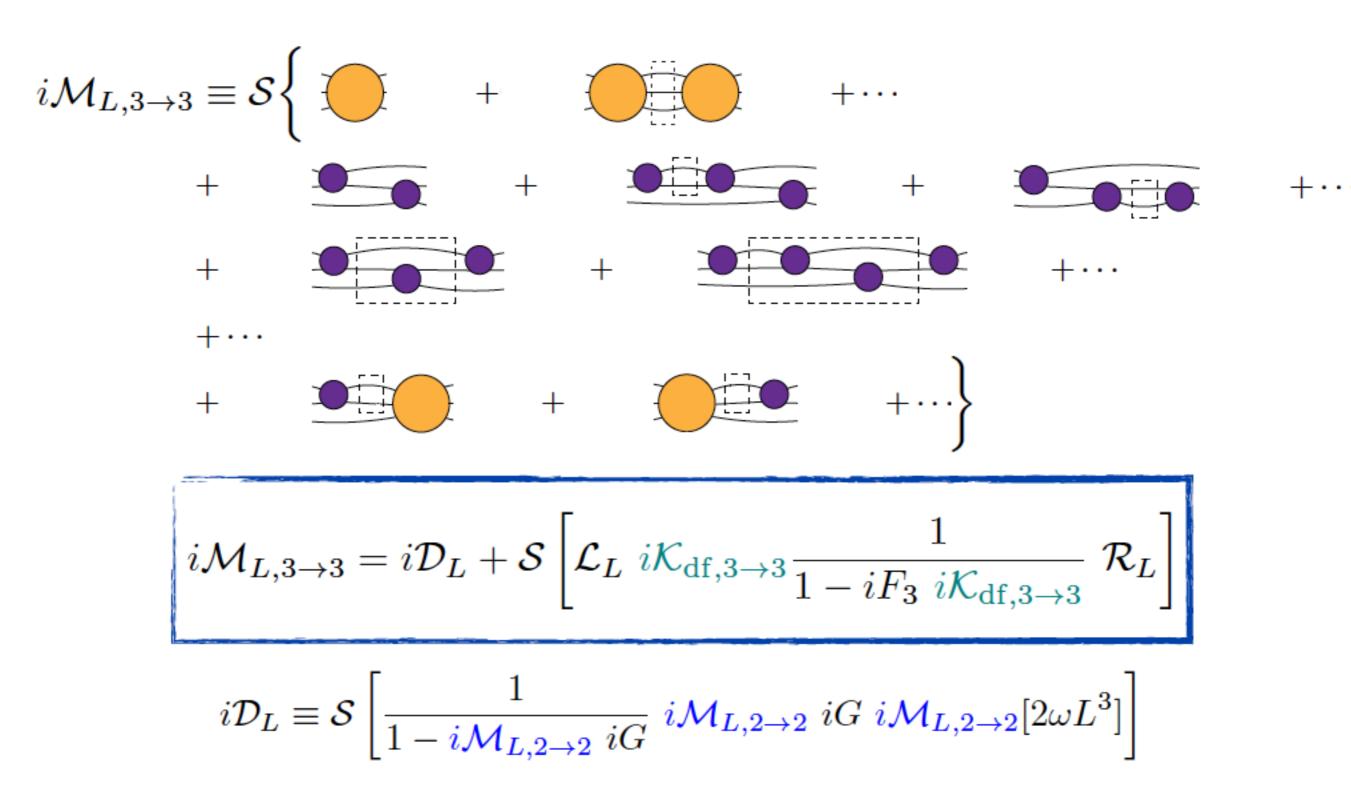
Step 2: Drop disconnected diagrams

Modifying CL to obtain $\mathcal{M}_{\mathrm{L,3}}$



Step 3: Symmetrize

$\mathcal{M}_{\text{L,3}}$ in terms of $\mathcal{K}_{\text{df,3}}$



S. Sharpe, "Multiparticle processes" 09/28/15 INT workshop

$\mathcal{M}_{\text{L,3}}$ in terms of $\mathcal{K}_{\text{df,3}}$

$$i\mathcal{M}_{L,3\to3} = i\mathcal{D}_L + \mathcal{S}\left[\mathcal{L}_L \ i\mathcal{K}_{\mathrm{df},3\to3} \frac{1}{1 - iF_3 \ i\mathcal{K}_{\mathrm{df},3\to3}} \ \mathcal{R}_L\right]$$

$$i\mathcal{D}_L \equiv \mathcal{S}\left[\frac{1}{1 - i\mathcal{M}_{L,2\to 2} \ iG} \ i\mathcal{M}_{L,2\to 2} \ iG \ i\mathcal{M}_{L,2\to 2} [2\omega L^3]\right]$$

- \mathcal{L}_L and \mathcal{R}_L depend only on $\mathcal{M}_{L,2}$, G and F_{PV}
- $\mathcal{M}_{L,2}$ is "finite volume two particle scattering amplitude"

$$i\mathcal{M}_{L,2\to2} \equiv i\mathcal{K}_{2\to2} \frac{1}{1 - iF_{\widetilde{PV}}i\mathcal{K}_{2\to2}}$$

$\mathcal{M}_{\text{L,3}}$ in terms of $\mathcal{K}_{\text{df,3}}$

$$i\mathcal{M}_{L,3\to3} = i\mathcal{D}_L + \mathcal{S}\left[\mathcal{L}_L \ i\mathcal{K}_{\mathrm{df},3\to3} \frac{1}{1 - iF_3} \ i\mathcal{K}_{\mathrm{df},3\to3} \ \mathcal{R}_L\right]$$

$$i\mathcal{D}_L \equiv \mathcal{S} \left[\frac{1}{1 - i\mathcal{M}_{L,2\to 2} \ iG} \ i\mathcal{M}_{L,2\to 2} \ iG \ i\mathcal{M}_{L,2\to 2} [2\omega L^3] \right]$$

• Key point: the same (ugly) $\mathcal{K}_{df,3}$ appears in $\mathcal{M}_{L,3}$ as in C_L

$$C_L(E,\vec{P}) = C_{\infty}(E,\vec{P}) + A'_3 i F_3 \frac{1}{1 - i \mathcal{K}_{df,3\to 3} i F_3} A_3$$

• Can use $\mathcal{M}_{L,3}$ to derive quantization condition

Final step: taking $L \rightarrow \infty$

$$i\mathcal{M}_{L,3\to3} = i\mathcal{D}_L + \mathcal{S}\left[\mathcal{L}_L \ i\mathcal{K}_{\mathrm{df},3\to3} \frac{1}{1 - iF_3 \ i\mathcal{K}_{\mathrm{df},3\to3}} \ \mathcal{R}_L\right]$$

$$i\mathcal{D}_L \equiv \mathcal{S}\left[\frac{1}{1 - i\mathcal{M}_{L,2\to 2} \ iG} \ i\mathcal{M}_{L,2\to 2} \ iG \ i\mathcal{M}_{L,2\to 2} [2\omega L^3]\right]$$

$$iF_3 \equiv \frac{iF_{\widetilde{\mathrm{PV}}}}{2\omega L^3} \left[\frac{1}{3} + \frac{1}{1 - i\mathcal{M}_{L,2\to 2}} iG i\mathcal{M}_{L,2\to 2} iF_{\widetilde{\mathrm{PV}}} \right]$$

• All equations involve matrices with indices k, l, m

Spectator momentum $\mathbf{k} = 2 \mathbf{n} \pi / \mathbf{L}$ Summed over \mathbf{n}

Already in infinite volume variables

Final step: taking $L \rightarrow \infty$

$$i\mathcal{M}_{L,3\to3} = i\mathcal{D}_L + \mathcal{S}\left[\mathcal{L}_L \ i\mathcal{K}_{\mathrm{df},3\to3} \frac{1}{1 - iF_3 \ i\mathcal{K}_{\mathrm{df},3\to3}} \ \mathcal{R}_L\right]$$

$$i\mathcal{D}_L \equiv \mathcal{S}\left[\frac{1}{1 - i\mathcal{M}_{L,2\to 2} \ iG} \ i\mathcal{M}_{L,2\to 2} \ iG \ i\mathcal{M}_{L,2\to 2} [2\omega L^3]\right]$$

$$iF_3 \equiv \frac{iF_{\widetilde{PV}}}{2\omega L^3} \left[\frac{1}{3} + \frac{1}{1 - i\mathcal{M}_{L,2\to 2}} iG i\mathcal{M}_{L,2\to 2} iF_{\widetilde{PV}} \right]$$

- Sums over momenta → integrals (+ now irrelevant I/L terms!)
- Must introduce pole prescription for sums to avoid singularities

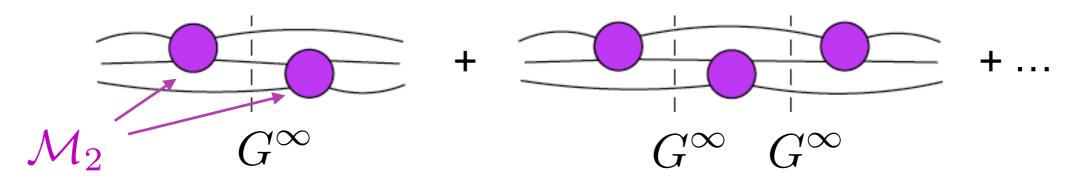
$$i\mathcal{M}_{3\to3} = \lim_{L\to\infty} \left| i\mathcal{M}_{L,3\to3} \right|_{i\epsilon}$$

Final result: nested integral equations (1) Obtain $L \rightarrow \infty$ limit of \mathcal{D}_L

$$i\mathcal{D}^{(u,u)}(\vec{p},\vec{k}) = i\mathcal{M}_2(\vec{p})iG^\infty(\vec{p},\vec{k})i\mathcal{M}_2(\vec{k}) + \int_s \frac{1}{2\omega_s}i\mathcal{M}_2(\vec{p})iG^\infty(\vec{p},\vec{s})i\mathcal{D}^{(u,u)}(\vec{s},\vec{k})$$

$$G^{\infty}_{\ell'm';\ell m}(\vec{p},\vec{k}) \equiv \left(\frac{k^{*}}{q_{p}^{*}}\right)^{\ell'} \frac{4\pi Y_{\ell'm'}(\hat{k}^{*})H(\vec{p})H(\vec{k})Y^{*}_{\ell m}(\hat{p}^{*})}{2\omega_{kp}(E-\omega_{k}-\omega_{p}-\omega_{kp}+i\epsilon)} \left(\frac{p^{*}}{q_{k}^{*}}\right)^{\ell}$$

- Quantities are still matrices in *l,m* space
- Presence of cut-off function means that integrals have finite range
- $\mathcal{D}^{(u,u)}$ sums geometric series which gives physical divergences in \mathcal{M}_3



Final result: nested integral equations (2) Sum geometric series involving $\mathcal{K}_{df,3}$

$$i\mathcal{T}(\vec{p},\vec{k}) = i\mathcal{K}_{\mathrm{df},3}(\vec{p},\vec{k}) + \int_{s} \int_{r} i\mathcal{K}_{\mathrm{df},3}(\vec{p},\vec{s}) \frac{i\rho(\vec{s}\,)}{2\omega_{s}} i\mathcal{L}^{(u,u)}(\vec{s},\vec{r}\,) i\mathcal{T}(\vec{r},\vec{k})\,,$$

$$\mathcal{L}^{(u,u)}(\vec{p},\vec{k}) = \left(\frac{1}{3} + i\mathcal{M}_2(\vec{p})i\rho(\vec{p})\right)(2\pi)^3\delta^3(\vec{p}-\vec{k}) + i\mathcal{D}^{(u,u)}(\vec{p},\vec{k})\frac{i\rho(\vec{k})}{2\omega_k},$$

- $\rho(\mathbf{k})$ is a phase space factor (analytically continued when below threshold)
- Requires $\mathcal{D}^{(u,u)}$ and \mathcal{M}_2
- Corresponds to summing the core geometric series, i.e.

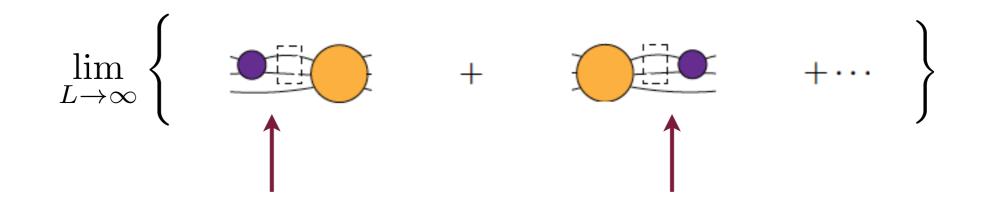
$$i\mathcal{K}_{\mathrm{df},3\to3}\frac{1}{1-iF_3\ i\mathcal{K}_{\mathrm{df},3\to3}}$$

Final result: nested integral equations

(3) Add in effects of external $2 \rightarrow 2$ scattering:

$$\underbrace{\mathcal{M}_{3}(\vec{p},\vec{k}) - \mathcal{S}\left\{\mathcal{D}^{(u,u)}(\vec{p},\vec{k})\right\}}_{\mathcal{M}_{df,3}} = -\mathcal{S}\left\{\int_{s}\int_{r}\mathcal{L}^{(u,u)}(\vec{p},\vec{s})\mathcal{T}(\vec{s},\vec{r})\mathcal{R}^{(u,u)}(\vec{r},\vec{k})\right\}$$

• Sums geometric series on "outside" of $\mathcal{K}_{df,3}$'s



• Can also invert and determine $\mathcal{K}_{df,3}$ given \mathcal{M}_3 and \mathcal{M}_2