The Qweak Experiment

P.M. King Ohio University

for the Qweak Collaboration

QCD for New Physics at the Precision Frontier 2 October 2015; Institute of Nuclear Theory, Seattle WA

Overview

- Qweak is a measurement of parity-violation in elastic scattering of ~1 GeV electrons from the proton at forward angles (asymmetry of ~300 ppb) in order to extract $Q_w(p)$ and $sin^2\theta_w$ at a Q² of 0.025 GeV²
 - A deviation from the SM predictions would be a sign of new PV physics at TeV mass scale
- Qweak ran in Hall C of Jefferson Lab May 2010-May 2012, with about a year of beam-on-target
 - Commissioning run (about 4% of total data set) was published Oct 2013; PRL 111, 141803.
 - Analysis of remainder is continuing, results expected in a year
 - Experimental apparatus described in NIM A781, 105 (2015)
- Several ancillary measurements were taken to determine or constrain background processes or corrections

Parity-Violating Electron Scattering

Parity violated in the weak interaction: form an asymmetry

$$A_{PV}(p) = rac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto rac{\mathcal{M}_{PV}^{NC}}{\mathcal{M}^{EM}} \propto rac{Q^2}{M_Z^2} \quad ext{when } Q^2 \ll M_Z^2$$

Weak Charges

Electron-quark scattering, four-fermion contact interaction

$$\mathcal{L}_{eq}^{PV} = -\frac{G_F}{\sqrt{2}} \sum_i \left[C_{1i} \overline{e} \gamma_\mu \gamma_5 e \overline{q} \gamma^\mu q + C_{2q} \overline{e} \gamma_\mu e \overline{q} \gamma^\mu \gamma^5 q \right] + \mathcal{L}_{new}^{PV}$$

Weak vector charge $(\sin^2 \theta_W \approx \frac{1}{4})$ Particle Electric charge $Q^e_W = -1 + 4\sin^2 heta_W pprox 0$ е $-2C_{1u} = +1 - \frac{8}{3}\sin^2\theta_W \approx +\frac{1}{3} \\ -2C_{1d} = -1 + \frac{4}{3}\sin^2\theta_W \approx -\frac{2}{3}$ $+\frac{2}{3}$ $-\frac{1}{3}$ u d $C_{1i} \equiv 2g_A^e g_V^i$ $C_{2i} \equiv 2g_V^e g_A^i$ $Q^p_W = 1 - 4\sin^2\theta_W \approx 0.07$ p(uud) $Q_{W}^{n} = -1$ Small scattering Large scattering n(udd) angles angles

For an arbitrary nucleus, $Q_w(Z,N) = -2\{C_{1u}(2Z + N) + C_{1d}(Z + 2N)\}$

- Ex: $Q_w(p) = -2(2C_{1u} + C_{1d})$ (<u>this experiment</u>)

• Uses higher Q² PVES data to constrain hadronic corrections (about 20%)

- Ex:
$$Q_w(^{133}Cs) = -2(188C_{1u} + 211C_{1d})$$
 (APV)

- Latest atomic corrections from PRL 109, 203003 (2012)
- Combining $Q_w(p)$ and $Q_w(^{133}Cs) \rightarrow C_{1u} \& C_{1d}, Q_w(n)$

Sensitivity to new physics

Suppose some new physics adds a contact term to the PV electron-quark Lagrangian, with coupling constant, g, and mass, A: Erler et al. PRD 68, 016006 (2003)

$$\begin{aligned} \mathcal{L}_{e-q}^{PV} &= \mathcal{L}_{SM}^{PV} + \mathcal{L}_{New}^{PV} \\ &= -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q + \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q \end{aligned}$$

$$\frac{\Lambda}{g} \sim \left(\sqrt{2} G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O\left(TeV\right)$$

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Sensitivity to new physics

 Suppose some new physics adds a contact term to the PV electron-quark Lagrangian, with coupling constant, g, and **MASS,** A: Erler et al. PRD 68, 016006 (2003)

PVES asymmetry

$$A_{LR} = \frac{-G_{\mu} Q^{2}}{4\pi\alpha\sqrt{2}} \left[\frac{\varepsilon G_{E}^{\gamma} G_{E}^{Z} + \tau G_{M}^{\gamma} G_{M}^{Z} - (1 - 4\sin^{2}\theta_{W})\varepsilon' G_{M}^{\gamma} G_{A}^{e}}{\varepsilon (G_{E}^{\gamma})^{2} + \tau (G_{M}^{\gamma})^{2}} \right]$$

The Qweak Experiment

- Qweak ran in Hall C at Jefferson Lab, Newport News, VA
- Qweak ran before the 12 GeV upgrade, May 2010- May 2012
 - Commisioning: Jan Feb 2011
 - Run1: Feb May 2011
 - Run2: Nov 2011-May 2012
- Beam energy was 1.16 GeV
 - Most at 1-pass, with some running at 2-pass (extra spin reversal by precession)

Qweak Apparatus

~800 MHz rate/bar **Production Mode:** 145 - 180 μ A, Integrating Toroidal Spectrometer Acceptance-defining Pb collimator 35 cm LH₂ target 3 kW cooling power e-beam E = 1.16 GeVI = 145- 180 μA Two independent beam polarization P = 89%High-density concrete measurements: Moller polarimeter & Compton polarimeter shielding wall

Quartz Bar Detectors

Qweak During Installation

Acceptance-defining Pb collimator

Toroidal

Spectrometer

High-density concrete shielding wall

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Quartz Bar

Detectors

Target Design and Performance

- 35 cm LH₂ (4% X₀)
 - 20K, 30-35 psia
 - ~3 kW power
- Designed using computational fluid dynamics to minimize noise from density fluctuations

Target "Boiling" Noise: target density fluctuations

47 ppm/quartet small contribution to asymmetry width

Main Detectors

Eight 2m long radiation-hard fused silica Čerenkov detectors ullet

Installed 2cm lead pre-radiators

Electrons focused on detectors by QTOR Photons show collimator aperture shape

Kinematics Determination

- Drift chambers before and after magnetic field
- Low current, reconstruct individual events
- Systematic studies

Measure light-weighted acceptance (Q² varies by factor of 2 over acceptance)

2 m

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Precision Polarimetry

• Two independent devices for <1% polarization

<u>Møller</u>

Measurement process

- "Helicity windows" occur at about 960 Hz
 - Groups of four windows have helicity pattern +--+ or -++- chosen pseudorandomly
 - Helicity reporting is delayed
- Detector and beam monitor signals are integrated over the window
- Asymmetries are constructed for each pattern $A = \frac{Y_{+} - Y_{-}}{Y_{+} + Y_{-}}$

Constructing the asymmetry

 Detector & beam monitor yields are integrated over 1/960 s helicity windows, grouped in quartet patterns with helicities +--+ or -++-

$$A_{msr} = A_{raw} + A_T + A_L + A_{reg}$$

$$A_{raw} = (Y + - Y -)/(Y + + Y -)$$

Asymmetry calculated from charge normalized yields

- A_{T} = remnant transverse asymmetry
- A_{L} = potential non-linearity in PMT
- A_{reg} = helicity-correlated false asymmetry from beam parameter variations

$$A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1}^{4} f_i A_i}{1 - f_{tot}}$$

(following Mo-Tsai prescription) and correction for light-variation Background corrections: Al windows, neutrals, scattering from beamline, inelastic scattering

- f = background fraction
- A = background asymmetry

Beam Parameter Corrections

- Helicity correlated beam parameter variations can produce an asymmetry in the detectors
 - Symmetric detectors give partial cancellation
 - Large HC beam variations can be reduced by retuning
 - Measured detector-beam correlations can provide a correction

$$A_{corr} = \sum_{i=1}^{5} \left(\frac{\partial A}{\partial x_i} \right) \Delta x_i$$

(x,x',y,y',E)

Example: Detector Sensitivity to X position variation

Beam Parameter Corrections

- Two ways to determine sensitivity of the detector asymmetries to beam parameter variations
 - Regression: Natural jitter of beam parameters
 - Dithering: Occasional "large" driven variation of each beam parameter
- Corrections based on the two methods are in excellent agreement for this subset of our data where both are available

0 Preliminary - Blinded (arbitrary offset) Dithering Raw Regression -50 -160.0 ± 8.6 ppb -159.4 ± 8.5 ppb -159.3 ± 8.5 ppb Reduced χ^2 :: 1.38 Reduced χ^2 :: 0.61 Reduced χ^2 :: 0.57 Asymmetry (ppb) -100 -150 -200 -250 6 6.5 7 7.5 8 8.5 q 9.5 10 Wien (monthly)

Run2 measured asymmetry

- About 77% of the run2 data-set
- Asymmetries have no corrections other than beam parameter correction

Aluminum background

Largest correction

Dilution from windows measured with empty target

 $f_{Al} = 3.2 \pm 0.2 \%$

Corrected for effect of using simulation and data driven models of elastic and QE scattering

Asymmetry measured from thick Al targets

Measured asymmetry agrees with expectations from scaling

$$A_{Al} = 1.76 \pm 0.26 \text{ ppm}$$

 $C_{Al} = f_{Al} * A_{Al} = -64 \pm 10 \text{ ppb}$

$$A_{PV}\binom{N}{Z}X = \left[\frac{-Q^2 G_F}{4\pi\alpha\sqrt{2}}\right] \left[Q_W^p + \left(\frac{N}{Z}\right)Q_W^n\right]$$

Ancillary Measurements

Many additional measurements under analysis:

- Parity violating asymmetry:
 - elastic ²⁷Al
 - N → ∆ (E = 1.16 GeV, 0.877 GeV)
 - Near W = 2.5 GeV (related to γZ box)
 - Pion photoproduction (E = 3.3 GeV)

- Parity conserving transverse asymmetry:
 - elastic ep
 - elastic ²⁷Al, Carbon
 - $N \rightarrow \Delta$
 - Møller
 - Near W = 2.5 GeV
 - Pion photoproduction (E = 3.3 GeV)

Beam Normal Single Spin Asymmetry

- PC asymmetry; zero in OPE, but contributions from 2γ exchange
 - Sensitive to all allowed virtual excitations of the proton up to $E_{cm} = 1.7 \text{ GeV}$

• Dedicated measurement with fully transverse beam on LH2, Al, C

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Corrections and uncertainties

UNITS: parts per billion (ppb)

$$A_{msr} = A_{raw} + A_{T} + A_{L} - A_{reg}$$

$$A_{msr} = -204 \pm 31 (stat) \pm 13 (sys)$$

$$A_{T} = 0 \pm 4$$

$$A_{L} = 0 \pm 3$$

$$A_{reg} = -35 \pm 11$$

$$- 1\sigma \text{ correction to } A_{raw}$$

$$A_{ep} = \left(\frac{R_{tot}}{P(1 - f_{tot})}\right) \times \left(A_{msr} - P\sum_{i=1}^{4} f_i A_i\right)$$

 f_i : fraction of light from background i $f_{tot} = \Sigma f_i = 3.6\%$

R: product of factors ~ unity: (Rad. corr, kinematics, detector response)

Published 10/2/2013: PRL **111,**141803 (2013)

First Results: Asymmetry

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Electroweak Corrections

 $\operatorname{Rel}_{\gamma Z}(E)$ (x 10^{-2})

- Most of these well known and precisely calculated – except for γZ-box
- γZ-box: significant energy-dependent correction first identified by Gorchtein & Horowitz
- Hall *et al* model dependence constrained by JLab PVDIS data

Extracting the Weak Charge

Global fit in Q^2 and θ to the reduced asymmetry

$$A_{LR}/A_0 = Q_{weak}^p + Q^2 B(Q^2) \qquad A_0 = -(G_{\mu}/4\pi\alpha\sqrt{2})Q^2$$

- Using 5 free parameters: C_{1u} , C_{1d} , ρ_s , μ_s , & the isovector part of G_A^{Z} - G_E^{S} , G_M^{S} , and G_A^{Z} use a dipole, $(1+Q^2/\lambda^2)^{-2}$, with $\lambda = 1$ GeV/c
- Employs all PVES data up to $Q^2 = 0.63 (GeV/c)^2$
 - On p, d, & ⁴He targets, forward and back-angle data
 SAMPLE, HAPPEX, G0, PVA4
- Uses constraints on isoscalar part of $G_{A}^{\ \ Z}$
 - Zhu, et al., PRD 62, 033008 (2000)
- All ep data corrected for E & Q^2 dependence of γZ -box

First Results: Quark Couplings

Data

Published 10/2/2013: PRL **111,**141803 (2013)

First Results: Weak Mixing Angle At tree level: $Q_{W}^{p} = 1 - 4\sin^{2}\theta_{W}$

P.M. King; Qweak; QCD for New Physics at the Precision Frontier

Z°

Curve from Erler, Kurylov, Ramsey-Musolf, PRD **68**, 016006 (2003) **4%** of Qweak Data

Global fit results for ρ_s , μ_s , & G_A

- Consistency of our fitted ρ_s , μ_s , & G_A^p with other fits gives us confidence in our published $Q_W(p)$ result.
- Physics statements about ρ_s , μ_s , & G_A^p will be made after careful systematic studies of our fit with the final $Q_w(p)$ data point included.

Sensitivity to EM FFs

- Use "theory point" of A = -213.9 ± 4.1 ppb at our kinematics
 - Perform Q_w(p) PVES fits for each of
 4 EMFF fits:
 - No difference
- Next study impact of uncertainties in the EMFFs
 - Use Arrington & Sick EMFF fit
 - Low Q², 2γ, careful treatment of correlations, more recent...
 - Do Q_w(p) PVES fit 1000 times,
 varying EMFFs within their errors, ,
 using the "theory point"
 - Width of distribution only 1.6%

EMFF Fit	\mathbf{Q}^{p}_{W}	dQ ^p w
Arrington & Sick	0.0705	0.0023
Kelly	0.0702	0.0023
Simple Dipole	0.0702	0.0022
Friedrich & Walcher	0.0683	0.0022

J. Friedrich and Th. Walcher. EPJ A 17(4):607–623, 2003.
J. Kelly. Phys. Rev. C, 70:068202, 2004
John Arrington and Ingo Sick. Phys. Rev. C, 76:035201, 2007.

Analysis is progressing...

Qweak Run 2 - Blinded Asymmetries

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

"Teaser" with anticipated final errors

Summary

• First published result from the Qweak experiment

$$A_{ep} = -279 \pm 35 \; (\text{stat}) \; \pm 31 \; (\text{syst}) \; \text{ppb}$$

Determination of the proton and neutron weak charge

 $Q_W^p(PVES) = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710 \pm 0.0007$

 $Q_W^n(PVES + APV) = -0.975 \pm 0.010$ $Q_W^n(SM) = -0.9890 \pm 0.0007$

In agreement with Standard Model predictions

- Final result expected in a year
 - Statistical error 5 times smaller, with reduced systematics
 - Additionally, many ancillary results under analysis

The Qweak Collaboration

23 grad students **97 collaborators** 10 post docs 23 institutions

Institutions:

- ¹ University of Zagreb ²College of William and Marv ³ A. I. Alikhanyan National Science Laboratory ⁴ Massachusetts Institute of Technology ⁵ Thomas Jefferson National Accelerator Facility ⁶ Ohio University ⁷ Christopher Newport University ⁸ University of Manitoba, ⁹ University of Virginia ¹⁰ TRIUMF ¹¹ Hampton University ¹² Mississippi State University ¹³ Virginia Polytechnic Institute & State Univ ¹⁴ Southern University at New Orleans ¹⁵ Idaho State University ¹⁶ Louisiana Tech University ¹⁷ University of Connecticut ¹⁸ University of Northern British Columbia ¹⁹ University of Winnipeg ²⁰ George Washington University ²¹ University of New Hampshire ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,², T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2}, L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan ³

Spokespersons Project Manager Grad Students

e-p transverse asymmetry

- Pasquini/Vanderhaeghen Model
 - Includes intermediate states: proton (elastic) and πN (inelastic)
 - Computed via $N \rightarrow \pi N$ electroproduction amplitudes from MAID
- Afanasev/Merenkov and Gorchtein Models
 - Optical theorem: relates forward Compton amplitude to total photoproduction cross section
 - Effectively includes both πN and $\pi \pi N$ states
- For all models, inelastic dominates over elastic
- A.Afanasev & N.P.Merenkov Beam Normal Spin Asymmetry (ppm) M.Gorchtein (with $\pm 1\sigma$ bounds) Experiment Kinematics. • $Q2 = 0.0250 \pm 0.006 (GeV/c)2$ • $E = 1.155 \pm 0.003 \text{ GeV}$ • Scattering angle = $7.9^\circ \pm 0.3^\circ$ • Preliminary $A_{\rm m} = -5.30 \pm 0.07 \pm 0.15 \text{ ppm}$ No radiative corrections • Results from B. Waidyawansa Preliminary $E_{e} = 1.155 \text{ GeV}$ Ph.D.thesis; being prepared for publication 7.0 7.5 8.0 6.5 8.5 9.0 9.5 6.0 10.0 5.5 $\boldsymbol{\theta}_{Lab}$

P.M. King; Qweak; QCD for New Physics at the Literston Frontier

B.Pasquini & M.Vanderhaeghen

Transverse asymmetry on nuclei

- Calculations with inelastic intermediate hadronic states agree with experimental data up to A = 12, but fail to describe Pb (A = 208)
- No calculation includes both Coulomb distortion and a full range of excited intermediate states.
- Adding data between A=12 and A=208 (such as A1, A=27) will shed light on this issue

Beam Normal Single Spin Asymmetry in Δ Resonance

Q-weak has measured Beam Normal Single Spin Asymmetry (B_n) in the N-to- Δ transition on H₂

$$B_{n} = \frac{\sigma \uparrow \sigma \downarrow}{\sigma \uparrow \sigma \downarrow} = \frac{2T_{1\gamma} \times Im T_{2\gamma}}{|T_{1\gamma}|}$$

After correcting for polarization and backgrounds

 $B_{\rm n} = 43 \pm 16 \, \rm ppm$

at kinematics

- <E> = 1.16 GeV
 <W> = 1.2 GeV
 <Q²> = 0.021 GeV²
- Unique tool to study ^γ_b*ΔΔ form factors
 Q-weak along with world data has potential to constrain models and study charge radius and

magnetic moment of Δ

