CP violation in kaons: BSM B-parameters and precision tests of ε_K

Weonjong Lee (SWME)

Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

INT, University of Washington, Seattle, 2015/10/07

INT, UW 1 / 76

4 1 1 1 4 1

Contents

- 🚺 Project: 1998 Present
- 2 Testing the Standard Model
 - Indirect CP violation and B_K
- $\Im \varepsilon_K$
 - Input Parameters
 - Calculation of ϵ_K from Standard Model
-) BSM Corrections to $arepsilon_K$
 - BSM Corrections
- 5 V_{cb}
 - V_{cb} on the lattice
 - B_s meson mass
 - Description
 - Conclusion and Future Plan
 - Bibliography

FNAL/MILC/SWME Collaboration 2012 — Present

Weonjong Lee (SWME) (SNU)

INT, UW 3 / 76

A B F A B F

FNAL/MILC/SWME Collaboration I

- Seoul National University (SWME): Prof. Weonjong Lee Dr. Jon Bailey (RA Prof.), Dr. Nigel Cundy (RA Prof.) 10 graduate students.
- University of Washington (SWME): Prof. Stephen Sharpe
- Brookhaven National Laboratory (SWME): Dr. Chulwoo Jung

A D A D A D A

FNAL/MILC/SWME Collaboration II

- Los Alamos National Laboratory (SWME): Dr. Boram Yoon
- Fermi National Accelerator Laboratory (FNAL): Dr. Andreas S. Kronfeld.
- University of Utah (MILC): Prof. Carleton Detar, Prof. Mehmet B. Oktay.
- KISTI Supercomputing Center (SWME): Dr. Jangho Kim (Postdoc)

- A B A A B A

Lattice Gauge Theory Research Center (SNU)

- Center Leader: Prof. Weonjong Lee.
- Research Assistant Prof.: Dr. Jon Bailey
- Research Assitant Prof.: Dr. Nigel Cundy
- 10+1 graduate students
- Secretary: Mrs. Sora Park.
- more details on http://lgt.snu.ac.kr/.

Group Photo (2014)

Weonjong Lee (SWME) (SNU)

3 INT, UW 7 / 76

< 注→

CP Violation and B_K

イロト イ団ト イヨト イヨト

Kaon Eigenstates and arepsilon

• Flavor eigenstates, $K^0 = (\bar{s}d)$ and $\bar{K}^0 = (s\bar{d})$ mix via box diagrams.

Kaon Eigenstates and ε

• Flavor eigenstates, $K^0 = (\bar{s}d)$ and $\bar{K}^0 = (s\bar{d})$ mix via box diagrams.

• CP eigenstates $K_1(\text{even})$ and $K_2(\text{odd})$.

$$K_1 = \frac{1}{\sqrt{2}}(K^0 - \bar{K}^0) \qquad K_2 = \frac{1}{\sqrt{2}}(K^0 + \bar{K}^0)$$

Kaon Eigenstates and arepsilon

• Flavor eigenstates, $K^0 = (\bar{s}d)$ and $\bar{K}^0 = (s\bar{d})$ mix via box diagrams.

• CP eigenstates $K_1(\text{even})$ and $K_2(\text{odd})$.

$$K_1 = \frac{1}{\sqrt{2}}(K^0 - \bar{K}^0) \qquad K_2 = \frac{1}{\sqrt{2}}(K^0 + \bar{K}^0)$$

• Neutral Kaon eigenstates K_S and K_L .

$$K_S = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}} (K_1 + \bar{\varepsilon}K_2) \qquad K_L = \frac{1}{\sqrt{1+|\bar{\varepsilon}|^2}} (K_2 + \bar{\varepsilon}K_1)$$

Weonjong Lee (SWME) (SNU)

Indirect CP violation and direct CP violation

< ∃ > <

ε_K and \hat{B}_K , V_{cb} I

• Definition of ε_K

$$\varepsilon_K = \frac{A[K_L \to (\pi\pi)_{I=0}]}{A[K_S \to (\pi\pi)_{I=0}]}$$

• Master formula for ε_K in the Standard Model.

$$\varepsilon_{K} = \exp(i\theta) \sqrt{2} \sin(\theta) \left(C_{\varepsilon} X_{\mathsf{SD}} \hat{B}_{K} + \frac{\xi_{0}}{\sqrt{2}} + \xi_{\mathsf{LD}} \right) + \mathcal{O}(\omega\varepsilon') + \mathcal{O}(\xi_{0}\Gamma_{2}/\Gamma_{1}) X_{\mathsf{SD}} = \operatorname{Im}\lambda_{t} \Big[\operatorname{Re} \lambda_{c} \eta_{cc} S_{0}(x_{c}) - \operatorname{Re} \lambda_{t} \eta_{tt} S_{0}(x_{t}) - (\operatorname{Re} \lambda_{c} - \operatorname{Re} \lambda_{t}) \eta_{ct} S_{0}(x_{c}, x_{t}) \Big]$$

Weonjong Lee (SWME) (SNU)

▲ 王 ▶ 王 少へで INT, UW 11 / 76

イロト イヨト イヨト イヨト

$arepsilon_K$ and \hat{B}_K , V_{cb} []

$$\begin{split} \lambda_i &= V_{is}^* V_{id}, \qquad x_i = m_i^2 / M_W^2, \qquad C_\varepsilon = \frac{G_F^2 F_K^2 m_K M_W^2}{6\sqrt{2} \pi^2 \Delta M_K} \\ \frac{\xi_0}{\sqrt{2}} &= \frac{1}{\sqrt{2}} \frac{\text{Im} A_0}{\text{Re} A_0} \approx -5\% \\ \xi_{\text{LD}} &= \text{Long Distance Effect} \approx 2\% \quad \longrightarrow \text{systematic error} \end{split}$$

Inami-Lim functions:

$$S_0(x_i) = x_i \left[\frac{1}{4} + \frac{9}{4(1-x_i)} - \frac{3}{2(1-x_i)^2} - \frac{3x_i^2 \ln x_i}{(1-x_i)^3} \right],$$

$$S_0(x_i, x_j) = \left\{ \frac{x_i x_j}{x_i - x_j} \left[\frac{1}{4} + \frac{3}{2(1-x_i)} - \frac{3}{4(1-x_i)^2} \right] \ln x_i - (i \leftrightarrow j) \right\} - \frac{3x_i x_j}{4(1-x_i)(1-x_j)}$$

Weonjong Lee (SWME) (SNU)

- 2 INT, UW 12 / 76

イロン イヨン イヨン イヨン

1 12

$arepsilon_K$ and \hat{B}_K , V_{cb} []]

$$S_0(x_t) \longrightarrow +70\%$$

$$S_0(x_c, x_t) \longrightarrow +44\%$$

$$S_0(x_c) \longrightarrow -14\%$$

• Dominant contribution (\approx 70%) comes with $|V_{cb}|^4$.

$$Im\lambda_t \cdot Re\lambda_t = \bar{\eta}\lambda^2 |V_{cb}|^4 (1-\bar{\rho})$$
$$Re\lambda_c = -\lambda(1-\frac{\lambda^2}{2}) + \mathcal{O}(\lambda^5)$$
$$Re\lambda_t = -(1-\frac{\lambda^2}{2})A^2\lambda^5(1-\bar{\rho}) + \mathcal{O}(\lambda^7)$$
$$Im\lambda_t = \eta A^2\lambda^5 + \mathcal{O}(\lambda^7)$$

Weonjong Lee (SWME) (SNU)

▲ 王 ▶ 王 少へへ INT, UW 13 / 76

(日) (同) (三) (三)

$arepsilon_K$ and \hat{B}_K , V_{cb} IV

• Definition of \hat{B}_K in standard model.

$$B_{K} = \frac{\langle \bar{K}_{0} | [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] [\bar{s}\gamma_{\mu}(1-\gamma_{5})d] | K_{0} \rangle}{\frac{8}{3} \langle \bar{K}_{0} | \bar{s}\gamma_{\mu}\gamma_{5}d | 0 \rangle \langle 0 | \bar{s}\gamma_{\mu}\gamma_{5}d | K_{0} \rangle}$$
$$\hat{B}_{K} = C(\mu)B_{K}(\mu), \qquad C(\mu) = \alpha_{s}(\mu)^{-\frac{\gamma_{0}}{2b_{0}}} [1+\alpha_{s}(\mu)J_{3}]$$

• Experiment:

$$\varepsilon_K = (2.228 \pm 0.011) \times 10^{-3} \times e^{i\phi_{\varepsilon}}$$

$$\phi_{\varepsilon} = 43.52(5)^{\circ}$$

Weonjong Lee (SWME) (SNU)

▲ 王 ト 王 つへへ INT, UW 14 / 76

(日) (同) (三) (三)

ε_K on the lattice

イロト イヨト イヨト イヨト

Unitarity Triangle $\rightarrow (\bar{ ho}, \bar{\eta})$

- 4 回 ト 4 回 ト 4 回 ト

Global UT Fit and Angle-Only-Fit (AOF)

Global UT Fit

- Input: $|V_{ub}|/|V_{cb}|$, Δm_d , $\Delta m_s/\Delta m_d$, ε_K , and $\sin(2\beta)$.
- Determine the UT apex $(\bar{\rho}, \bar{\eta})$.
- Take λ from

 $|V_{us}| = \lambda + \mathcal{O}(\lambda^7),$

which comes from K_{l3} and $K_{\mu 2}$.

• Disadvantage: unwanted correlation between $(\bar{\rho}, \bar{\eta})$ and ε_K .

AOF

- Input: $\sin(2\beta)$, $\cos(2\beta)$, $\sin(\gamma)$, $\cos(\gamma)$, $\sin(2\beta + \gamma)$, $\cos(2\beta + \gamma)$, and $\sin(2\alpha)$.
- Determine the UT apex $(\bar{\rho}, \bar{\eta})$.
- Take λ from $|V_{us}| = \lambda + O(\lambda^7)$, which comes from K_{l3} and $K_{\mu 2}$.
- Use $|V_{cb}|$ to determine A.

 $|V_{cb}| = A\lambda^2 + \mathcal{O}(\lambda^7)$

• Advantage: NO correlation between $(\bar{\rho}, \bar{\eta})$ and ε_K .

イロト イポト イヨト イヨト

Inputs of Angle-Only-Fit (AOF)

- $A_{CP}(J/\psi K_s) \rightarrow S_{\psi K_s} = \sin(2\beta)$ with assumption of $S_{\psi K_s} \gg C_{\psi K_s}$.
- $(B \to DK) + (B \to [K\pi]_D K) + (\text{Dalitz method})$ give $\sin(\gamma)$ and $\cos(\gamma)$.
- $S(D^-\pi^+)$ and $S(D^+\pi^-)$ give $\sin(2\beta + \gamma)$ and $\cos(2\beta + \gamma)$.
- $(B^0 \to \pi^+ \pi^-) + (B^0 \to \rho^+ \rho^-) + (B^0 \to (\rho \pi)^0)$ give $\sin(2\alpha)$.
- Combining all of these gives β , γ , and α , which leads to the UT apex $(\bar{\rho}, \bar{\eta})$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Wolfenstein Parameters

Input Parameters for Angle-Only-Fit (AOF)

- ϵ_K , \hat{B}_K , and $|V_{cb}|$ are used as inputs to determine the UT angles in the global fit of UTfit and CKMfitter.
- Instead, we can use angle-only-fit result for the UT apex (ρ̄, η̄).
- Then, we can take λ independently from

 $|V_{us}| = \lambda + \mathcal{O}(\lambda^7) \,,$

which comes from K_{l3} and $K_{\mu 2}$.

• Use $|V_{cb}|$ instead of A.

$$|V_{cb}| = A\lambda^2 + \mathcal{O}(\lambda^7)$$

λ	0.22537(61)	[1] CKMfitter
	0.2255(6)	[1] UTfit
	0.2253(8)	[1] $ V_{us} $ (AOF)
ρ	0.117(21)	[1] CKMfitter
	0.124(24)	[1] UTfit
	0.139(29)	[2] UTfit (AOF)
$\bar{\eta}$	0.353(13)	[1] CKMfitter
	0.354(15)	[1] UTfit
	0.337(16)	[2] UTfit (AOF)

(人間) トイヨト イヨト

Input Parameters of B_K , V_{cb} and others

B_K

\hat{B}_K	0.7661(99)	[3] FLAG
	0.7379(47)(365)	[4] SWME

$$V_{cb}$$

$V_{1} \times 10^{-3}$	42.21(78)	[5] Incl.
V _{Cb} ×10	39.04(49)(53)(19)	[6] Excl.

Others

G_F	$1.1663787(6) \times 10^{-5} \text{ GeV}^{-2}$	[1]
M_W	80.385(15) GeV	[1]
$m_c(m_c)$	1.275(25) GeV	[1]
$m_t(m_t)$	$163.3(2.7) {\rm GeV}$	[7]
η_{cc}	1.72(27)	[8]
η_{tt}	0.5765(65)	[9]
η_{ct}	0.496(47)	[10]
θ	$43.52(5)^{\circ}$	[1]
m_{K^0}	497.614(24) MeV	[1]
ΔM_K	$3.484(6) imes 10^{-12} { m MeV}$	[1]
F_K	156.2(7) MeV	[1]

イロト イ団ト イヨト イヨト

<13> ■ シ۹C INT, UW 20 / 76

$\xi_0 \\ {\rm Input \ Parameters}$

$$\xi_0 = \frac{\text{Re}A_0}{\text{Im}A_0}$$

$$\xi_0 -1.63(19)(20) \times 10^{-4} \quad \text{[11]}$$

 RBC-UKQCD collaboration performs lattice calculation of ImA₂. From this result, ξ₀ can be obtained by the relation

$$\operatorname{Re}\left(\frac{\epsilon'_{K}}{\epsilon_{K}}\right) = \frac{1}{\sqrt{2}|\epsilon_{K}|} \omega \left(\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \xi_{0}\right).$$

Other inputs ω , ϵ_K and ϵ'_K/ϵ_K are taken from the experimental values.

• Here, we choose an approximation of $\cos(\phi_{\epsilon'} - \phi_{\epsilon}) \approx 1$.

•
$$\phi_{\epsilon} = 43.52(5), \ \phi_{\epsilon'} = 42.3(1.5)$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

ϵ_K : FLAG \hat{B}_K , AOF of $(ar{ ho},ar{\eta})$, V_{us}

Figure: Inclusive V_{cb}

Figure: Exclusive V_{cb}

• With exclusive V_{cb} , it shows 3.4σ tension.

$$\begin{aligned} \epsilon_K^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_K^{SM} &= 1.61(18) \times 10^{-3} \end{aligned}$$

ϵ_K : SWME \hat{B}_K , AOF of $(\bar{ ho}, \bar{\eta})$, V_{us}

• With exclusive V_{cb} , it shows 3.5σ tension.

$$\begin{split} \epsilon_{K}^{Exp} &= 2.228(11) \times 10^{-3} \\ \epsilon_{K}^{SM} &= 1.55(19) \times 10^{-3} \end{split}$$

Current Status of ε_K

• FLAG 2014: (in units of 1.0×10^{-3} , AOF)

$\varepsilon_K = 1.61 \pm 0.18$	for Exclusive V_{cb} (Lattice QCD)
$\varepsilon_K = 2.15 \pm 0.23$	for Inclusive V_{cb} (QCD Sum Rule)

• Experiments:

$$\varepsilon_K = 2.228 \pm 0.011$$

- Hence, we observe 3.4 σ difference between the SM theory (Lattice QCD) and experiments.
- What does this mean? \longrightarrow Breakdown of SM ?

A B F A B F

Time Evolution of $\Delta \varepsilon_K$ on the Lattice

•
$$\Delta \varepsilon_K \equiv \varepsilon_K^{\text{exp}} - \varepsilon_K^{\text{SM}}$$

Weonjong Lee (SWME) (SNU)

INT, UW 25 / 76

Error Budget of Exclusive ε_K

source	error (%)	memo		
V_{cb}	39.3	Exclusive (FNAL/MILC)		
$ar\eta$	20.4	AOF		
η_{ct}	16.9	c-t Box		
η_{cc}	7.1	c-c Box		
$ar{ ho}$	5.4	AOF		
m_t	2.4			
ξ_0	2.2	$Im(A_0)/Re(A_0)$		
ξld	2.0	Long-distance		
\hat{B}_K	1.5	FLAG		
m_c	1.0	Charm quark mass		
÷	÷			

Weonjong Lee (SWME) (SNU)

▶ < ≣ ▶ ≣ ∽ < < INT, UW 26 / 76

イロト イヨト イヨト イヨト

BSM Corrections to ε_K

イロト イ団ト イヨト イヨト

BSM Four Fermion Operators I

• New $\Delta S = 2$ four-fermion operators that contribute to Kaon Mixing

$$Q_{1} = [\bar{s}\gamma_{\mu}(1-\gamma_{5})d][\bar{s}\gamma_{\mu}(1-\gamma_{5})d] \to B_{K}$$

$$Q_{2} = [\bar{s}^{a}(1-\gamma_{5})d^{a}][\bar{s}^{b}(1-\gamma_{5})d^{b}]$$

$$Q_{3} = [\bar{s}^{a}\sigma_{\mu\nu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\sigma_{\mu\nu}(1-\gamma_{5})d^{b}]$$

$$Q_{4} = [\bar{s}^{a}(1-\gamma_{5})d^{a}][\bar{s}^{b}(1+\gamma_{5})d^{b}]$$

$$Q_{5} = [\bar{s}^{a}\gamma_{\mu}(1-\gamma_{5})d^{a}][\bar{s}^{b}\gamma_{\mu}(1+\gamma_{5})d^{b}]$$

INT, UW 28 / 76

(日) (同) (三) (三)

BSM Four Fermion Operators II

• In general, there are additional operators that can be obtained from $Q_{1,2,3}$ by changing $L \rightarrow R$, but we do not consider. (Matrix elements for left- and right-handed operators are the same for Kaon mixing.)

$$\mathcal{H}_{eff}^{\Delta S=2} = \sum_{i=1}^{5} C_i(\mu) Q_i(\mu)$$

• With the constraint from experiment, calculating corresponding hadronic matrix elements

 $\langle \bar{K}_0 | Q_i | K_0 \rangle$

INT, UW

29 / 76

can impose strong constraints on BSM models.

۲

Lattice Calculation : BSM B-parameters

B-parameters

$$B_{K} = \frac{\langle \bar{K}_{0} | Q_{1} | K_{0} \rangle}{8/3 \langle \bar{K}_{0} | \bar{s} \gamma_{0} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{0} \gamma_{5} d | K_{0} \rangle} \qquad \text{SM, BSM}$$

$$B_{i} = \frac{\langle \bar{K}_{0} | Q_{i} | K_{0} \rangle}{N_{i} \langle \bar{K}_{0} | \bar{s} \gamma_{5} d | 0 \rangle \langle 0 | \bar{s} \gamma_{5} d | K_{0} \rangle} \qquad \text{BSM}$$

Where, i = 2, 3, 4, 5 and $(N_2, N_3, N_4, N_5) = (5/3, 4, -2, 4/3)$ • Golden Combinations : G_i

$$G_{23} \equiv \frac{B_2}{B_3} \qquad \qquad G_{45} \equiv \frac{B_4}{B_5}$$
$$G_{24} \equiv B_2 \cdot B_4 \qquad \qquad G_{21} \equiv \frac{B_2}{B_K}$$

 Advantage: no SU(2) chiral logs at NLO order in G_i (Golden Combinations)

Weonjong Lee (SWME) (SNU)

INT, UW 30 / 76

$N_f = 2 + 1$ QCD: MILC asqtad lattices

<i>a</i> (fm)	am_l/am_s	geometry	ens×meas	ID	Status
0.09	0.0062/0.0310	$28^3 \times 96$	995×9	F1	
0.09	0.0031/0.0310	$40^3 \times 96$	959 imes 9	F2	
0.09	0.0093/0.0310	$28^3 \times 96$	949×9	F3	
0.09	0.0124/0.0310	$28^3 \times 96$	1995×9	F4	
0.09	0.00465/0.0310	$32^3 \times 96$	651×9	F5	
0.09	0.0062/0.0186	$28^3 \times 96$	950×9	F6	New
0.09	0.0031/0.0186	$40^3 \times 96$	701×9	F7	New
0.09	0.00155/0.0310	$64^3 \times 96$	790×9	F9	New
0.06	0.0036/0.018	$48^3 \times 144$	749×9	S1	
0.06	0.0025/0.018	$56^3 \times 144$	799 imes 9	S2	
0.06	0.0072/0.018	$48^3 \times 144$	593×9	S3	
0.06	0.0054/0.018	$48^3 \times 144$	582×9	S4	
0.06	0.0018/0.018	$64^3 \times 144$	572×9	S5	New
0.045	0.0030/0.015	$64^3 \times 192$	747×1	U1	

Weonjong Lee (SWME) (SNU)

INT, UW 31 / 76

Data Analysis

Calculate raw data

Calculate B_K and G_i for different valence quark mass combinations for each gauge ensemble. ($\overline{\text{MS}}$ scheme with NDR.)

• Chiral fitting (valence quarks)

X-fit: Fix valence strange quark mass and extrapolate the light quark mass m_x to physical down quark mass.

Y-fit: Extrapolate m_y to physical strange quark mass.

RG Evolution

Obtain results at $\mu_f = 2$ GeV or 3GeV by running from $\mu_i = 1/a$.

• Continuum-chiral extrapolation (sea quarks) Perform [1–3] for different lattices and extrapolate to a = 0 and to physical sea quark masses.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Raw Data of G_{23} and G_{45}

• We compare three ensembles which have the same ratio of sea quark mass $m_\ell/m_s=1/5.$

SchPT X-fit and Y-fit of B_K

NNNLO X-fit

$$B_K \quad (NNNLO) \\ = c_1 F_0 + c_2 X + c_3 X^2 \\ + c_4 X^2 (\ln(X))^2 \\ + c_5 X^2 \ln(X) + c_6 X^3$$

Here, F_0 contains the chiral logs. Bayesian constraints on $c_{4-6}=0\pm 1$.

• Y-fit(U1 ensemble)

$$B_K(\mathsf{Y-fit}) = b_1 + b_2 Y_P$$

Weonjong Lee (SWME) (SNU)

UW INT

INT, UW 34 / 76
SchPT X-fit and Y-fit of G_{23}

NNNLO X-fit

$$G_{23} \quad (\text{NNNLO}) \\ = c_1 + c_2 X + c_3 X^2 \\ + c_4 X^2 (\ln(X))^2 \\ + c_5 X^2 \ln(X) + c_6 X^3$$

Bayesian constraints on $c_{4-6} = 0 \pm 1$.

• Y-fit(U1 ensemble)

$$G_{23}(\mathsf{Y}\text{-}\mathsf{fit}) = b_1 + b_2 Y_P$$

Weonjong Lee (SWME) (SNU)

INT, UW 35 / 76

SchPT X-fit and Y-fit of G_{45}

NNNLO X-fit

$$\begin{array}{rl} G_{45} & ({\sf NNNLO}) \\ = & c_1 + c_2 X + c_3 X^2 \\ + & c_4 X^2 (\ln(X))^2 \\ + & c_5 X^2 {\ln(X)} + c_6 X^3 \end{array}$$

Bayesian constraints on $c_{4-6} = 0 \pm 1$.

• Y-fit(U1 ensemble)

$$G_{45}(\mathsf{Y}\text{-}\mathsf{fit}) = b_1 + b_2 Y_P$$

Weonjong Lee (SWME) (SNU)

INT, UW 36 / 76

Chiral-Continuum Fit

- We use 14 data points from 14 MILC ensembles in the fitting. We extrapolate the results to physical point $a=0,~L_P=m_{\pi_0}^2$, and $S_P=m_{s\bar{s},{\rm phys}}^2$.
- Fitting functional forms come from the SU(2) SChPT theory.

•
$$\Delta S_P \equiv S_P - m_{s\bar{s}, \text{phys}}^2$$

fit type	fitting functional form	Bayesian Constraints
F_B^1	$d_1 + d_2 \frac{L_P}{\Lambda_{\chi}^2} + d_3 \frac{\Delta S_P}{\Lambda_{\chi}^2} + d_4 (a\Lambda_Q)^2$	$d_2 \cdots d_4 = 0 \pm 2$
F_B^2	$F_B^1 + d_5(a\Lambda_Q)^2 \frac{L_P}{\Lambda_\chi^2} + d_6(a\Lambda_Q)^2 \frac{\Delta S_P}{\Lambda_\chi^2}$	$d_2 \cdots d_6 = 0 \pm 2$
F_B^4	$F_B^2 + d_7(a\Lambda_Q)^2\alpha_s + d_8\alpha_s^2 + d_9(a\Lambda_Q)^4$	$d_2 \cdots d_9 = 0 \pm 2$

Weonjong Lee (SWME) (SNU)

INT, UW 37 / 76

.

Chiral-Continuum Fit : Fitting quality

• We can see that the χ^2 values for fitting functional forms get saturated as we add higher order terms in the fitting functional forms. We choose F_B^1 -fit results as central values for B_K , G_{24} , and G_{21} . For G_{23} and G_{45} , we choose those of F_B^4 as the central values.

fit type	B_K	G_{23}	G_{45}	G_{24}	G_{21}
F_B^1	1.49	2.01	4.06	1.08	1.25
F_B^2	1.49	1.86	3.75	1.02	1.22
F_B^3	1.48	1.42	1.53	0.93	1.19
F_B^4	1.48	1.32	1.38	0.91	1.18
$F_B^{\overline{5}}$	1.48	1.30	1.33	0.90	1.17
$F_B^{\overline{6}}$	1.48	1.22	1.15	0.88	1.13

Weonjong Lee (SWME) (SNU)

INT, UW 38 / 76

Chiral-Continuum Fit of B_K

• The result of Chiral-Continuum fit. The straight line in the plots represents the value of fitting function at fixed S_P and a^2 for fine $(a \approx 0.09 \text{fm})$, superfine $(a \approx 0.06 \text{fm})$, and ultrafine $(a \approx 0.045 \text{fm})$ gauge ensembles.

Chiral-Continuum Fit of $G_{21} = B_2/B_K$

INT, UW 40 / 76

• = • • -

Chiral-Continuum Fit of $G_{24} = B_2 \cdot B_4$

INT, UW 41 / 76

(3)

Chiral-Continuum Fit of $G_{45} = B_4/B_5$

- The fitting quality for F_B^1 fit is terribly poor.
- Hence, we have to choose the F_B^4 fit as our central value.

< 書 ▶ <

Chiral-Continuum Fit of $G_{23} = B_2/B_3$

- The fitting quality for F_B^1 fit is poor.
- Hence, we have to choose the F_B^4 fit as our central value.

Historical Progress

- $2013(PRD)^1 \rightarrow 2014(ens)$: Add more gauge ensembles.
- 2014(ens) \rightarrow 2014(A.D.) : Correct two-loop contribution to pseudoscalar anomalous dimension.
- 2014(A.D.) \rightarrow 2014(final) : Change fit type from F_B^1 to F_B^4 for G_{23} and G_{45} .

$\mu = 3 \text{GeV}$	2013(PRD) ¹	2014(ens)	2014(A.D.)	2014(final)
B_K	0.519(7)(23)	0.518(3)	0.518(4)	0.518(4)(24)
B_2	0.549(3)(28)	0.547(1)	0.525(1)	0.525(1)(25)
B_3^{Buras}	0.390(2)(17)	0.390(1)	0.375(1)	0.358(4)(23)
B_3^{SUSY}	0.790(30)	0.783(2)	0.750(2)	0.774(6)(34)
B_4	1.033(6)(46)	1.024(1)	0.981(3)	0.981(3)(71)
B_5	0.855(6)(43)	0.853(3)	0.817(2)	0.748(9)(76)

Weonjong Lee (SWME) (SNU)

Comparison in 2014

• We obtain B_i from results of G_i and B_K .

Dominant error
$$egin{cases} {
m Perturbative matching: 4.4\%} \\ {
m Chiral-continuum extrap: 1.3} \sim 10.1\% \end{cases}$$

• RBC-UKQCD and ETM use RI-MOM for matching.

	SWME14	RBC-UK12	ETM12
B_K	0.518(4)(24)	0.53(2)	0.51(2)
B_2	0.525(1)(25)	0.43(5)	0.47(2)
B_3^{Buras}	0.358(4)(23)	N.A.	N.A.
B_3^{SUSY}	0.774(6)(34)	0.75(9)	0.78(4)
B_4	0.981(3)(71)	0.69(7)	0.75(3)
B_5	0.748(9)(76)	0.47(6)	0.60(3)

(日) (同) (三) (三)

Comparison in 2015

- We obtain B_i from G_i and B_K using the perturbative matching.
- RBC-UKQCD: RI-MOM (2012) \rightarrow RI-SMOM (2015)
- ETM still uses RI-MOM for matching.

	SWME14	RBC-UK12	RBC-UK15	ETM12	ETM15
B_K	0.518(4)(24)	0.53(2)	0.53(2)	0.51(2)	0.51(2)
B_2	0.525(1)(25)	0.43(5)	0.54(3)	0.47(2)	0.46(3)
B_3^{Buras}	0.358(4)(23)	N.A.	N.A.	N.A.	N.A.
B_3^{SUSY}	0.774(6)(34)	0.75(9)	0.79(7)	0.78(4)	0.79(5)
B_4	0.981(3)(71)	0.69(7)	0.93(2)	0.75(3)	0.78(5)
B_5	0.748(9)(76)	0.47(6)	0.68(5)	0.60(3)	0.49(4)

* RBC-UK15: the errors are preliminary (the error budget is incomplete).

(日) (同) (三) (三)

Comparison of B_4

- SWME agree with RBC-UKQCD (2015, RI-SMOM)
- SWME do NOT agree with RBC-UKQCD (2012, RI-MOM) and ETM.

Weonjong Lee (SWME) (SNU)

INT, UW 47 / 76

Comparison of B_5

- SWME agree with RBC-UKQCD (2015, RI-SMOM)
- SWME do NOT agree with RBC-UKQCD (2012, RI-MOM) and ETM.

Weonjong Lee (SWME) (SNU)

INT, UW 48 / 76

Conclusion

- Our results (SWME) agrees with those of RBC-UKQCD (2015, RI-SMOM).
- Our results of B_4 and B_5 do NOT agree with the results of RBC-UKQCD (2012, RI-MOM) and ETM collaborations.
- The large difference between RBC-UKQCD (2015, RI-SMOM) and RBC-UKQCD (2012, RI-MOM) indicates that the systematic uncertainty in non-perturbative renormalization might be underestimated for BSM B-parameters.
- We plan to use RI-MOM and RI-SMOM to obtain the matching factors in near future.

イロト イポト イヨト イヨト

V_{cb} on the lattice

イロト イ団ト イヨト イヨト

How to obtain V_{cb}

- Exclusive V_{cb} determination.
- $\bar{B} \rightarrow D + \ell + \bar{\nu}_{\ell}$
- $\bar{B} \to D^* + \ell + \bar{\nu}_\ell$

イロト イヨト イヨト イヨト

 V_{cb}

What to calculate on the lattice.

•
$$\langle D|Q_1|\bar{B}\rangle$$
 with $Q_1 = V_{\mu}$, S .
 $V_{\mu} = \bar{b}\gamma_{\mu}c$
 $S = \bar{b}c$
• $\langle D^*|Q_2|\bar{B}\rangle$ with $Q_2 = A_{\mu}$, P .
 $A_{\mu} = \bar{b}\gamma_{\mu}\gamma_5c$
 $P = \bar{b}\gamma_5c$
d
 d

Weonjong Lee (SWME) (SNU)

▲ 王 → 王 → へ へ INT, UW 52 / 76

イロト イヨト イヨト イヨト

B_s meson mass

▲ ■ ▶ ■ つへへ INT, UW 53 / 76

<ロ> (日) (日) (日) (日) (日)

Motivation

- In heavy flavor physics, V_{cb} is of enormous interest.
- The dominant error in ϵ_K comes from V_{cb} .

$$\begin{cases} 39.3\% & \leftarrow V_{cb} \\ 1.5\% & \leftarrow \hat{B}_K \end{cases}$$

• 3.4σ tension is observed using most up to date input parameters.

 V_{cl}

$$|\epsilon_K|^{exp} = 2.228(11) \times 10^{-3}$$
 (PDG)
 $|\epsilon_K|^{SM} = 1.61(18) \times 10^{-3}$ (FLAG \hat{B}_K , FNAL/MILC V_{cb})

- More precise determination of V_{cb} might lead to larger tension.
- Because the dominant error in V_{cb} comes from heavy quark discretization effect, we plan to use the OK action for the form factor calculation of the semi-leptonic decays

$$\bar{B} \to D^* l \nu_l , \qquad \bar{B} \to D l \nu_l .$$

• Here, we will verify the improvement in B meson spectrum.

B_s meson mass

 V_{cb}

OK Action (mass form)

$$\begin{split} S_{\text{OK}} &= S_{\text{Fermilab}} + S_{\text{new}}, \qquad S_{\text{Fermilab}} = S_0 + S_B + S_E \\ S_0 &= m_0 \sum_x \bar{\psi}(x)\psi(x) + \sum_x \bar{\psi}(x)\gamma_4 D_4\psi(x) - \frac{1}{2}a\sum_x \bar{\psi}(x)\Delta_4\psi(x) \\ &+ \zeta \sum_x \bar{\psi}(x)\overrightarrow{\gamma} \cdot \overrightarrow{D}\psi(x) - \frac{1}{2}r_s\zeta a\sum_x \bar{\psi}(x)\Delta^{(3)}\psi(x) \\ &= \mathcal{O}(1) + \mathcal{O}(\lambda) \qquad [\lambda \sim a\Lambda, \Lambda/m_Q] \\ S_B &= -\frac{1}{2}c_B\zeta a\sum_x \bar{\psi}(x)i\overrightarrow{\Sigma} \cdot \overrightarrow{B}\psi(x) \rightarrow \mathcal{O}(\lambda) \\ S_E &= -\frac{1}{2}c_E\zeta a\sum_x \bar{\psi}(x)\overrightarrow{\alpha} \cdot \overrightarrow{E}\psi(x) \rightarrow \mathcal{O}(\lambda^2) \qquad (c_E \neq c_B: \text{ OK action}) \\ m_0 &= \frac{1}{2\kappa_t} - (1 + 3r_s\zeta + 18c_4) \end{split}$$

[M. B. Oktay and A. S. Kronfeld, PRD **78**, 014504 (2008)]

[A. El-Khadra, A. S. Kronfeld and P. B. Mackenzie, PRD 55, 3933 (1997)]

Weonjong Lee (SWME) (SNU)

INT, UW 55 / 76

500

OK Action (mass form)

$$S_{\text{new}} = \mathcal{O}(\lambda^3) = c_1 a^2 \sum_x \bar{\psi}(x) \sum_i \gamma_i D_i \Delta_i \psi(x) + c_2 a^2 \sum_x \bar{\psi}(x) \{ \overrightarrow{\gamma} \cdot \overrightarrow{D}, \Delta^{(3)} \} \psi(x) + c_3 a^2 \sum_x \bar{\psi}(x) \{ \overrightarrow{\gamma} \cdot \overrightarrow{D}, i \overrightarrow{\Sigma} \cdot \overrightarrow{B} \} \psi(x) + c_{EE} a^2 \sum_x \bar{\psi}(x) \{ \gamma_4 D_4, \overrightarrow{\alpha} \cdot \overrightarrow{E} \} \psi(x) + c_4 a^3 \sum_x \bar{\psi}(x) \sum_i \Delta_i^2 \psi(x) + c_5 a^3 \sum_x \bar{\psi}(x) \sum_i \sum_{j \neq i} \{ i \Sigma_i B_i, \Delta_j \} \psi(x)$$

Weonjong Lee (SWME) (SNU)

▶ ◀ Ē ▶ Ē ∽ @ INT, UW 56 / 76

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

OK Action: Tadpole Improvement (hopping form)

$$c_{5}a^{3}\bar{\psi}(x)\sum_{i}\sum_{j\neq i}\{i\Sigma_{i}B_{i|\mathrm{at}}, \Delta_{j|\mathrm{at}}\}\psi(x)$$

$$=\mathrm{i}\frac{2\tilde{c}_{5}\tilde{\kappa}_{t}}{4u_{0}^{2}}\bar{\psi}_{x}\sum_{i}\Sigma_{i}T_{i}^{(3)}\psi_{x}-\mathrm{i}\frac{32\tilde{c}_{5}\tilde{\kappa}_{t}}{2u_{0}^{3}}\bar{\psi}_{x}\overrightarrow{\Sigma}\cdot\overrightarrow{B}\psi_{x}$$

$$+\mathrm{i}\frac{2\tilde{c}_{5}\tilde{\kappa}_{t}}{u_{0}^{4}}\bar{\psi}_{x}\sum_{i}\left(-\frac{1}{4}\Sigma_{i}T_{i}^{(3)}+\sum_{j\neq i}\{\Sigma_{i}B_{i},(T_{j}+T_{-j})\}\right)\psi_{x}$$

$$T_i^{(3)} \equiv \sum_{j,k=1}^3 \epsilon_{ijk} \Big(T_{-k} (T_j - T_{-j}) T_k - T_k (T_j - T_{-j}) T_{-k} \Big)$$

Weonjong Lee (SWME) (SNU)

· ▲ ≣ ▶ ≣ ∽ � @ INT, UW 57 / 76

イロト イヨト イヨト イヨト

Measurement

Gauge Ensemble, Heavy Quark κ , Meson Momentum

• MILC asqtad
$$N_f = 2 + 1$$

• 11 momenta $|pa| = 0, 0.099, \cdots, 1.26$

INT, UW 58 / 76

- 4 同 6 4 日 6 4 日 6

Measurement: Interpolating Operator

Meson correlator

$$C(t, \boldsymbol{p}) = \sum_{\boldsymbol{x}} e^{\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}} \langle \mathcal{O}^{\dagger}(t, \boldsymbol{x}) \mathcal{O}(0, \boldsymbol{0}) \rangle$$

• Heavy-light meson interpolating operator

$$\mathcal{O}_{\mathbf{t}}(x) = \bar{\psi}_{\alpha}(x)\Gamma_{\alpha\beta}\Omega_{\beta\mathbf{t}}(x)\chi(x)$$

$$\Gamma = \begin{cases} \gamma_5 & (\mathsf{Pseudo-scalar})\\ \gamma_{\mu} & (\mathsf{Vector}) \end{cases}, \ \Omega(x) \equiv \gamma_1^{x_1}\gamma_2^{x_2}\gamma_3^{x_3}\gamma_4^{x_4} \end{cases}$$

• Quarkonium interpolating operator

$$\mathcal{O}(x) = \bar{\psi}_{\alpha}(x)\Gamma_{\alpha\beta}\psi_{\beta}(x)$$

[Wingate et al., PRD 67, 054505 (2003), C. Bernard et al., PRD 83, 034503 (2011)]

Description

Correlator Fit

fit function

$$f(t) = A\{e^{-Et} + e^{-E(T-t)}\} + (-1)^{t}A^{p}\{e^{-E^{p}t} + e^{-E^{p}(T-t)}\}$$

fit residual

$$r(t) = rac{C(t) - f(t)}{|C(t)|}$$
 , where $C(t)$ is data.

Correlator Fit: Effective Mass

$$m_{\rm eff}(t) = \frac{1}{2} \ln \left(\frac{C(t)}{C(t+2)} \right)$$

For small t,

$$\begin{split} C(t) &\cong & A(e^{-Et} + \beta e^{-(E + \Delta E)t}) \\ &= & Ae^{-Et}(1 + \beta e^{-(\Delta E)t}) \;, \end{split}$$

 $\left\{ \begin{array}{ll} \beta > 0 & (\text{excited state}) \\ \beta \sim -(-1)^t & (\text{time parity state}) \end{array} \right.$

$$m_{\rm eff} \approx E + \beta(\Delta E) e^{-(\Delta E)t}$$

Figure: $[\overline{Q}q, PS, \kappa = 0.041, p = 0]$

< ∃ > <

INT, UW

61 / 76

Dispersion Relation

Improvement Test: Inconsistency Parameter

$$I \equiv \frac{2\delta M_{\overline{Q}q} - (\delta M_{\overline{Q}Q} + \delta M_{\overline{q}q})}{2M_{2\overline{Q}q}} = \frac{2\delta B_{\overline{Q}q} - (\delta B_{\overline{Q}Q} + \delta B_{\overline{q}q})}{2M_{2\overline{Q}q}}$$

$$\begin{split} M_{1\overline{Q}q} &= m_{1\overline{Q}} + m_{1q} + B_{1\overline{Q}q} \qquad \delta M_{\overline{Q}q} = M_{2\overline{Q}q} - M_{1\overline{Q}q} \\ M_{2\overline{Q}q} &= m_{2\overline{Q}} + m_{2q} + B_{2\overline{Q}q} \qquad \delta B_{\overline{Q}q} = B_{2\overline{Q}q} - B_{1\overline{Q}q} \end{split}$$

[S. Collins et al., NPB 47, 455 (1996), A. S. Kronfeld, NPB 53, 401 (1997)]

- Inconsistency parameter I can be used to examine the improvements by $\mathcal{O}(p^4)$ terms in the action. OK action is designed to improve these terms and matched at tree-level.
- Binding energies B_1 and B_2 are of order $\mathcal{O}(\mathbf{p}^2)$. Because the kinetic meson mass M_2 appears with a factor \mathbf{p}^2 , the leading contribution of binding energy B_2 generated by $\mathcal{O}(\mathbf{p}^4)$ terms in the action.

$$E = M_1 + \frac{\mathbf{p}^2}{2M_2} + \dots = M_1 + \frac{\mathbf{p}^2}{2(m_{2\overline{Q}} + m_{2q})} \left[1 - \frac{B_{2\overline{Q}q}}{(m_{2\overline{Q}} + m_{2q})} + \dots \right] + \dots$$

INT, UW

63 / 76

Improvement Test: Inconsistency Parameter

$$I \cong \frac{2\delta M_{\overline{Q}q} - \delta M_{\overline{Q}Q}}{2M_{2\overline{Q}q}} \cong \frac{2\delta B_{\overline{Q}q} - \delta B_{\overline{Q}Q}}{2M_{2\overline{Q}q}}$$

• Considering non-relativistic limit of quark and anti-quark system, for S-wave case ($\mu_2^{-1} = m_{2\overline{Q}}^{-1} + m_{2q}^{-1}$),

$$\delta B_{\overline{Q}q} = \frac{5}{3} \frac{\langle \boldsymbol{p}^2 \rangle}{2\mu_2} \Big[\mu_2 \Big(\frac{m_{2\overline{Q}}^2}{m_{4\overline{Q}}^3} + \frac{m_{2q}^2}{m_{4q}^3} \Big) - 1 \Big] \quad (\boldsymbol{m}_4 : \boldsymbol{c}_1, \boldsymbol{c}_3) \\ + \frac{4}{3} a^3 \frac{\langle \boldsymbol{p}^2 \rangle}{2\mu_2} \mu_2 (w_{4\overline{Q}} m_{2\overline{Q}}^2 + w_{4q} m_{2q}^2) \quad (\boldsymbol{w}_4 : \boldsymbol{c}_2, \boldsymbol{c}_4) \\ + \mathcal{O}(\boldsymbol{p}^4) \Big]$$

[A. S. Kronfeld, NPB 53, 401 (1997), C. Bernard et al., PRD 83, 034503 (2011)]

• Leading contribution of $\mathcal{O}(p^2)$ in δB vanishes when $w_4 = 0, m_2 = m_4$, not only for S-wave states but also for higher harmonics.

Weonjong Lee (SWME) (SNU)

INT, UW 64 / 76

Improvement Test: Inconsistency Parameter

• The coarse (a = 0.12 fm) ensemble data covers the B_s^0 mass and shows significant improvement compared to the Fermilab action.

Improvement Test: Hyperfine Splitting Δ

$$\Delta_1 = M_1^* - M_1, \ \Delta_2 = M_2^* - M_2$$

Recall,

$$\begin{split} M_{1\overline{Q}q}^{(*)} &= m_{1\overline{Q}} + m_{1q} + B_{1\overline{Q}q}^{(*)} \\ M_{2\overline{Q}q}^{(*)} &= m_{2\overline{Q}} + m_{2q} + B_{2\overline{Q}q}^{(*)} \\ \delta B^{(*)} &= B_{2}^{(*)} - B_{1}^{(*)} \end{split}$$

Then,

$$\Delta_2 = \Delta_1 + \delta B^* - \delta B$$

• The difference in hyperfine splittings $\Delta_2 - \Delta_1$ also can be used to examine the improvement from $\mathcal{O}(p^4)$ terms in the action.

INT, UW 66 / 76

Improvement Test: Hyperfine Splitting Δ

$$\Delta_2 = \Delta_1 + \delta B^* - \delta B$$

Conclusion and Outlook

- Inconsistency parameter shows that the OK action clearly improves $\mathcal{O}(\pmb{p}^4)$ terms.
- Hyperfine splitting shows that the OK action clearly improves the higher dimension magnetic effects for the quarkonium.
- We plan to calculate V_{cb} with the highest precision possible.
- Improved current relevant to the decay $\bar{B} \to D^* l \nu$ at zero recoil is needed. (Jon A. Bailey and J. Leem)
- We plan to calculate the 1-loop coefficients for c_B and c_E in the OK action. (Y.C. Jang)
- Highly optimized inverter using QUDA will be available soon. (Y.C. Jang)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Grand Challenges in the front

< ロ > < 同 > < 三 > < 三

Tentative Goals (1)

• We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.

(日) (同) (三) (三)
- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.

- 4 同 6 4 日 6 4 日 6

- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.
- Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine.
 ** statistical error < 0.5%

- We would like to determine B_K directly from the standard model with its systematic and statistical error $\leq 2\%$.
- **2** We expect to achieve this goal in a few years using the SNU GPU cluster: David 1, 2, 3 (~ 100 Tera Flops), Jlab GPU cluster, and KISTI supercomputers.
- Basically, we need to accumulate at least 9 times more statistics using the SNU GPU cluster machine.
 ** statistical error < 0.5%
- In addition, we need to obtain the matching factor using NPR (Jangho Kim) and using the two-loop perturbation theory (···).
 * matching error < 1.0%

イロト イポト イヨト イヨト

1 V_{cb} , we need to calculate the following semi-leptonic form factors:

$$\begin{array}{ll}
\bar{B} \to D\ell\nu & (1) \\
\bar{B} \to D^*\ell\nu & (2)
\end{array}$$

(日) (同) (三) (三)

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$\begin{array}{ll}
\bar{B} \to D\ell\nu & (1) \\
\bar{B} \to D^*\ell\nu & (2)
\end{array}$$

(日) (同) (三) (三)

We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$\begin{array}{ll}
\bar{B} \to D\ell\nu & (1) \\
\bar{B} \to D^*\ell\nu & (2)
\end{array}$$

(日) (周) (三) (三)

- We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).
- We need to improve the vector and axial current in the same level as the OK action (Jaehoon Leem and Jon Bailey).

() V_{cb} , we need to calculate the following semi-leptonic form factors:

$$\begin{array}{ll}
\bar{B} \to D\ell\nu & (1) \\
\bar{B} \to D^*\ell\nu & (2)
\end{array}$$

- We have already implemented a GPU version of the OK action inverter (Yong-Chull Jang).
- We need to improve the vector and axial current in the same level as the OK action (Jaehoon Leem and Jon Bailey).
- Our goal is to determine V_{cb} with its statistical and systematic error $\leq 0.5\%$.

• Long-Distance Effect $\xi_{LD} \approx 2\%$:

<ロ> (日) (日) (日) (日) (日)

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- 2 Here, the precision goal is only $10 \sim 15\%$.

・ロン ・四 ・ ・ ヨン ・ ヨン

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- 2 Here, the precision goal is only $10 \sim 15\%$.
- We need $N_f = 2 + 1 + 1$ calculation on the lattice. MILC provides HISQ ensembles with $N_f = 2 + 1 + 1$.

イロト 不得下 イヨト イヨト 二日

- Long-Distance Effect $\xi_{LD} \approx 2\%$:
- 2 Here, the precision goal is only $10 \sim 15\%$.
- We need $N_f = 2 + 1 + 1$ calculation on the lattice. MILC provides HISQ ensembles with $N_f = 2 + 1 + 1$.
- As a by-product, a substantial gain is that the charm quark mass dependence might be under control in this way. (Brod and Gorbahn)

イロト 不得下 イヨト イヨト 二日

INT, UW

72 / 76

Ultimate Goals

• As a result, we hope to discover a breakdown of the standard model for the ε_K channel in the level of 5σ or higher precision.

(日) (同) (三) (三)

Ultimate Goals

- As a result, we hope to discover a breakdown of the standard model for the ε_K channel in the level of 5σ or higher precision.
- As a result, we would like to provide a crucial clue to the physics beyond the standard model.

(日) (同) (三) (三)

Ultimate Goals

- As a result, we hope to discover a breakdown of the standard model for the ε_K channel in the level of 5σ or higher precision.
- As a result, we would like to provide a crucial clue to the physics beyond the standard model.
- As a result, we would like to guide the whole particle physics community into a new world beyond the standard model.

(日) (周) (三) (三)

Thank God for your help !!!

イロト イ団ト イヨト イヨト

References for the Input Parameters I

- K.A. Olive et al. Review of Particle Physics. Chin.Phys., C38:090001, 2014.
- [2] http://www.utfit.org/UTfit/ResultsSummer2014PostMoriondSM.
- [3] Sinya Aoki, Yasumichi Aoki, Claude Bernard, Tom Blum, Gilberto Colangelo, et al. Review of lattice results concerning low energy particle physics. 2013.
- Taegil Bae et al. Improved determination of B_K with staggered quarks. Phys.Rev., D89:074504, 2014.
- [5] Andrea Alberti, Paolo Gambino, Kristopher J. Healey, and Soumitra Nandi. Precision Determination of the Cabibbo-Kobayashi-Maskawa Element V_{cb} . Phys.Rev.Lett., 114(6):061802, 2015.
- [6] Jon A. Bailey, A. Bazavov, C. Bernard, et al. *Phys. Rev.*, D89:114504, 2014.

(人間) トイヨト イヨト

INT, UW

75 / 76

References for the Input Parameters II

 S. Alekhin, A. Djouadi, and S. Moch. The top quark and Higgs boson masses and the stability of the electroweak vacuum. *Phys.Lett.*, B716:214–219, 2012.

- [8] Jon A. Bailey, Yong-Chull Jang, Weonjong Lee, and Sungwoo Park. Standard Model evaluation of ε_K using lattice QCD inputs for \hat{B}_K and V_{cb} . hep-lat/1503.05388, 2015.
- [9] Andrzej J. Buras and Diego Guadagnoli. Phys.Rev., D78:033005, 2008.
- [10] Joachim Brod and Martin Gorbahn. ϵ_K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution. *Phys.Rev.*, D82:094026, 2010.
- [11] T. Blum, P.A. Boyle, N.H. Christ, N. Garron, E. Goode, et al. *Phys.Rev.Lett.*, 108:141601, 2012.

(日) (周) (三) (三)