

Lepton Flavour Violation in Hadronic Tau decays

Emilie Passemar Indiana University/Jefferson Laboratory

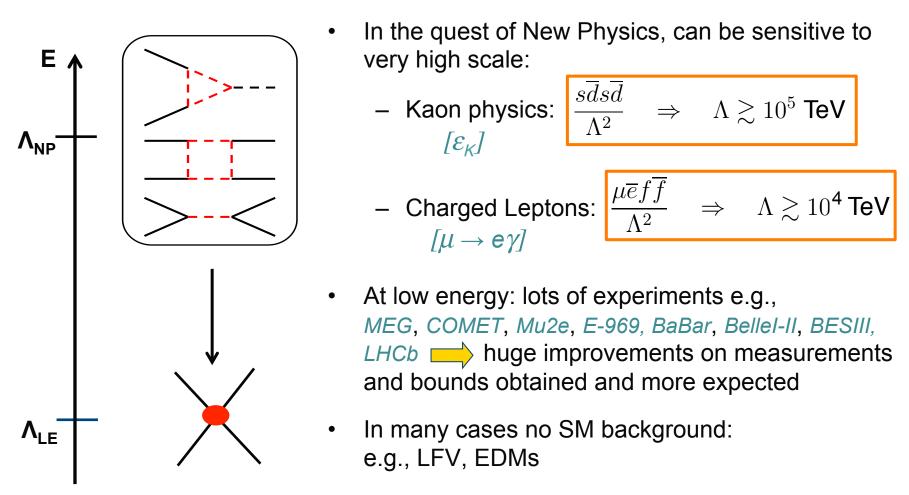
QCD for New Physics at the Precision Frontier INT, Seattle, September 30, 2015

> In collaboration with A. Celis (LMU, Munich), and V. Cirigliano (LANL) PRD 89 (2014) 013008, 095014

- 1. Introduction and Motivation
- 2. Charged Lepton-Flavour Violation from tau decays
- 3. Special Role of $\tau \rightarrow \mu \pi \pi$: hadronic form factors
- 4. Results
- 5. Conclusion and Outlook

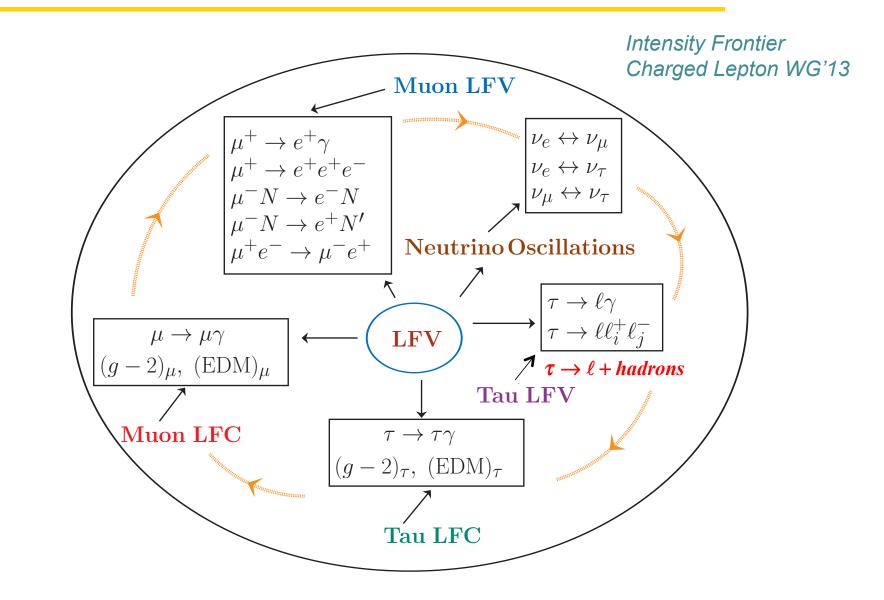
1. Introduction and Motivation

1.1 Why study charged leptons?



 For some modes accurate calculations of hadronic uncertainties essential

1.2 The Program



2. Charged Lepton-Flavour Violation

2.1 Introduction and Motivation

- Lepton Flavour Violation is an « accidental » symmetry of the SM ($m_v=0$)
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression in unobservably small rates!

E.g.: $\mu \rightarrow e\gamma$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{1i}}{M^2_{W}} \right|^2 < 10^{-54}$$

W Charles W

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br\left(\tau\to\mu\gamma\right)<10^{-40}\right]$$

• Extremely *clean probe of beyond SM physics*

2.1 Introduction and Motivation

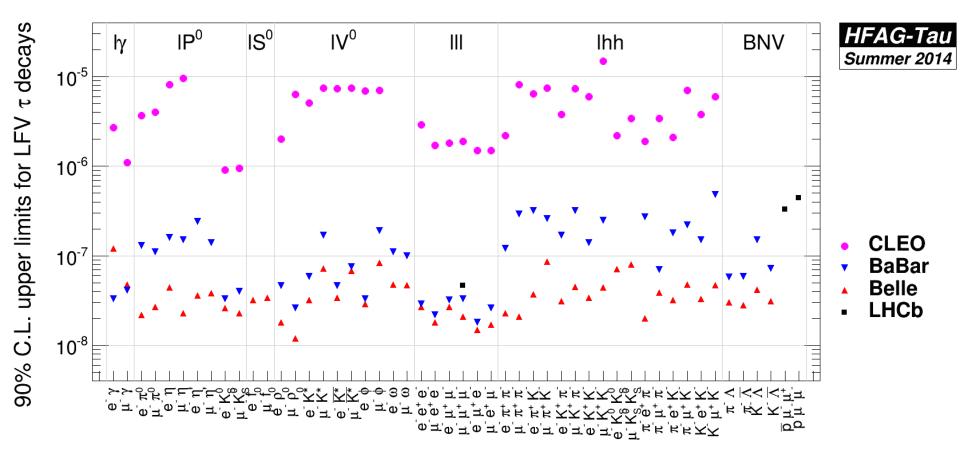
• In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D. Hitlin @ CLFV2013			$\tau \rightarrow \mu \gamma \ \tau \rightarrow \ell \ell \ell$	
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Undetect	Indetectable	
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10-10	10-7	
SM + heavy Maj $v_{\rm R}$	Cvetic, Dib, Kim, Kim, PRD66 (2002) 034008	10-9	10-10	
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8	
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10	
mSUGRA + Seesaw	JGRA + Seesaw Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013		10 ⁻⁹	

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

2.2 CLFV processes: tau decays

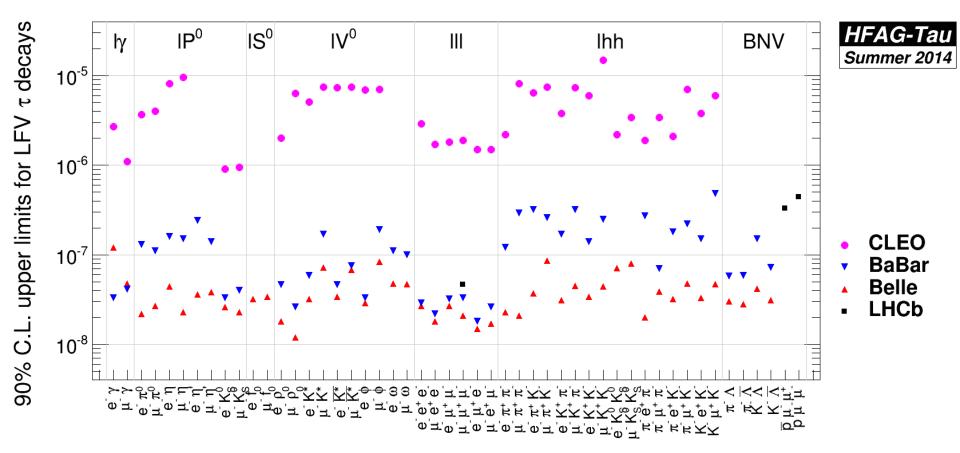
• Several processes: $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ $\swarrow P, S, V, P\overline{P}, ...$



48 LFV modes studied at Belle and BaBar

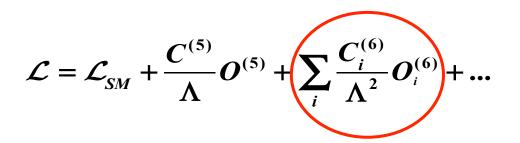
2.2 CLFV processes: tau decays

• Several processes: $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ $\swarrow P, S, V, P\overline{P}, ...$



Expected sensitivity 10⁻⁹ or better at *LHCb, Belle II*?

2.3 Effective Field Theory approach



• Build all D>5 LFV operators:

$$\succ \text{ Dipole: } \mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

 $\Gamma \equiv 1, \gamma^{\mu}$

$$\succ \text{ Lepton-gluon (Scalar, Pseudo-scalar): } \mathcal{L}_{eff}^G \supset -\frac{C_G}{\Lambda^2} m_{\tau} G_F \overline{\mu} P_{L,R} \tau \ G_{\mu\nu}^a G_A^{\mu\nu}$$

➤ 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \ \Gamma P_{L,R} \tau \ \overline{\mu} \ \Gamma P_{L,R} \mu$$

• Each UV model generates a *specific pattern* of them

Emilie Passemar

Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger et al.'07 Matsuzaki & Sanda'08 Giffels et al.'08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

See e.g.

2.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	—	_	_	_	_
OD	✓	1	\checkmark	\checkmark	_	_
O_V^q	—	—	\checkmark (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	—	_
$O_{\mathbf{S}}^{\mathbf{q}}$	—	—	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	—	_
O _{GG}	—	—	\checkmark	✓	_	_
$O^{\mathbf{q}}_{\mathbf{A}}$	—	—	—	_	\checkmark (I=1)	✓ (I=0)
O_P^q	—	—	—	—	\checkmark (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	1

- The notion of "*best probe*" (process with largest decay rate) is *model dependent*
- If observed, compare rate of processes key handle on *relative strength* between operators and hence on the *underlying mechanism*

2.4 Model discriminating power of Tau processes

• Summary table:

Celis, Cirigliano, E.P.'14

	$\tau \to 3\mu$	$\tau \to \mu \gamma$	$\tau o \mu \pi^+ \pi^-$	$\tau \to \mu K \bar{K}$	$\tau \to \mu \pi$	$\tau \to \mu \eta^{(\prime)}$
$O_{S,V}^{4\ell}$	✓	—	_	_	_	—
OD	✓	✓	\checkmark	\checkmark	_	_
O_V^q	—	—	\checkmark (I=1)	$\checkmark(\mathrm{I=}0{,}1)$	—	_
$O_{\mathbf{S}}^{\mathbf{q}}$	—	—	✓ (I=0)	$\checkmark(\mathrm{I=}0{,}1)$	—	_
O _{GG}	—	—	\checkmark	✓	_	_
O_A^q	—	—	_	_	\checkmark (I=1)	✓ (I=0)
O_P^q	—	—	—	—	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	1

- In addition to leptonic and radiative decays, *hadronic decays* are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and *decay constants* (e.g. f_n, f_n['])

2.5 Ex: Non standard LFV Higgs coupling

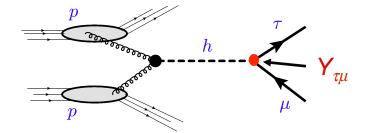
•
$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H$$

In the SM:
$$Y^{h_{SM}}_{ij}$$

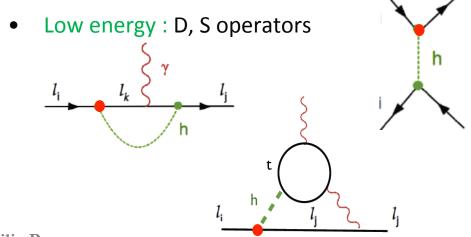
 $-Y_{ij}\left(\overline{f}_{L}^{i}f_{R}^{j}\right)h$

 $=\frac{m_i}{\delta_{ij}}\delta_{ij}$

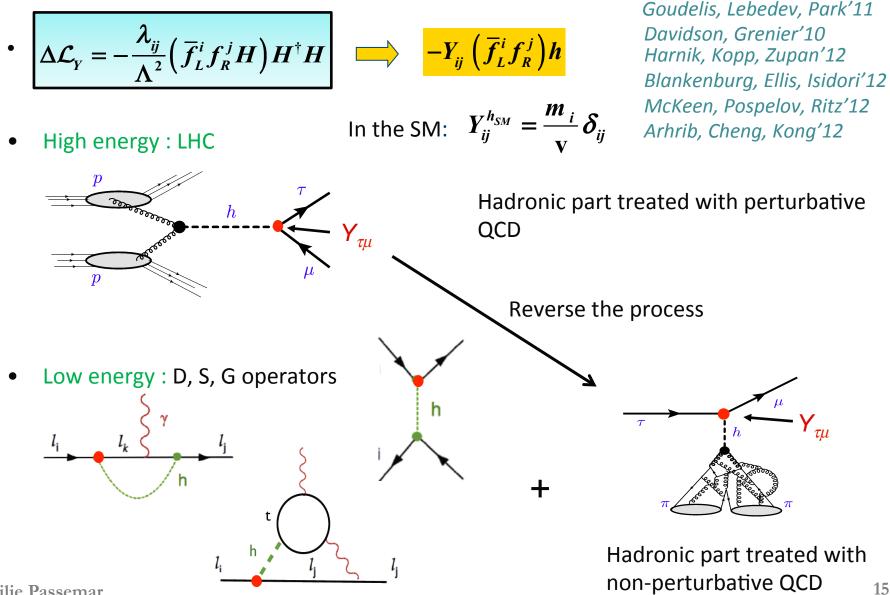
Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12



Hadronic part treated with perturbative QCD

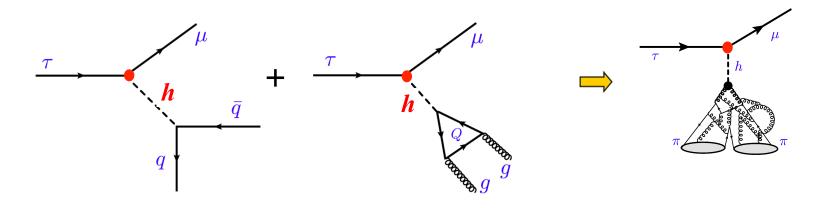


2.5 Ex: Non standard LFV Higgs coupling



2.6 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange



• Problem : Have the hadronic part under control, ChPT not valid at these energies!

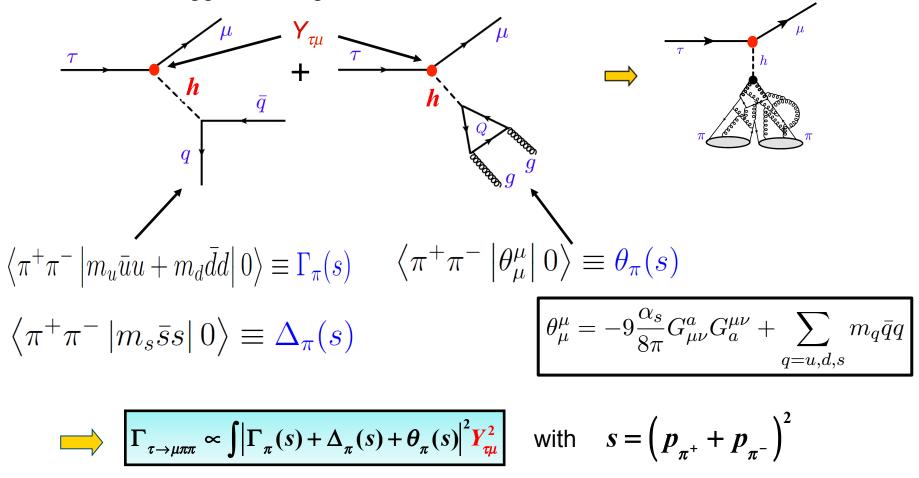
Use form factors determined with *dispersion relations* matched at low energy to *CHPT* Daub, Dreiner, Hanart, Kubis, Meissner'13

Celis, Cirigliano, E.P.'14

3. Description of the hadronic form factors

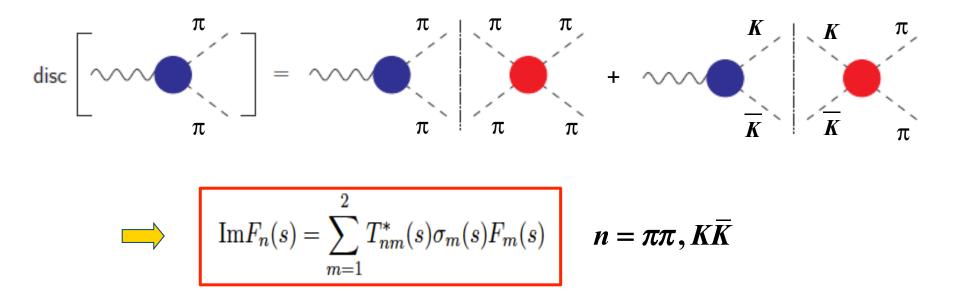
3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

• Tree level Higgs exchange



3.2 Unitarity

• Unitarity is the discontinuity of the form factor is known



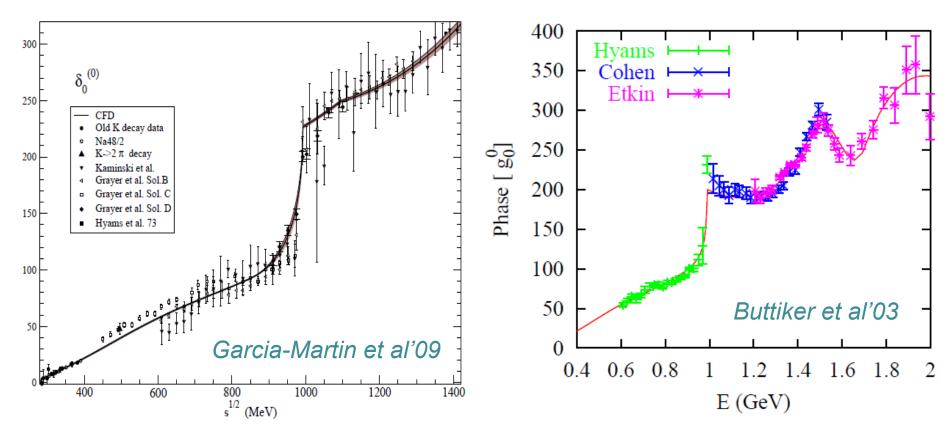
• Coupled channel analysis up to $\sqrt{s} \sim 1.4$ GeV Inputs: I=0, S-wave $\pi\pi$ and KK data

Donoghue, Gasser, Leutwyler'90 Moussallam'99 Daub et al'13 Celis, Cirigliano, E.P.'14

3.3 Inputs for the coupled channel analysis

• Inputs : $\pi\pi \rightarrow \pi\pi$, KK

Celis, Cirigliano, E.P.'14



- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buttiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow *reconstruct T matrix* Emilie Passemar

3.4 Dispersion relations

Celis, Cirigliano, E.P.'14

• General solution:

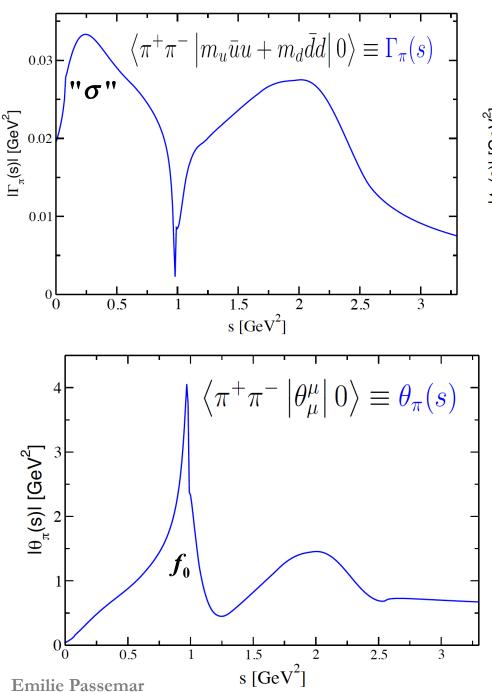
$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

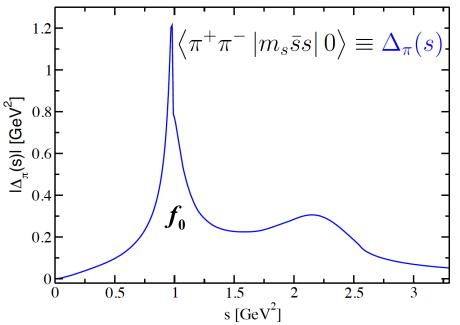
Canonical solution falling as 1/s for large s (obey unsubtracted dispersion relations)

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

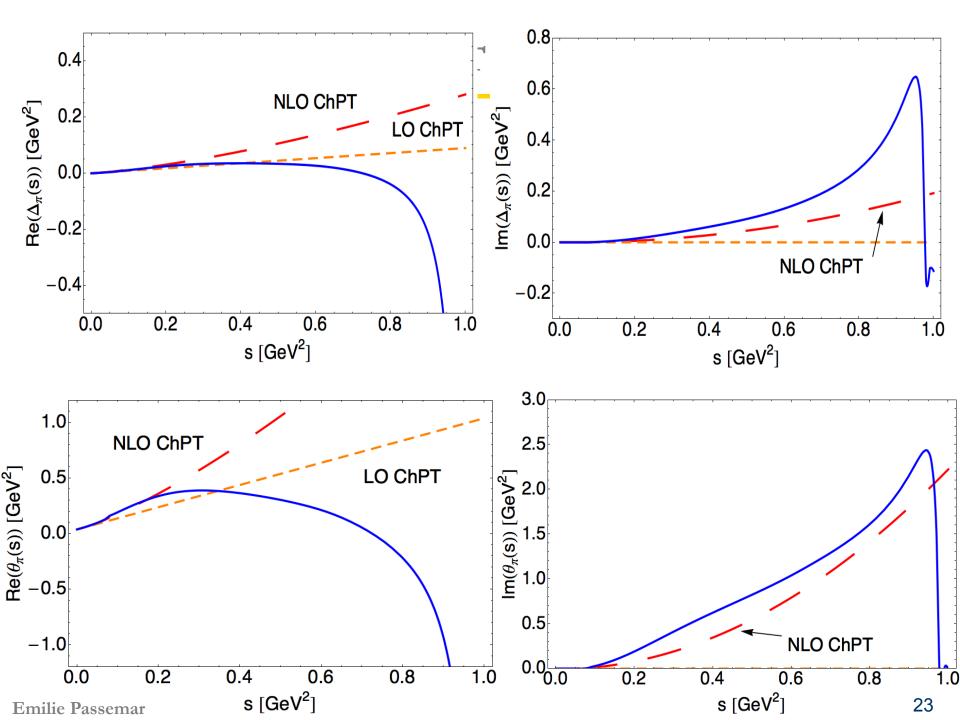
$$\mathrm{Im}X_{n}^{(N+1)}(s) = \sum_{m=1}^{2} T_{mn}^{*}\sigma_{m}(s)X_{m}^{(N)}(s) \longrightarrow$$

$$X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\text{Im}X_n^{(N+1)}(s')}{s'-s}$$





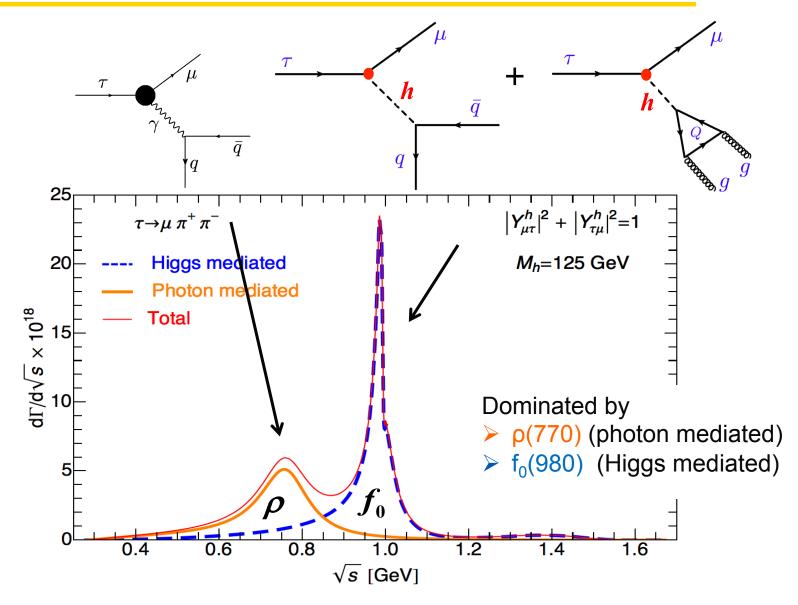
Dispersion relations: Model-independent method, based on first principles that extrapolates ChPT based on data



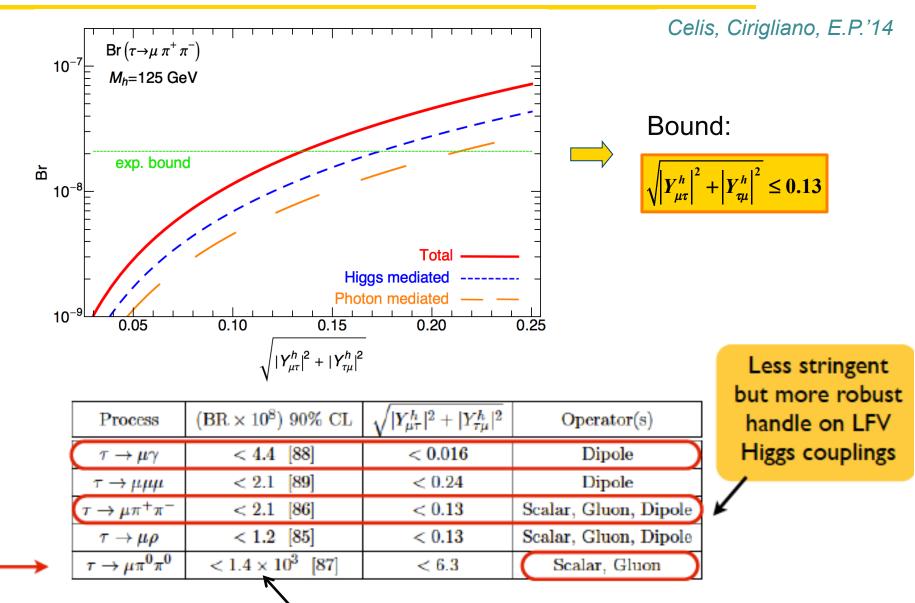
4. Results

4.1 Spectrum

Celis, Cirigliano, E.P.'14



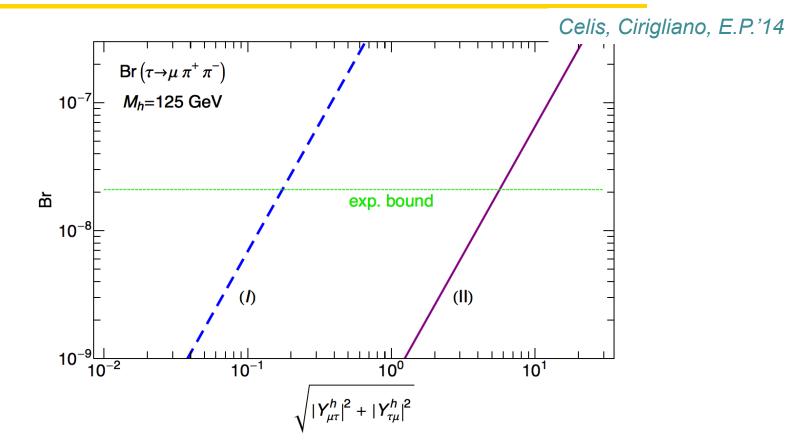
4.2 Bounds



Emilie Passemar

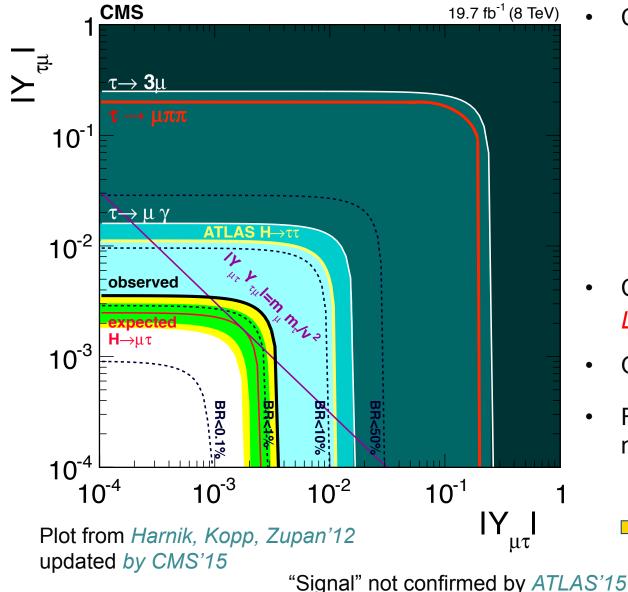
BaBar'10, Belle'10'11'13 except last from CLEO'97

4.3 Impact of our results



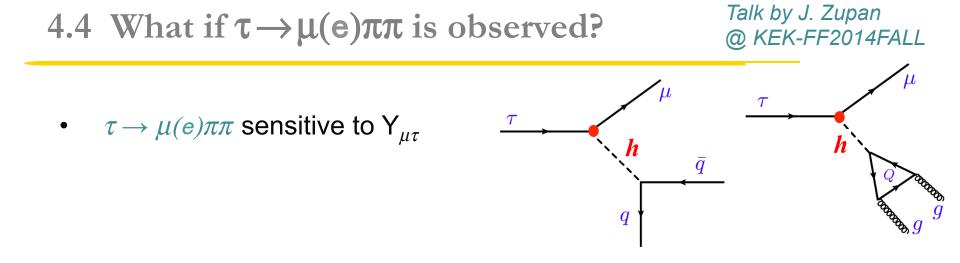
- Rigorous treatment of hadronic part bound reduced by one order of magnitude! Robust bounds!
- ChPT, EFT only valid at low energy for $p \ll \Lambda = 4\pi f_{\pi} \sim 1 \text{ GeV}$ \longrightarrow not valid up to $E = (m_{\tau} - m_{\mu})!$

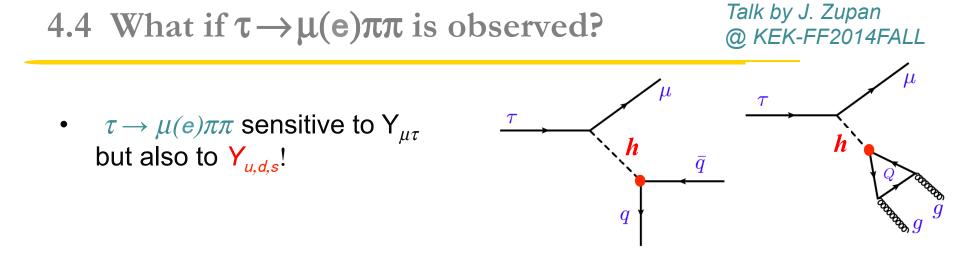
4.4 Comparison Low Energy & High Energy



- Constraints from LE:
 - > $\tau \rightarrow \mu \gamma$: best constraints but loop level > sensitive to UV completion of the theory
 - $\tau \rightarrow \mu \pi \pi$: tree level diagrams robust handle on LFV
- Constraints from HE:
 LHC wins for τμ!
- Opposite situation for µe!
- For LFV Higgs and nothing else: LHC bound

 $BR(\tau \to \mu\gamma) < 2.2 \times 10^{-9}$ $BR(\tau \to \mu\pi\pi) < 1.6 \times 10^{-11}$

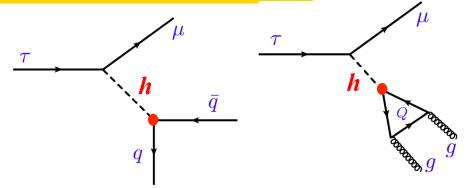




4.4 What if $\tau \rightarrow \mu(e)\pi\pi$ is observed?

Talk by J. Zupan @ KEK-FF2014FALL

- $\tau \rightarrow \mu(e)\pi\pi$ sensitive to $Y_{\mu\tau}$ but also to $Y_{u,d,s}!$
- $Y_{u,d,s}$ poorly bounded

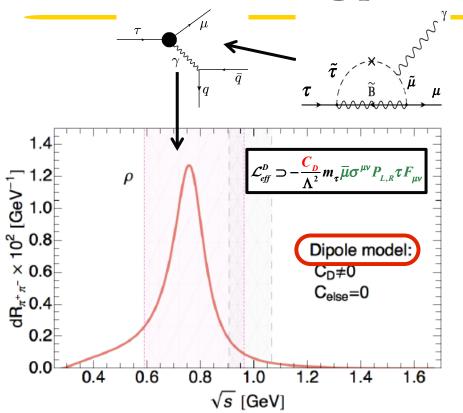


- For $Y_{u,d,s}$ at their SM values : $Br(\tau \to \mu \pi^+ \pi^-) < 1.6 \times 10^{-11}, Br(\tau \to \mu \pi^0 \pi^0) < 4.6 \times 10^{-12}$ $Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11}$
- But for $Y_{u,d,s}$ at their upper bound: $Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$ $Br(\tau \to e \pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e \pi^0 \pi^0) < 2.1 \times 10^{-7}$

below present experimental limits!

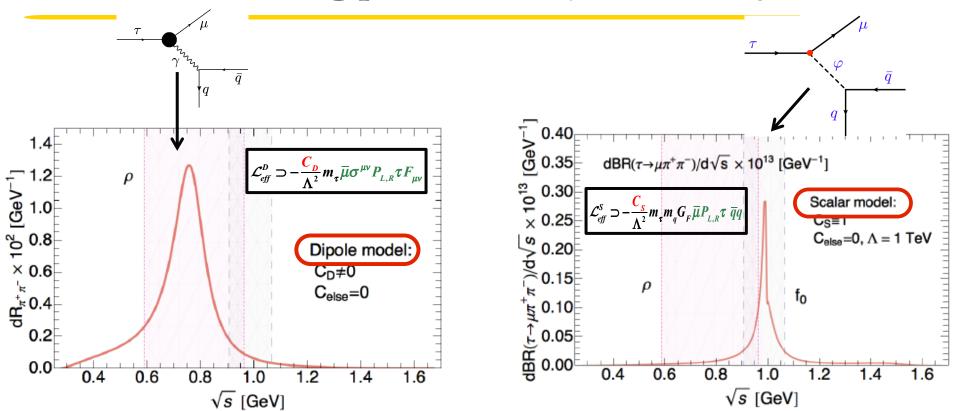
If discovered upper limit on Y_{u,d,s}!
 Interplay between high-energy and low-energy constraints!

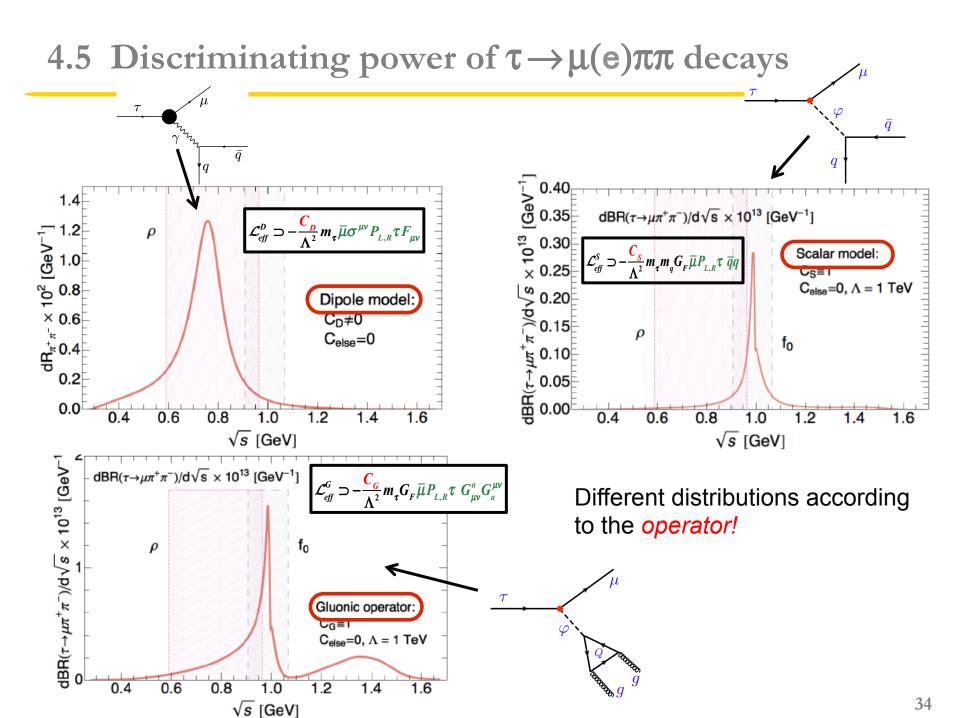
4.5 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays



Celis, Cirigliano, E.P.'14

4.5 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays





5. Conclusion and Outlook

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged LFV are a very important probe of new physics
 - Extremely small SM rates
 - Experimental results at low energy are very precise

very high scale sensitivity

• CLFV decays excellent model discriminating tools especially τ decays *Hadronic decays* such as $\tau \rightarrow \mu(e)\pi\pi$ important!

Summary

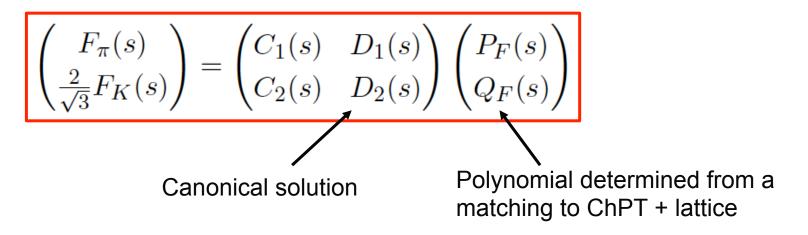
- To consider hadronic decays, need to control the hadronic uncertainties: need to know hadronic matrix elements, form factors etc.
- For $\tau \to \mu(e)\pi\pi$: need to know the $\pi\pi$ form factors

- Dispersion relations rely on analyticity, unitarity and crossing symmetry
 Rigorous treatment of two and three hadronic final state
- $\tau \rightarrow \mu(e)\pi\pi$ gives interesting constraints on LFV new physics operators involving quarks
- Interplay low energy and collider physics: LFV of the Higgs boson
- Complementarity with LFC sector: EDMs, g-2 and colliders:
 New physics models usually strongly correlate these sectors

5. Back-up

3.4.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

• General solution:



• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 \operatorname{Re} \left\{ T_{nm}^* \sigma_m(s) X_m^{(N)} \right\} \longrightarrow \operatorname{Re} X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} \frac{ds'}{s'-s} \operatorname{Im} X_n^{(N+1)}(s) = \frac$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• Fix the polynomial with requiring $F_p(s) \rightarrow 1/s$ (Brodsky & Lepage) + ChPT: Feynman-Hellmann theorem: $\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$

$$\Delta P(0) = \left(\frac{m_u}{\partial m_u} + \frac{m_d}{\partial m_d} \right)^{M_u}$$
$$\Delta P(0) = \left(\frac{m_s}{\partial m_s} \right) M_P^2$$

• At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Determination of the polynomial

General solution

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• At LO in ChPT:

$$M_{\pi^{+}}^{2} = (m_{u} + m_{d}) B_{0} + O(m^{2})$$

$$M_{K^{+}}^{2} = (m_{u} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K^{0}}^{2} = (m_{d} + m_{s}) B_{0} + O(m^{2})$$

$$M_{K$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

 $\Gamma_K(0) = (0.5 \pm 0.1) \ M_\pi^2$ $\Delta_K(0) = 1^{+0.15}_{-0.05} \left(M_K^2 - 1/2M_\pi^2 \right)$

Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

Determination of the polynomial

General solution

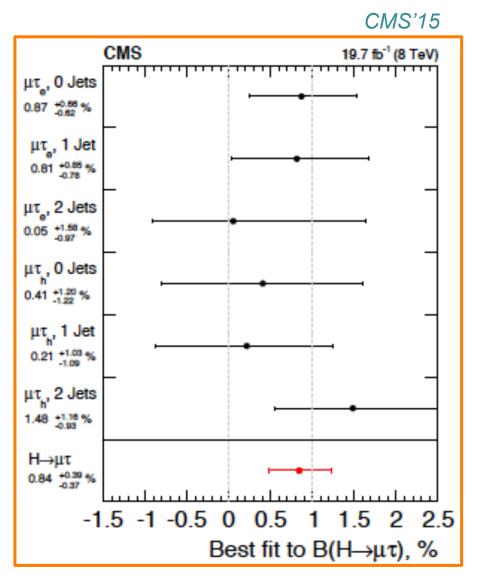
$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_{K}(s) \end{pmatrix} = \begin{pmatrix} C_{1}(s) & D_{1}(s) \\ C_{2}(s) & D_{2}(s) \end{pmatrix} \begin{pmatrix} P_{F}(s) \\ Q_{F}(s) \end{pmatrix}$$

• For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

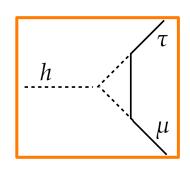
$$\begin{aligned} P_{\theta}(s) &= 2M_{\pi}^{2} + \left(\dot{\theta}_{\pi} - 2M_{\pi}^{2}\dot{C}_{1} - \frac{4M_{K}^{2}}{\sqrt{3}}\dot{D}_{1}\right)s\\ Q_{\theta}(s) &= \frac{4}{\sqrt{3}}M_{K}^{2} + \frac{2}{\sqrt{3}}\left(\dot{\theta}_{K} - \sqrt{3}M_{\pi}^{2}\dot{C}_{2} - 2M_{K}^{2}\dot{D}_{2}\right)s\end{aligned}$$

4.4 Hint of New Physics in $h \rightarrow \tau \mu$?

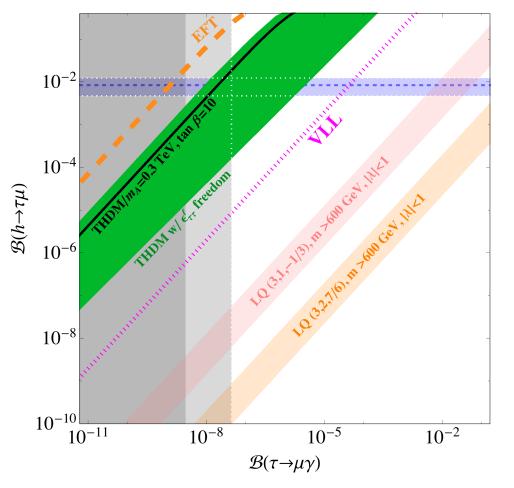


4.5 Interplay between LHC & Low Energy

- If real what type of NP?
- If $h \rightarrow \tau \mu$ due to loop corrections:
 - extra charged particles necessary
 - $\tau \rightarrow \mu \gamma$ too large



- h → τ μ possible to explain if extra scalar doublet:
 ⇒ 2HDM of type III
- Constraints from $\tau \rightarrow \mu \gamma$ important! \Rightarrow Belle II

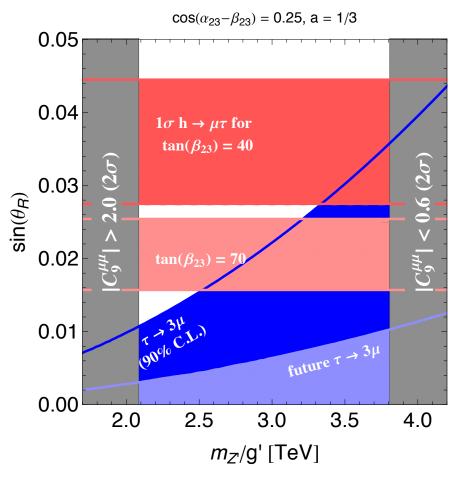


Dorsner et al.'15

4.5 Interplay between LHC & Low Energy

- **2HDMs** with gauged $L_{\mu} L_{\tau} \Rightarrow Z'$, explain anomalies for
 - $\ h \to \tau \mu$
 - $\ B \to K^* \mu \mu$
 - $R_K = B \rightarrow K \mu \mu / B \rightarrow K e e$
- Constraints from $\tau \rightarrow 3\mu$ crucial \Rightarrow Belle II, LHCb
- See also: Aristizabal-Sierra & Vicente'14, Lima et al'15, Omhura, Senaha, Tobe '15

Altmannshofer & Straub'14, Crivellin et al'15 Crivellin, D'Ambrosio, Heeck.'15



Determination of F_V(s)

Vector form factor

Precisely known from experimental measurements

$$e^+e^- \rightarrow \pi^+\pi^-$$
 and $\tau^- \rightarrow \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

> Theoretically: Dispersive parametrization for $F_V(s)$

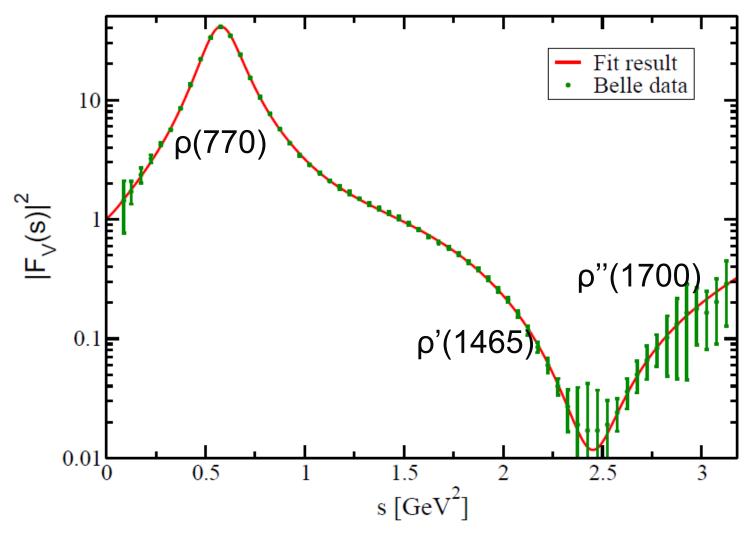
Guerrero, Pich'98, Pich, Portolés'08 Gomez, Roig'13

$$F_{V}(s) = \exp\left[\lambda_{V}'\frac{s}{m_{\pi}^{2}} + \frac{1}{2}\left(\lambda_{V}'' - \lambda_{V}'^{2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty}\frac{ds'}{s'^{3}}\frac{\phi_{V}(s')}{\left(s' + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \rightarrow \pi^0 \pi^- v_{\tau}$

Determination of $F_V(s)$



Determination of $F_V(s)$ thanks to precise measurements from Belle!