Precision QCD for New Physics Searches:

Working with heavy quarks at High Scales & High Orders

Fred Olness

SMU

Thanks to:

F. Lyonnet, E. Godat, A. Kusina, I. Schienbein, K. Kovarik, J.Y. Yu, T. Jezo, J.G. Morfin, J.F. Owens, P. Nadolsky, M. Guzzi, V. Radescu, C. Keppel, B. Clark

INT Program INT-15-3 Week 6 Intersections of BSM Phenomenology & QCD for New Physics Searches September 14 - October 23, 2015

20 October 2015

The Key to Discovery: The Parton Model and Factorization

LHC Results: Incredible Progress

Much of theory error from PDFs

N³LO gg->H

What QCD Tells Us About Nature – and Why We Should Listen

Frank Wilczek (*arXiv:hep-ph/9907340*)

QCD is our most perfect physical theory

0000000

It embodies deep and beautiful principles. It provides algorithms to answer any physically meaningful question within its scope. Its scope is wide. It contains a wealth of phenomena. It has few parameters ... or none. It is true. It lacks flaws.

Lessons: The Nature of Nature ... alien, simple, beautiful, weird, & comprehensible

Workshop on the LHeC

Hectron-proton and electron-ion collisions at the LHC

24 June 2015 CERN 25-26 June 2015 Chavannes-de-Bogis, Switzerland

International Advisory Committee

Guido Altarelli (Rome) Sergio Bertolucci (CERN) Nicola Bianchi (INFN) Frederick Bordry (CERN) Stan Brodsky (SLAC) Hesheng Chen (IHEP Beijing) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago and Fermilab) Victor A. Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (EPF Lausanne) Herwig Schopper (CERN) - Chair Jürgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley (STFC)

Coordination Group

Gianluigi Arduini (CERN) Nestor Armesto (Santiago de Compostela) Oliver Brüning (CERN) Stefano Forte (Milano) Andrea Gaddi (CERN) Erk Jensen (CERN) Max Klein (Liverpool) Peter Kostka (Liverpool) Bruce Mellado (Wits) Paul Newman (Birmingham) Voica Radescu (Heidelberg) Daniel Schulte (CERN) Alessandra Valloni (CERN) Frank Zimmermann (CERN)

Organizing Committee

Sergio Bertolucci (CERN) Frederick Bordry (CERN) Oliver Brüning (CERN) Laurie Hemery (CERN) Max Klein (Liverpool)

EUCARD

Electron Ion Collider: The Next QCD Frontier

Understanding the glue that binds us all

SECOND EDITION

2015 Long Range Plan for Nuclear Science *15 Oct 2015* We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB.

JIv3 [nucl-ex]

Expect the Unexpected

SEC reminds us that past performance does not guarantee future results

The CTEQ List of Challenges in Perturbative QCD ~1995

Welcome to the CTEQ List of Challenges in Perturbative QCD! Although QCD has successfully passed many tests, there are still areas where there are problems when comparing theory and experiment or where additional data or calculations are needed. Here is our current list of Challenges in Perturbative QCD. This is expected to be a dynamic list, so check back often. It is expected that existing entries will be periodically updated and that new entries will be added.

- 1. Direct photon production
- 2. Heavy quark production cross sections
- 3. Jet cross sections and xt scaling
- 4. Determining the gluon distribution
- 5. Large-x behavior of parton distributions
- 6. Determining the flavor dependence of pdf's
- 7. Extracting Charged & Neutral Current Cross Sections

http://www.hep.fsu.edu/~owens/qcd/QCD_list.html

1) Flavor Differentiation

& Nuclear Corrections

2) Multi-scale problems: Heavy Quarks

3) Hi-Order Corrections & ACOT

CTEQ

How do we differentiate flavors???

... why do we care about nuclear corrections

Key Data Sets for Global PDF Fits

$$\begin{split} F_{2}^{\nu} &\sim \left[d + s + \bar{u} + \bar{c}\right] \\ F_{2}^{\bar{\nu}} &\sim \left[\bar{d} + \bar{s} + u + c\right] \\ F_{3}^{\nu} &= 2\left[d + s - \bar{u} - \bar{c}\right] \\ F_{3}^{\bar{\nu}} &= 2\left[u + c - \bar{d} - \bar{s}\right] \end{split}$$

$$F_2^{\ell^{\pm}} \sim \left(\frac{1}{3}\right)^2 \left[d+s\right] \\ + \left(\frac{2}{3}\right)^2 \left[u+c\right]$$

In particular, the DIS combinations have historically been particularly useful

<u>Different</u> linear combinations – key for flavor differentiation

The v-DIS data typically use heavy targets, and this requires the application of *nuclear corrections*

Nuclear Corrections: Compare Neutrino and Charged Lepton DIS ¹³

Neutrino DIS

Charged Lepton DIS

MINERvA: Phys.Rev.Lett. 112 (2014) 23, 231801

Strange Quark: Impact on LHC ... W/Z correlation \Rightarrow MW extraction¹⁴

WM Z The W-Z correlation is limited by the uncertainty coming from the strange quark distribution

> Key for M_w determination

W/Z Production

"Benchmark Calculations"

... things are different at the LHC

... the fine print: Surprisingly, the LHC analysis depends on many other data sets

W Production at LHC: ... things are very different

- Larger Energy \Rightarrow probes PDFs to small momentum fraction x
- Larger Rapidity $(y) \Rightarrow$ probes PDFs to *really* small x
- Larger fraction of heavy quarks

Heavy Quark components play an increasingly important role at the LHC

Large PDF Uncertainties \Rightarrow S(x) PDF \Rightarrow W/Z at LHC

17

PDF Uncertainties \Leftarrow S(x) PDF \Leftarrow W/Z at LHC

NNLO VRAP Code Anastasiou, Dixon, Melnikov, Petriello, Phys.Rev.D69:094008,2004.

Kusina, Stavreva, Berge, Olness, Schienbein, Kovarik, Jezo, Yu, Park Phys.Rev. D85 (2012) 094028 y distribution shape can constrain s(x) PDF

Use LHC data to constrain Strange Quark

W, Z data sensitivity to strange sea

- ATLAS performed NNLO QCD fit to Z, W⁺, W⁻ + HERA ep DIS cross sections: significant tension for Z observed when suppressing strange by 50% at low scale 1.9 GeV²
- Fit with free strange sea gives no supression

 $r_s = 1.00 \pm 0.20_{\text{exp}} \stackrel{+0.16}{_{-0.20 \text{ sys}}}$

Slide from Carl Schmidt 19 October 2015: INT Workshop

CT14 strange quark PDF

• Conflicting results from experiments:

• ATLAS
$$r^{s} = \frac{\overline{s}(x,Q)}{\overline{d}(x,Q)} = 0.96^{+0.26}_{-0.30} \text{ at } x = 0.023, \quad Q = 1.4 \text{ GeV}$$

 $r^{s}_{\text{CT14NNLO}} = 0.53 \pm 0.20$
 $r^{s}_{\text{CT10NNLO}} = 0.76 \pm 0.17$
• CMS $\kappa^{s} = \frac{\int_{0}^{1} x [s(x,Q) + \overline{s}(x,Q)] dx}{\int_{0}^{1} x [\overline{u}(x,Q) + \overline{d}(x,Q)] dx} = 0.52^{+0.18}_{-0.15} \text{ at } Q^{2} = 20 \text{ GeV}^{2}$
• NOMAD $\kappa^{s} = 0.591 \pm 0.019$
 $\kappa^{s}_{\text{CT14NNLO}} = 0.62 \pm 0.14$
 $\kappa^{s}_{\text{CT14NNLO}} = 0.73 \pm 0.11$

A man with one watch ...

DIY: Do It Yourself: Strange Quark from LHC Data

nCTEQ15 PDFs

now that we see necessity of nuclear corrections ... A long time ago in a galaxy far, far away .23

Moving Into The 21st Century

nCTEQ15 PDFs ... from A to Z ... with Uncertainties

25

nCTEQ Nuclear PDF's

F_{2}^{A}/F_{2}^{D} :					# data	
Observable	Experiment	ID	Ref.	# data	after cuts	χ^2
D	NMC-97	5160	47	292	201	247.73
He/D	Hermes	5156	48	182	17	18.02
	NMC-95,re	5124	49	18	12	10.64
	SLAC-E139	5141	50	18	3	1.04
Li/D	NMC-95	5115	51	24	11	3.94
Be/D	SLAC-E139	5138	50	17	3	0.44
C/D	FNAL-E665-95	5125	52	11	3	3.53
	SLAC-E139	5139	50	7	2	1.15
	EMC-88	5107	53	9	9	7.06
	EMC-90	5110	54	9	0	0.00
	NMC-95	5113	51	24	12	7.39
	NMC-95,re	5114	49	18	12	13.36
N/D	Hermes	5157	48	175	19	10.46
-2210)	BCDMS-85	5103	55	9	9	4.66
Al/D	SLAC-E049	5134	56	18	0	0.00
A2.	SLAC-E139	5136	50	17	3	0.66
Ca/D	NMC-95,re	5121	49	18	12	12.24
100	FNAL-E665-95	5126	52	11	3	4.87
	SLAC-E139	5140	50	7	2	1.43
	EMC-90	5109	54	9	0	0.00
Fe/D	SLAC-E049	5131	57	14	2	0.67
	SLAC-E139	5132	50	23	6	8.20
	SLAC-E140	5133	58	10	0	0.00
	BCDMS-87	5101	59	10	10	6.47
	BCDMS-85	5102	55	6	6	2.83
Cu/D	EMC-93	5104	60	10	9	4.31
	EMC-93(chariot)	5105	60	9	9	5.72
	EMC-88	5106	53	9	9	3.97
Kr/D	Hermes	5158	48	167	12	9.68
Ag/D	SLAC-E139	5135	50	7	2	1.36
Sn/D	EMC-88	5108	53	8	8	17.88
Xe/D	FNAL-E665-92	5127	61	10	2	0.74
Au/D	SLAC-E139	5137	50	18	3	1.55
Pb/D	FNAL-E665-95	5129	52	11	3	5.91
Total:				1205	414	417.92

$\mathbf{F_2^A}/\mathbf{F_2^A'}:$ Observable	Experiment	ID	Ref.	# data	# data after cuts	χ^2
C/Li	NMC-95,re	5123	49	25	7	5.22
Ca/Li	NMC-95,re	5122	49	25	7	1.49
Be/C	NMC-96	5112	62	15	14	7.25
Al/C	NMC-96	5111	62	15	14	4.98
Ca/C	NMC-95,re	5120	49	25	7	3.31
	NMC-96	5119	62	15	14	5.18
Fe/C	NMC-96	5143	62	15	14	10.38
Sn/C	NMC-96	5159	63	146	111	62.95
Pb/C	NMC-96	5116	62	15	14	9.09
Total:				296	202	109.85

Table II: The DIS $F_2^A/F_2^{A'}$ data sets used in the nCTEQ15 fit. We list the same details for each data set as in Tab. I.

$\sigma_{\mathbf{DY}}^{\mathbf{pA}} / \sigma_{\mathbf{DY}}^{\mathbf{pA}'}$: Observable	Experiment	ID	Ref.	# data	# data after cuts	χ^2
C/H2	FNAL-E772-90	5203	64	9	9	11.10
Ca/H2	FNAL-E772-90	5204	64	9	9	3.11
Fe/H2	FNAL-E772-90	5205	64	9	9	3.33
W/H2	FNAL-E772-90	5206	64	9	9	7.30
Fe/Be	FNAL-E886-99	5201	65	28	28	26.09
W/Be	FNAL-E886-99	5202	65	28	28	25.61
Total:				92	92	76.54

Table III: The Drell-Yan process data sets used in the nCTEQ15 fit. We list the same details for each data set as in Tab. I.

$\mathbf{R}_{\mathbf{dAu}}^{\pi}/\mathbf{R}_{\mathbf{pp}}^{\pi}:$ Observable	Experiment	ID	Ref.	# data	# data after cuts	χ^2
dAu/pp	PHENIX	PHENIX	66	21	20	5.07
33.5 mill 3.6	STAR-2010	STAR	67	13	12	1.30
Total:				34	32	6.37

nCTEQ Nuclear PDF's

Ratio to Proton for Lead ... with Uncertainty

What data are influencing up & down

Heavy Ion (a) LHC

- The nuclear modifications are present in the PDFs and vary with A as well as x and Q.
- We expect modifications to any hadronic observable involving heavy nuclei.

12 January 2015

Slides stolen

from Ben Clark

Nuclear Modifications

0.4

0.2

0.6

0.8

1

1.2 1.4 1.6

1.8

2

2.2

 $|\eta^{\mu^*}|$

Similar studies with Z: ATLAS just released 2013 Z data for p-Pb at 5.02 TeV

... what about Heavy Quarks

charm & bottom

Two-Loop Total Cross Section: One Scale

$$\sigma(Q^2) = \sigma_0 \left\{ 1 + \frac{\alpha_s(Q^2)}{4\pi} (3C_F) + \left(\frac{\alpha_s(Q^2)}{4\pi} \right)^2 \left[-C_F^2 \left[\frac{3}{2} \right] + C_F C_A \left[\frac{123}{2} - 44\zeta(3) \right] + C_F T n_f (-22 + 16\zeta(3)) \right] \right\}$$

Two-Loop Drell-Yan Cross Section: Two Scales

$$\begin{split} H_{q\bar{q}}^{(2),S+V}(z) &= \left[\frac{\alpha_s}{4\pi}\right]^2 \delta(1-z) \left\{ C_A C_F \left[\left[\frac{193}{3} - 24\xi(3)\right] \ln \left[\frac{Q^2}{M^2}\right] - 11 \ln^2 \left[\frac{Q^2}{M^2}\right] - \frac{12}{5}\xi(2)^2 + \frac{592}{9}\xi(2) + 28\xi(3) - \frac{1533}{12} \right] \right. \\ &+ C_F^2 \left[\left[18 - 32\xi(2)\right] \ln^2 \left[\frac{Q^2}{M^2}\right] + \left[24\xi(2) + 176\xi(3) - 93\right] \ln \left[\frac{Q^2}{M^2}\right] \right] \\ &+ \frac{8}{3}\xi(2)^2 - 70\xi(2) - 60\xi(3) + \frac{511}{4} \right] \\ &+ n_f C_F \left[2 \ln^2 \left[\frac{Q^2}{M^2}\right] - \frac{34}{3} \ln \left[\frac{Q^2}{M^2}\right] + 8\xi(3) - \frac{112}{9}\xi(2) + \frac{127}{9} \right] \right] \\ &+ C_A C_F \left[-\frac{44}{3}\mathcal{D}_0(z) \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ \left[\frac{536}{9} - 16\xi(2)\right] \mathcal{D}_0(z) - \frac{176}{3}\mathcal{D}_1(z) \right] \ln \left[\frac{Q^2}{M^2}\right] \\ &- \frac{176}{3}\mathcal{D}_2(z) + \left[\frac{1072}{9} - 32\xi(2)\right] \mathcal{D}_1(z) + \left[56\xi(3) + \frac{175}{3}\xi(2) - \frac{1616}{22}\right] \mathcal{D}_0(z) \right] \\ &+ C_F^2 \left[\left[64\mathcal{D}_1(z) + 48\mathcal{D}_0(z) \right] \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ 192\mathcal{D}_2(z) + 96\mathcal{D}_1(z) - \left[128 + 64\xi(2)\right] \mathcal{D}_0(z) \right] \ln \left[\frac{Q^2}{M^2}\right] \\ &+ 128\mathcal{D}_3(z) - (128\xi(2) + 256)\mathcal{D}_1(z) + 256\xi(3)\mathcal{D}_0(z) \right] \\ &+ n_f C_F \left[\frac{8}{3}\mathcal{D}_0(z) \ln^2 \left[\frac{Q^2}{M^2}\right] + \left\{ \frac{32}{3}\mathcal{D}_1(z) - \frac{80}{9}\mathcal{D}_0(z) \right] \ln \left[\frac{Q^2}{M^2}\right] + \frac{32}{3}\mathcal{D}_2(z) - \frac{160}{9}\mathcal{D}_1(z) + \left[\frac{224}{27} - \frac{32}{3}\xi(2)\right] \mathcal{D}_0(z) \right] \end{split}$$

Ref: CTEQ Handbook

Heavy Flavor Components will play a MORE prominent role at LHC ³⁶

Charm & Bottom PDFs Resum Logs

The NNPDF Collaboration, PLB723 (2013) 330

ACOT Extension to Higher Orders

Full ACOT

Based on the Collins-Wilczek-Zee (CWZ) Renormalization Scheme ... hence, extensible to all orders

DGLAP kernels & PDF evolution are pure MS-Bar Subtractions are MS-Bar

ACOT: $m \rightarrow 0$ limit yields MS-Bar with no finite renormalization **PDFs Discontinuous at N2LO**

 α_s Discontinuous at α_s^3

... what about the Intrinsic Heavy Quarks

Intrinsic Charm PDFs

New & Improved!!! ... "intrinsic" PDFs

DGLAP Evolution equations ...

including ordinary Q_0 and intrinsic Q_1 heavy quark

$$\begin{split} \dot{g} &= P_{gg} \otimes g + P_{gq} \otimes q + P_{gQ} \otimes Q_0 + \underbrace{P_{gQ} \otimes Q_1}_{qQ} \otimes Q_1, \\ \dot{q} &= P_{qg} \otimes g + P_{qq} \otimes q + P_{qQ} \otimes Q_0 + \underbrace{P_{qQ} \otimes Q_1}_{qQ} \otimes Q_1, \\ \dot{Q}_0 &+ \dot{Q}_1 &= P_{Qg} \otimes g + P_{Qq} \otimes q + P_{QQ} \otimes Q_0 + P_{QQ} \otimes Q_1. \end{split}$$

Equations decouple: Intrinsic component evolves independently Scale set by m_Q Adjust normalization by simple rescaling

$$\dot{Q}_1 = P_{QQ} \otimes Q_1$$
.

$$c_1(x) = \bar{c}_1(x) \propto x^2 [6x(1+x)\ln x + (1-x)(1+10x+x^2)]$$

JHEP 1507 (2015) 141 On the intrinsic bottom content of the nucleon and its impact on heavy new physics at the LHC *F. Lyonnet, A. Kusina, T. Ježo, K. Kovařík, F. Olness, I. Schienbein, J.Y. Yu arXiv:1504.05156:*

Tevatron & LHC can Access Heavy Flavor Components Directly

44

T. Stavreva, I. Schienbein, F. Arleo, K. Kovarik, F. Olness, J.Y. Yu, J.F. Owens, JHEP 1101 (2011) 152

45

D. Duggan (D0) arXiv:0906.0136

Things I won't have time to discuss

46

Isospin Symmetry used to relate PDFs

Isospin terms are comparable to NNLO QCD

QCD & EW Corrections do NOT factorize

A Review of Target Mass Corrections. Ingo Schienbein et al, J.Phys.G35:053101,2008.

Hi-x Issues: Isospin Symmetry Violation, Higher Twist, ...

The NNPDF Collaboration, PLB723 (2013) 330

CTEQ-CJ: Phys.Rev. D84 (2011) 014008

TMD & Generalized PDFs

FIG. 3: Quark densities in the \mathbf{k}_{\perp} -plane, for $m_{\pi}\approx 500$ MeV. (a) ρ_L for *u*-quarks and $\lambda = 1$, $\mathbf{S}_{\perp} = (1,0)$, (b) the same for *d*-quarks, (c) ρ_T for *u*-quarks and $\Lambda = 1$, $\mathbf{s}_{\perp} = (1,0)$, (d) the same for *d*-quarks. The error bands show the density profile at $\mathbf{k}_y = 0$ as a function of \mathbf{k}_x (scale not shown).

Two Particle Correlations

over many units of rapidity $\Delta \eta$.

50

dn

-5

Conclusion

Higher Order Processes

Search for new physics

Thinking Outside the PDF

