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A Worldwide Endeavor

TRIUMF (Vancouver) – LANL (Los Alamos) – SNS (Oak Ridge) – RAL (Oxford) – ILL (Grenoble) –
PSI (Villigen) – FRM2/TUM  (Munich) – PNPI/PIK (St. Petersburg) – RCNP (Osaka) – =
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Outline

► Introduction & Motivation

► Ultracold Neutrons

► Ramsey’s Method & nEDM

► nEDM Experiment at PSI

► Worldwide Neutron EDM Searches
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► Introduction & Motivation
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Search for New Physics

Search for a (neutron) EDM

High Energy Frontier High Intensity/Precision 
Frontier

Direct production of new particles
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Electric Dipole Moment (EDM)
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►A non-zero EDM of a fundamental particle violates parity (P) and 
time-reversal symmetry (T). 

►With CPT conservation*, it follows CP violation.

* Lüders, Ann. Phys. 2, 1 (1957)

(non-relativistic interaction Hamiltonian)
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Baryon Asymmetry in our Universe

vs.

Electroweak SM 

expectation:
Observed*:
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Sakharov criteria for Baryogenesis
in the early universe:

1. Baryon number violation

2. C and CP violation

3. Thermal non-equilibrium

JETP Lett. 5, 24 (1967)

* e.g. WMAP, COBE, Planck

esa

Connection between Cosmology and SM of Particle Physics !
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CP Violation

► Electroweak SM:

CP violation is included in the SM via the phase in the CKM matrix.

However, the SM CP violation is very small and accounts for a

neutron EDM of only 10-31±1 e cm *,**,***.

CKM = 

*** Khriplovich, Zhitinitsky, Phys. Lett. B 109, 490 (1982)

* Mannel, Uraltsev, Phys. Rev. D 85, 096002 (2012)

** He, McKellar, Pakvasa, Int. J. Mod. Phys. A4, 5011 (1989)

CP-odd***
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CP Violation

► QCD – Strong CP-Problem:

QCD includes a CP violating term. The strength of the CP violation is
characterized by the angle ����, which is expected to be of order one.

CP-odd ‘�-term’

* Guo, Meissner, JHEP 12, 097 (2012) 

** Baker et al., PRL 97, 131801 (2006)

*** Peccei  & Quinn, PRL 38, 1440 (1977)
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���� ≲ �����With current nEDM limit**:

Axion’s as a possible way out*** ?!?!

Lattice QCD*:
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CP Violation

► SUSY CP-Problem:

Pospelov, Ritz, Ann. Phys. 318, 119 (2005)

updated: Ritz, Lepton Moments (2014)

with:  MSUSY = 2 TeV,  tan β = 3

Combination of EDM constrains
(e, n & Hg) to a constrain on CP 

violating SUSY phases

Probing for new physics at very high energies, even
beyond the reach of large accelerators/colliders !
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System Upper Limit [e cm] Ref. Comment

Neutron 3.0 x 10-26 (90%CL) [1] direct limit

Muon 1.9 x 10-19 (95% CL) [2] direct limit

199Hg 3.1 x 10-29  (95% CL) [3]
best dir. limit of any EDM & indir. 

limit for proton: dp < 7.9 x 10-25 e cm
(also provides indir. limits for n & e)

205Tl 9 x 10-25 (90% CL) [4]
used to set a limit for the electron:

de < 1.6 x 10-27 ecm

YbF 1.1 x 10-22 (90% CL) [5] de < 1.05 x 10-27 ecm

ThO [6] de < 8.7 x 10-29 ecm

Xe, Ra, Rn, =
p, d, =

Molecules, =

[1] Baker et al., PRL 97, 131801 (2006), Pendlebury et al., arXiv:1509.04411
[2] Bennett et al., PRD 80, 052008 (2009)
[3] Griffith et al., PRL 102, 101601 (2009)

[4] Regan et al., PRL 88, 071805 (2002)

[5] Hudson et al., Nature 473, 493 (2011)

[6] ACME Collaboration, Science 343, 269 (2014)

Diamagnetic atom

Paramagnetic atom

Paramagnetic/Polar molecule

EDM Searches
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Neutron EDM – Situation & Perspective

Baker et al., PRL 97, 131801 (2006)

Smith, Purcell & Ramsey, 
Phys. Rev. 108, 120 (1957)

► Current limit:

► First Ramsey 
measurement

Baker et al.

el.w. SM

Beyond
SM

	� ' �. # � ����� e cm  

(90% CL)

► Sensitivity:
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► Neutrons in a Bottle (UCN)
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► Ultracold Neutrons (UCN) behave similar to an 
ideal gas with temperatures in the mK range

► Velocities ≈ a few m/s

► Storable in material traps/bottles

Ultracold Neutrons – Properties

Maxwell-Boltzmann 
velocity distribution

UCN
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LD2 cold source

PF2 / ILL

Turbine

reactor
core

About 30 years of

UCN production at PF2

VCN from
vertical guide

UCN to
experiments
10-50 cm-3

Ultracold Neutrons – Production

690 Ni blades

250 rpm, Ø=1.8 mCN

VCN

UCN
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► Superthermal UCN Production

Ultracold Neutrons – New Sources

-.�, � /�,01.�,

cooling machine

SF He:  Golub & Pendlebury, PL 62A, 337 (1977)

SD2: Golub & Böning, ZPB 51, 95 (1983)

Yu, Malik & Golub, ZPB 62, 137 (1986)

SF He:  small R,  long 1
SD2:  large R,  short 1

From: Roger Pynn
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Paul Scherrer Institute

SLS

Swiss-FEL

SINQ

Muons & 

Pions
UCN & 

nEDM

cw-Proton Accelerator:
2.5 mA x 590 MeV = 1.5 MW

Proton 

acceleator
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Solid Deuterium UCN source at PSI

Currently about 30 UCN cm-3 - ctd. improvement

UCN to nEDM experiment since 2012

Pulsed proton beam

590 MeV,  2.5 mA
(1% duty cycle, pulse length ≈ sec)

D2O-moderator (3.6 m3)

Pb/Zr spallation target
(about 8 neutrons per proton)

UCN guides to

experiments

DLC coated UCN storage

vessel (2m3, 2.5 m height)

Solid D2
(UCN converter,  30 l at 5K)

UCN valve

Port to nEDM

Experiment
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Solid Deuterium UCN source at PSI

≈ 1% duty

cylce
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► Ramsey’s Method & nEDM

R. Magritte
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► Determine Larmor precession frequency of UCN in E//B fields:

► Ideal technique:  

Ramsey’s method of separated oscillating fields

Measurement Principle of the nEDM

23↿⇂ � ���nnnn�� � �	nnnn


23⇈ � ���nnnn�� � �	nnnn


273 � 8	nnnn


for B0 = const.

Norman Ramsey
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Magnetic Field Stability

	�,:;<=> � � � ����@e cm

with: ∆� = 1 fT,  E = 10 kV/cm
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Magnetic Field Stability

	�,:;<=> � � � ����@e cm

with: ∆� = 1 fT,  E = 10 kV/cm

YES NO
for effects correlated with E-field direction, 
e.g. leakage currents, magnetisation due to

charging of electrodes (gradients), 

geom. phases etc.

for random noise effects, which will
average out over time. 

► Is it necessary to stabalize the field on the below fT level ?       
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First nEDM Experiment (Oak Ridge)

Smith, Purcell, Ramsey, Phys. Rev.  108, 120 (1957)

E ≈ 70 kV/cm       B0 ≈ 25 mT

Electrodes:  L = 1.35 m, d = 0.35 cm

	� ' A � ����� e cm

Graphite 
Reactor
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►nEDM Experiment at PSI
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• About 50 members from 8 
countries and 14 institutions.

• Experiment is performed at 

the new UCN source at the 
Paul Scherrer Institute in 
Villigen (Switzerland).

nEDM Collaboration

Collaboration Meeting 2014

nedm.web.psi.ch
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nEDM Experiment at PSI

B0= 1 µT E = ±1 MV/m

Improved apparatus of
the RAL/Sussex/ILL 

experiment

Thermal Insolation & 
Stabilization

Active Magnetic
Shielding Coils (3D)
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nEDM Experiment at PSI

Neutrons

Vacuum

E-Field

B-Field
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Magnetic Field Mapping / Transverse Fields

• Automated field mapping using a 3-axis precision fluxgate

• Robot-arm made from non-magnetic materials

• Perform regular offset-calibration runs to compensate for drifts

z

[nT]
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Ramsey Cycle

�/� - Flip

Filling

UCN Source (PSI) nEDM Experiment

UCN: v < 6 m/s   Ekin < 200 neV

Magn. field
shiedling

Precession 

chamber

Polarized UCN

ωHF

UCN Valve
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Ramsey Cycle

Spin 
Precession
~ 200 sec

�/� - Flip

EmptyingSpin 
Analysis &
Detection

ωHF

Analyzer
Foil

Detector



Florian Piegsa  – INT Workshop Seattle, WA – October 1st 201533

Ramsey Method with UCN

frf B0 E

1 = 2 s

1 = 2 s

+	 ≫ 1

1/T

B0=1 µT
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Ramsey Method with UCN

frf B0 E

1 = 2 s

1 = 2 s

+	 ≫ 1

1/T

B0=1 µT
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Two recent Higlights beyond the nEDM

** Afach et al., Phys. Lett. B 739, 128 (2014)

* Afach et al., Phys. Lett. B 745, 58 (2015)

►Physics results obtained with the same Ramsey apparatus:

Search for new exotic interactions

(Axion-Like-Particles) *

n/199Hg - magnetic moment ratio **
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Planned n2EDM Experiment at PSI

►New features/improvements:

• Two UCN precession chambers with opposite electric field directions

(surpress B-field drift susceptibility, E-field correlated gradients remain important)

• Improved magnetic enviornment due to better shielding & compensation

• Higher neutron statistics due to better adaption to PSI UCN source

• Improved magnetometry (Hg, Vector-Cs, 3He)
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► Worldwide Neutron EDM Searches

Florian Piegsa  – INT Workshop Seattle, WA – October 1st 201537



BL1U downstream

SC polarizer

He-II cryostat
• 0.8 K

• pumping on 3He

EDM experiment

Cold moderator cryostat
• Warm D2O and sD2O or lD2

3He-4He heat
exchanger

Spallation target
• beam power: 20 kW (during 

1 min beam on target) and 

5 kW (average)

• tungsten (Ta cladded)
• water cooled

• cladded target blocks have 

been fabricated in Japan

temp profiles

1. 500 meV protons on tungsten create spallation neutrons

2. lead, graphite, heavy water, deuterium moderate fast 
neutrons to cold neutrons

3. 4He at 0.7 K converts them to UCN

4. Extraction to experiments via material guides

R. Picker

Timeline

UCNs



Layout draft – Phase 2

spallation
target

moderator
cryostat

4He volume

SC polarizer

spin flipper/
analyzer

UCN switch

mag shielded room

inner passive shielding

EDM cell(s)

4 UCN detectors

HV
feed

Conceptual design guidelines

• high count rate UCN detector

• two larger EDM cells, central HV electrode
• increase in total UCN number
• simultaneous measurement of both E field directions

• additional symmetry

• higher Fermi potential
• DLC, NiMo + dPS, dPE, larger phase space

• dual co-magnetometer
• cross check

• gradient determination

• simultaneous counting of both spin states
• gain in sensitivity

• improved magnetic environment
• magnetically shielded room for mag development and longer 

lasting flexibility

Many R&D items

and simulations ongoing

R. Picker
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2014-2017  Critical Component Demonstration is underway

2018-2020 Large Scale Integration etc.

2021 Begin Commissioning & Data-taking

nEDM @ SNS

B. Filippone

A cryogenic
experiment
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nEDM @ SNS

B. Filippone



Schematic of Area B with the proposed nEDM

experiment at LANL

A room temperature Ramsey experiment. 

A 3 year project plan with the goal to show

that a 10-27 ecm sensitivity is possible.

New upgraded SD2 source under
construction.

T. Ito

UCNτ

UCNA

nEDM



Engineering design of the new SD2 source @ LANL

T. Ito
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PNPI / ILL 

Recent measurement:   5.5 x 10-26 ecm (90% CL)

Serebrov et al., JETP Lett. 99 (2014) 4

Already using a double chamber setup.

Prospects for an improved experiment at a better

source at ILL and later with a new apparatus at
the PIK reactor (SF He, in St. Petersburg).

A. Serebrov



EDM apparatus

- Initially a ‚conventional‘ Ramsey experiment 

- UCN trapped at room temperature, ultimately 
cryogenic trap

- Double chamber with co-magnetometer option

- 199Hg, Cs, 129Xe, 3He, SQUID magnetometers 
- Portable setup, including magnetically shielded room 

- Extremely modular design

UCN +199Hg chambers

199Hg magnetometer

199Hg magnetometer

High voltage

electrode 200 kV

Online access: 

32 Cs, SQUIDs

1 m

I. Altarev et al., Il Nuovo Cimento 35 C 122 (2012)

P. Fierlinger



The magnetic shields / fields

I. Altarev et al., arXiv:1501.07408

I. Altarev et al., arXiv:1501.07861

Passive SF > 6 Millions @ 1 mHz
(without ext. compensation coils!)

< 50 pT / m stable gradient                   
over EDM cell volume 

1.5 m

1.1 m

1.6 μT Ramsey B0 field coils 

UCN Tests at ILL:

- Adiabatic spin transport, spin-flipping, 

simultaneous spin detection tests
- Polarizer foils, guides, bends, shutters, plates, 

dummy electrodes =

P. Fierlinger



An (optimistic but possible ) 
plan towards a physics result

P. Fierlinger
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Super-thermal UCN source

higher electric fields in lHe

Cryogenic nEDM

CryoEDM

CryoEDM developed a range of technologies  for a future cryogenic 

nEDM measurement

• UCN transport and storage in lHe

• In-situ UCN detection in a cryogenic environment

• High precision low temperature SQUID magnetometry

• Large scale cryogenic operations

• Electric and magnetic field in a cryogenic environment

Two-stage follow up

• Super-thermal source (SuperSUN) coupled to room temperature 

experiment

• Super-thermal UCN (SuperSUN) coupled to a cryogenic experiment

M. van der Grinten



Cryogenic nEDM

Super-thermal source (SuperSUN) coupled to room 

temperature experiment at ILL

• Magnetic environment will be established prior to 

new 9A beam construction

• New source will be constructed in parallel

• Room temperature experiment will be coupled to 

super-thermal source

Super-thermal UCN (SuperSUN) coupled to a 

cryogenic experiment

• Cryogenic environment of experiment designed 

in parallel to room temperature data-taking

• Fully cryogenic experiment running after room 

temperature data taking completed

Possible move to different beam

• Letter of Intent for new super-thermal UCN source operating at ESS

M. van der Grinten



Florian Piegsa  – INT Workshop Seattle, WA – October 1st 201550

A new nEDM Beam Experiment

► Main systematic in nEDM beam experiment caused by v×E - effect:

273 � 8	nnnn
 � 8�nnnn
D


E�
sin H

► Idea: Measure change in Larmor frequency as a function of the 
neutron velocity at a pulsed spallation source:

Piegsa, PRC 88, 045502 (2013)
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We have exciting times ahead of us !

TRIUMF

SNSLANL

PSI

PNPI/PIK

TUM 

RAL
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199Hg EDM

Griffith et al. PRL 102, 101601 (2009)

dHg < 3.1 x 10-29 ecm (95% CL)

dp < 7.9 x 10-25 ecm (95% CL)
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YbF

Hudson et al., Nature 473, 493 (2011)

• no motional magnetic field effect, as in Tl-atom experiment

• Electric field enhancement by a factor 106 (10 kV/cm  ���� 13 GV/cm)

• de < 1.05 x 10-27 e cm    (90% CL)
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ThO – ACME Collaboration

ACME Collaboration, Science 343, 269 (2014)

• Electric field enhancement by a factor 109 (140 V/cm  ���� 84 GV/cm)

• Small magnetic moment reduces sensitivity to spurious magn. Fields

• de < 8.7 x 10-29 e cm    (90% CL)


