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Figure 12. The foreground-reduced Internal Linear Combination (ILC) map based on the five year WMAP data.

Figure 13. The temperature (TT) and temperature-polarization correlation (TE)
power spectra based on the five year WMAP data. The addition of two years of
data provides more sensitive measurements of the third peak in the TT and the
high-l TE spectra, especially the second trough.

our earlier estimates based on pseudo-Cl methods (Nolta et al.
2009). The TB, EB, and BB spectra remain consistent with zero.

The cosmological implications of the five-year WMAP data
are discussed in detail in Dunkley et al. (2009) and Komatsu et al.
(2009). The now-standard cosmological model: a flat universe
dominated by vacuum energy and dark matter, seeded by nearly
scale-invariant, adiabatic, Gaussian random-phase fluctuations,
continues to fit the five-year data. WMAP has now determined

the key parameters of this model to high precision; a summary
of the five-year parameter results is given in Table 7. The
most notable improvements are the measurements of the dark
matter density, Ωch

2, and the amplitude of matter fluctuations
today, σ8. The former is determined with 6% uncertainty using
WMAP data only (Dunkley et al. 2009), and with 3% uncertainty
when WMAP data are combined with BAO and SNe constraints
(Komatsu et al. 2009). The latter is measured to 5% with WMAP
data, and to 3% when combined with other data. The redshift
of reionization is zreion = 11.0 ± 1.4, if the universe were
reionized instantaneously. The 2σ lower limit is zreion > 8.2, and
instantaneous reionization at zreion = 6 is rejected at 3.5σ . The
WMAP data continue to favor models with a tilted primordial
spectrum, ns = 0.963+0.014

−0.015. Dunkley et al. (2009) discuss how
the ΛCDM model continues to fit a host of other astronomical
data as well.

Moving beyond the standard ΛCDM model, when WMAP
data are combined with BAO and SNe observations (Komatsu
et al. 2009), we find no evidence for running in the spectral
index of scalar fluctuations, dns/d ln k = −0.028 ± 0.020
(68% CL). The new limit on the tensor-to-scalar ratio is
r < 0.22 (95% CL), and we obtain tight, simultaneous limits
on the (constant) dark energy equation of state and the spatial
curvature of the universe: −0.14 < 1 + w < 0.12 (95% CL)
and −0.0179 < Ωk < 0.0081 (95% CL). The angular power
spectrum now exhibits the signature of the cosmic neutrino
background: the number of relativistic degrees of freedom,
expressed in units of the effective number of neutrino species,
is found to be Neff = 4.4 ± 1.5 (68% CL), consistent with the
standard value of 3.04. Models with Neff = 0 are disfavored
at >99.5% confidence. A summary of the key cosmological
parameter values is given in Table 7, where we provide estimates
using WMAP data alone and WMAP data combined with BAO
and SNe observations. A complete tabulation of all parameter
values for each model and data set combination we studied is
available on LAMBDA.

The new data also place more stringent limits on devia-
tions from Gaussianity, parity violations, and the amplitude of
isocurvature fluctuations (Komatsu et al. 2009). For example,
new limits on physically motivated primordial non-Gaussianity
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Fig. 1.— Shown above in the top panel is a color image from the Magellan images of the merging cluster 1E0657−558, with the white
bar indicating 200 kpc at the distance of the cluster. In the bottom panel is a 500 ks Chandra image of the cluster. Shown in green contours
in both panels are the weak lensing κ reconstruction with the outer contour level at κ = 0.16 and increasing in steps of 0.07. The white
contours show the errors on the positions of the κ peaks and correspond to 68.3%, 95.5%, and 99.7% confidence levels. The blue +s show
the location of the centers used to measure the masses of the plasma clouds in Table 2.

nated by collisionless dark matter, the potential will trace
the distribution of that component, which is expected
to be spatially coincident with the collisionless galax-
ies. Thus, by deriving a map of the gravitational po-
tential, one can discriminate between these possibilities.
We published an initial attempt at this using an archival
VLT image (Clowe et al. 2004); here we add three addi-
tional optical image sets which allows us to increase the
significance of the weak lensing results by more than a
factor of 3.

In this paper, we measure distances at the redshift of
the cluster, z = 0.296, by assuming an Ωm = 0.3, λ =
0.7, H0 = 70km/s/Mpc cosmology which results in 4.413
kpc/′′ plate-scale. None of the results of this paper are
dependent on this assumption; changing the assumed
cosmology will result in a change of the distances and
absolute masses measured, but the relative masses of
the various structures in each measurement remain un-
changed.

2. METHODOLOGY AND DATA

We construct a map of the gravitational poten-
tial using weak gravitational lensing (Mellier 1999;
Bartelmann & Schneider 2001), which measures the dis-
tortions of images of background galaxies caused by the
gravitational deflection of light by the cluster’s mass.
This deflection stretches the image of the galaxy pref-
erentially in the direction perpendicular to that of the
cluster’s center of mass. The imparted ellipticity is typi-
cally comparable to or smaller than that intrinsic to the
galaxy, and thus the distortion is only measurable statis-
tically with large numbers of background galaxies. To do
this measurement, we detect faint galaxies on deep op-
tical images and calculate an ellipticity from the second
moment of their surface brightness distribution, correct-
ing the ellipticity for smearing by the point spread func-
tion (corrections for both anisotropies and smearing are
obtained using an implementation of the KSB technique
(Kaiser et al. 1995) discussed in Clowe et al. (2006)).
The corrected ellipticities are a direct, but noisy, mea-
surement of the reduced shear g⃗ = γ⃗/(1 − κ). The shear
γ⃗ is the amount of anisotropic stretching of the galaxy
image. The convergence κ is the shape-independent in-
crease in the size of the galaxy image. In Newtonian

gravity, κ is equal to the surface mass density of the lens
divided by a scaling constant. In non-standard gravity
models, κ is no longer linearly related to the surface den-
sity but is instead a non-local function that scales as the
mass raised to a power less than one for a planar lens,
reaching the limit of one half for constant acceleration
(Mortlock & Turner 2001; Zhao et al. 2006). While one
can no longer directly obtain a map of the surface mass
density using the distribution of κ in non-standard grav-
ity models, the locations of the κ peaks, after adjusting
for the extended wings, correspond to the locations of
the surface mass density peaks.

Our goal is thus to obtain a map of κ. One can combine
derivatives of g⃗ to obtain (Schneider 1995; Kaiser 1995)

∇ ln(1−κ) =
1

1 − g2
1 − g2

2

(

1 + g1 g2
g2 1 − g1

) (

g1,1 + g2,2
g2,1 − g1,2

)

,

which is integrated over the data field and converted into
a two-dimensional map of κ. The observationally un-
constrained constant of integration, typically referred to
as the “mass-sheet degeneracy,” is effectively the true
mean of ln(1−κ) at the edge of the reconstruction. This
method does, however, systematically underestimate κ
in the cores of massive clusters. This results in a slight
increase to the centroiding errors of the peaks, and our
measurements of κ in the peaks of the components are
only lower bounds.

For 1E0657−558, we have accumulated an exception-
ally rich optical dataset, which we will use here to mea-
sure g⃗. It consists of the four sets of optical images shown
in Table 1 and the VLT image set used in Clowe et al.
(2004); the additional images significantly increase the
maximum resolution obtainable in the κ reconstructions
due to the increased number of background galaxies,
particularly in the area covered by the ACS images,
with which we measure the reduced shear. We reduce
each image set independently and create galaxy cata-
logs with 3 passband photometry. The one exception
is the single passband HST pointing of main cluster,
for which we measure colors from the Magellan images.
Because it is not feasible to measure redshifts for all
galaxies in the field, we select likely background galax-
ies using magnitude and color cuts (m814 > 22 and not
in the rhombus defined by 0.5 < m606 − m814 < 1.5,
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The Road to Zeptobarn Dark Matter and Beyond  Sunil Golwala

• A WIMP ! is like a massive neutrino: produced when T >> m! via pair annihilation/

creation.  Reaction maintains thermal equilibrium.

• If interaction rates high enough, comoving density drops as exp(!m! / T) as T drops 
below m! : annihilation continues, production becomes suppressed.

• But, weakly interacting ! will 

“freeze out” before total annihilation if

i.e., if annihilation too slow to keep
up with Hubble expansion

• Leaves a relic abundance:

for m! = O(100 GeV)

! if m! and "ann determined by

new weak-scale physics, then #! is O(1)
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The dark matter problem



Annual modulation effect 

22 

A dark-matter-induced modulation will have extrema in June and 
December (whether its max or min depends on target and threshold) 

Earth’s motion about the Sun produces small changes in velocity relative to 
the dark halo  

! Modulates expected rate of dark matter interactions detected on Earth 

If you see a signal, 
check for an annual 

modulation 

If you have 
irreducible 

backgrounds, use  
the modulation to 
pick out a signal 

OR 
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The dark matter problem
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• important, sometimes dramatic, impact on 
discovery potential

Three motivations for studying QCD & DM

• post-discovery interpretation and/or anomaly 
debunking

• new field theory tools
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Some themes in the contemporary particle physics:

• ΛNew Physics > mW   (maybe >> mW)

• lattice QCD and baryon matrix elements

• interplay of particle, astro, nuclear 

Compelling physics questions 
demand analysis outside the 
comfort zone of any one field.   

• interplay of radiative corrections and 
hadronic structure

Dark Matter applications a prime example
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Figure 13.10: The effective Majorana mass |<m>| (including a 2σ uncertainty),
as a function of min(mj) for sin2 θ13 = 0.0236 ±0.0042 [26] and δ = 0. The figure
is obtained using also the best fit values and 1σ errors of ∆m2

21, sin2 θ12, and
|∆m2

31| ∼= |∆m2
32| from Ref. 140 (given in Table 13.7). For sin2 θ12 the results found

with the “old” reactor ν̄e fluxes [35] were employed. The phases α21,31 are varied in
the interval [0,π]. The predictions for the NH, IH and QD spectra are indicated.
The red regions correspond to at least one of the phases α21,31 and (α31 − α21)
having a CP violating value, while the blue and green areas correspond to α21,31
possessing CP conserving values. (Update by S. Pascoli of a figure from the last
article quoted in Ref. 160.)

(A, Z) → (A, Z + 2) + e− + e− (see e.g., Ref. 157). The observation of (ββ)0ν -decay
and the measurement of the corresponding half-life with sufficient accuracy, would not
only be a proof that the total lepton charge is not conserved, but might also provide
unique information on the i) type of neutrino mass spectrum (see, e.g., Ref. 158), ii)
Majorana phases in U [144,159] and iii) the absolute scale of neutrino masses (for details
see Ref. 157 to Ref. 160 and references quoted therein).

Under the assumptions of 3-ν mixing, of massive neutrinos νj being Majorana
particles, and of (ββ)0ν -decay generated only by the (V-A) charged current weak
interaction via the exchange of the three Majorana neutrinos νj having masses mj !
few MeV, the (ββ)0ν -decay amplitude has the form (see, e.g., Ref. 39 and Ref. 157):
A(ββ)0ν

∼= <m> M , where M is the corresponding nuclear matrix element which does
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Interplay of particle-, nuclear-, astro-physics/cosmology

• Observability of lepton number violation depends on 
presently unknown neutrino mass ordering
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Figure 2: The 90% CL upper limits on the �-nucleon cross section as a function of M� for (a)
spin-independent and (b) spin-dependent scattering. Also shown are the limits from selected
experiments with published [27–34] and preliminary [35] results.

Table 1: (a) Observed (expected) 90% CL upper limits on the DM production cross section �,
and 90% CL lower limits on the cutoff scale � for vector and axial-vector operators as a function
of the DM mass M�. (b) Expected and observed lower limits on MD at 95% CL, as a function of
extra dimensions n, with K-factors (and without, i.e., K = 1).

M� [GeV] Vector Axial-Vector
� [fb] � [GeV] � [fb] � [GeV]

1 14.3 (14.7) 572 (568) 14.9 (15.4) 565 (561)
10 14.3 (14.7) 571 (567) 14.1 (14.5) 573 (569)

100 15.4 (15.3) 558 (558) 13.9 (14.3) 554 (550)
200 14.3 (14.7) 549 (545) 14.0 (14.5) 508 (504)
500 13.6 (14.0) 442 (439) 13.7 (14.1) 358 (356)
1000 14.1 (14.5) 246 (244) 13.9 (14.3) 172 (171)

(a) 90% CL Limits on DM model parameters.

n K-factors Expected Observed
MD [TeV] MD [TeV]

3 1.5 1.70 (1.53) 1.73 (1.55)
4 1.4 1.65 (1.53) 1.67 (1.55)
5 1.3 1.63 (1.54) 1.64 (1.56)
6 1.2 1.62 (1.55) 1.64 (1.57)

(b) 95% CL Limits on ADD parameters.

�3 fb at 90% CL. For spin-dependent scattering, the upper limits surpass all previous con-
straints for the mass range of 1–100 GeV. The results presented are valid for mediator masses
larger than the limits on �, assuming unity for the couplings g� and gq. The specific case of
light mediators is discussed in Ref. [3, 36]. The assumptions on � interactions made in calcu-
lating the limits vary with experiment. Further, in the case of direct and indirect searches, an
astrophysical model must be assumed for the density and velocity distribution of DM.

A set of 95% confidence level (CL) upper limits are also placed on the ADD cross sections and
translated into exclusions on the parameter space of the model. The upper limits are calculated

Tia$Miceli
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light mediators is discussed in Ref. [3, 36]. The assumptions on � interactions made in calcu-
lating the limits vary with experiment. Further, in the case of direct and indirect searches, an
astrophysical model must be assumed for the density and velocity distribution of DM.

A set of 95% confidence level (CL) upper limits are also placed on the ADD cross sections and
translated into exclusions on the parameter space of the model. The upper limits are calculated
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Fig. 1. Dark matter cross sections for spin-independent (a) and spin-dependent (b) dark matter. [2].
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Fig. 2. Dark matter cross sections for targets with an odd number of protons (blue) or an odd number of neutrons (red) for negative
values of �s (solid) or a zero value (dashed). Calculated using the DarkSUSY simulation tool assuming SUSY parameters of µ = +1,
A0 = 0, and tan � = 20 [3][4].

Interplay of particle-, nuclear-, astro-physics/cosmology

• Wide range of searches with overlapping constraints

Axial-vector quark 
contact interaction 
with Dirac fermion
WIMP



8

10 Direct Detection Program Roadmap 39

1 10 100 1000 104
10!50
10!49
10!48
10!47
10!46
10!45
10!44
10!43
10!42
10!41
10!40
10!39

10!14
10!13
10!12
10!11
10!10
10!9
10!8
10!7
10!6
10!5
10!4
10!3

WIMP Mass !GeV"c2#

W
IM
P!
nu
cl
eo
n
cr
os
ss
ec
tio
n
!cm2 #

W
IM
P!
nu
cl
eo
n
cr
os
ss
ec
tio
n
!pb#

7Be
Neutrinos

  NEUTRINO C OHER ENT SCATTERING 
 

 
 

 

  
 

NEUTRINO COHERENT SCATTERING
(Green&ovals)&Asymmetric&DM&&
(Violet&oval)&Magne7c&DM&
(Blue&oval)&Extra&dimensions&&
(Red&circle)&SUSY&MSSM&
&&&&&MSSM:&Pure&Higgsino&&
&&&&&MSSM:&A&funnel&
&&&&&MSSM:&BinoEstop&coannihila7on&
&&&&&MSSM:&BinoEsquark&coannihila7on&
&

8B
Neutrinos

Atmospheric and DSNB Neutrinos

CDMS II Ge  (2009)

Xenon100 (2012)

CRESST

CoGeNT
(2012)

CDMS Si
(2013)

EDELWEISS (2011)

DAMA SIMPLE (2012)

ZEPLIN-III (2012)COUPP (2012)

SuperCDMS Soudan Low Threshold
SuperCDMS Soudan CDMS-lite

XENON 10 S2 (2013)
CDMS-II Ge Low Threshold (2011)

SuperCDMS Soudan

Xenon1T

LZ

LUX

DarkSide G2

DarkSide 50

DEAP3600

PICO250-CF3I

PICO
250-C3F8

SNOLAB

SuperCDMS
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for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013
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• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
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We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search
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Figure 1: The ratio f
n

/f
p

of the e↵ective WIMP-neutron (f
n

) and WIMP-proton (f
p

) couplings in
terms of the parameters b

i

in Eq. (91). For b
g

= 0 (left panel), f
n

/f
p

is independent of ⇤ and depends
on only the ratio b

u

/b
d

. The uncertainty bands are from variation of the matrix element ⌃� (gray)
and the ratio R

ud

= m
u

/m
d

(red), with ranges given in (58) and (60). We illustrate the e↵ect of
non-zero b

g

in the right panel, with b
d

= �b
u

= 0.01 and ⇤ = 400GeV. The solid (dashed) line is the
prediction assuming that the coe�cients b

i

are defined at a high (low) scale µ ⇠ m
t

(µ ⇠ m
c

). The
inset shows the curves over the same vertical range, including uncertainty bands for the solid line
from variation of ⌃� (gray) and R

ud

(red). In both cases the variation from ⌃
⇡N

is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
completeness:19
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from variation of ⌃� (gray) and R
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is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)

q,g
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, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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is independent of ⇤ and depends
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(red), with ranges given in (58) and (60). We illustrate the e↵ect of
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We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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, are given in Table 2, and the coef-
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We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
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, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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of the e↵ective WIMP-neutron (f
n

) and WIMP-proton (f
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) couplings in
terms of the parameters b
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in Eq. (91). For b
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= 0 (left panel), f
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is independent of ⇤ and depends
on only the ratio b
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d
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)
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and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3
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. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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) and WIMP-proton (f
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) couplings in
terms of the parameters b

i

in Eq. (91). For b
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/f
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is independent of ⇤ and depends
on only the ratio b
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d
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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where the scalar and C-even spin-two operators, O(0)
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and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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Figure 4: Sommerfeld enhanced annihilation cross sections for two fixed order approximations. The
blue dotted curve truncates the w factors at O(↵2), while the green dashed line is the one-loop result
including O(↵3) contributions in w± and w±00

and the first non-vanishing O(↵4) contribution in w
00

.
Note that for M & 6 TeV, the one-loop cross section becomes negative due to the presence of a large
Sudakov logarithm with a negative coe�cient. For illustration we include the orange dot-dashed line
which gives the naive cross section computed from w

00

neglecting wave function enhancements. In
this plot v = 10�3 and � = 0.17 GeV.

3.5 Fixed Order Results

Armed with the Sommerfeld matrix sij , and the elements of the W matrix given in (32), we are in

a position to compute the dark matter annihilation cross section to line photons at both tree-level

(by simply truncating the ↵ expansion in (32)) and one loop. The results of these two calculations

are shown in Fig. 4, where we have taken � = 0.17 GeV and the relative velocity v = 10�3 for the

numerical evaluation of the Sommerfeld enhancement. Clearly the one-loop result is suppressed with

respect to the tree-level result. Specifically, we find that at M = 3 TeV (a mass of interest for the

thermal wino), the ratio �
tree

/�
1-loop

⇠ 5. However the perturbative expansion is not under control,

as seen from the fact that the fixed order ↵3 cross section becomes negative for M & 6 TeV (due to

the large Sudakov logarithm, and a further mixing induced contribution from w±;00

).

These considerations motivate introducing an EFT description in order to separate the scales

mW from 2M and resum the large logarithms, regaining control over the perturbative expansion.

The first step will be to derive an appropriate EFT description that captures all of the relevant

momentum regions of the full theory. This is the topic of the next section.
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8 Implications

Having completed the high scale matching (71), RG running (79) and finally low scale matching (90),

we may proceed to use the Hamiltonian to compute interesting physical observables and investigate

the impact of perturbative corrections.
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Figure 10: Sommerfeld enhanced WIMP annihilation cross sections for � � ! � � employing three
approximations. The fixed O(↵2) result is shown in dotted blue. The fixed O(↵3) result, including
the first non-vanishing O(↵4) contribution to w

00

, is shown in dashed green. The LL resummed
result, including one-loop matching coe�cients at the high and weak scales and resummation of the
collinear anomaly contribution, is shown in solid red.

Figure 10 shows the Sommerfeld enhanced annihilation cross section to line photons for three

approximations, taking � = 0.17 GeV and v = 10�3 as above. The blue dotted and green dashed

lines are fixed order results at O(↵2) and O(↵3), respectively, with the latter also including the first

non-vanishing O(↵4) contribution to w
00

. The red solid line is the result including LL resummation,

one-loop matching coe�cients at the high and weak scales, and resummation of the collinear anomaly

contribution. The uncertainty from scale variation would not be resolved on this log plot, hence we

only show the central value and discuss perturbative uncertainties below. As previously discussed

the fixed O(↵3) result (green dashed) becomes negative for M & 6 TeV, indicating a breakdown in

perturbation theory, while the resummed result does not lead to a negative cross section for the range

of masses plotted here.

There is a robust suppression of the resummed result due to the LL correction from the (universal)
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Electroweak charged WIMP Mechanism versus WIMP Model 

- SUSY wino

- Weakly Interacting Stable Pion 

- Minimal Dark Matter

x
x

x

xx

Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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Focus on self-conjugate SU(2) triplet.  Could be: 
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Figure 3: Diagrams contributing to matching for charged WIMPs. Wavy lines are photons, zigzag
lines are W± bosons, and the inclusion of diagrams where internal photon lines are replaced by Z0

boson lines is implied.

charged WIMP annihilation, the process has a tree level contribution. Including the tree vertex with

counterterms, together with the loop diagrams of Fig. 3,
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The renormalization constant Z�
2

is inherited from the electroweak symmetric Lagrangian (2) and

ZW
1

, ZW
2

are field and coupling renormalization factors for the SU(2) gauge field [77].6

Let us briefly review the renormalization for the scalar triplet. The 1PI two point functions for

6Following the conventions of [77], bare Lagrangian fields and parameters are given by (W a
µ )

bare = (ZW
2 )1/2W a

µ ,

gbare2 = ZW
1 (ZW

2 )�3/2g2.
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⇤
+
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Figure 2: Matching condition onto gluon operators. The notation is as in Fig. 1.

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇤�2
2(µt)][J(J +

1)/2], xh ⇤ mh/mW and xt ⇤ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

Matching conditions onto gluon operators are from the diagrams of Fig. (2):
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. (21)

There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coe⇤cients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge to compute the gluon operator coe⇤cients [10].
The e�ective theory subtractions indicated in Fig. 2, are e⇤ciently performed in a scheme
with massless light quarks, using dimensional regularization as infrared regulator; we have
obtained the same result using finite masses and taking the limit mq/mW ⇧ 0. Details of this
computation will be presented elsewhere. [Equation with explicit integral?]

5 RG evolution to hadronic scales

To account for large logarithms, e.g. log mW /µ0, that appear when hadronic matrix elements
are evaluated at µ0 ⌅ GeV, we employ the renormalization group evolution of the leading
power operators.

7

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1
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W

⌃�
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where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
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1q = q̄

�
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2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):
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, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

SU(2) triplet: 
dimensional estimate

complete heavy WIMP 
EFT computation

• the heavy lifting is necessary
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Dark matter - Standard Model interactions 
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1
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Table 1: Gauge-invariant DM operator building blocks of indicated dimension for a relativistic
fermion and scalar, and a heavy-particle fermion. For the relativistic case, building blocks within
curly brackets, { }, vanish for self-conjugate fields such as a Majorana fermion or a real scalar.
For the heavy-particle case, building blocks within curly brackets, { }, are odd under the parity in
Eq. (3). The list for a heavy-particle scalar (of mass dimension 3/2) is obtained by omitting building
blocks with the spin structure �µ⌫? above.

and a four-component spinor  . We consider both the case where there is a conserved global U(1)
DM

DM particle number, i.e., a Dirac fermion or complex scalar, and the case where the DM particle
is self-conjugate and odd under an exact Z

2

symmetry, i.e., a Majorana fermion ( =  c) or a real
scalar (� = �⇤). As for the SM building blocks, we ignore total derivatives of DM bilinears, which
must be considered when constructing lagrangian interactions.

In the regime where the DM has mass comparable to or heavier than the electroweak scale
particles, M & m

W

, the scale separation M � m
b

allows us to employ the heavy-particle building
blocks listed in the final column of Table 1. We list the building blocks appropriate for a spin 1/2
or spin 0 heavy particle; e↵ective theories for higher-spin particles may be similarly constructed.
Lorentz transformations of the heavy particle field are governed by the little group for massive
particles defined by the time-like unit vector vµ. A heavy fermion has two degrees of freedom which
may be embedded in a Dirac spinor, �

v

, with constraint v/�
v

= �
v

(see, e.g., Ref. [31] and Sec. 2 of
Ref. [4] for more details). In writing the heavy-particle building blocks in Table 1 we assume field
redefinitions that eliminate operators with timelike derivatives v · D acting on �

v

, and hence only
perpendicular components of derivatives, @µ?, appear. In a standard notation we define spacelike
(with respect to the timelike unit vector vµ) “perpendicular” components using gµ⌫? ⌘ gµ⌫ � vµv⌫ .

In particular, we have @µ? ⌘ @
↵

g↵µ? = @µ � vµv · @ and �µ⌫? ⌘ �
↵�

g↵µ? g�⌫? .
For lagrangians containing heavy fields describing self-conjugate particles such as Majorana

fermions or real scalars, we may furthermore impose invariance under the self-conjugate parity,
enforced formally by the simultaneous operations [32, 13]2

vµ ! �vµ , �
v

! �c

v

= C�⇤
v

. (3)

Equivalently we may impose CPT invariance, applying the usual CPT transformations for relativistic
fields, but employing a modified version of CPT for the heavy-particle, under which 3

C : �(t,x) ! ⇠ �(t,x) , P : �(t,x) ! ⌘ �(t,�x) , T : �(t,x) ! ⇣ S �(�t,x) , (4)

where S = i�
2

for fermions and S = 1 for scalars [31]. In this formulation of the self-conjugate parity,
the action of discrete symmetries transforms fields, but leaves the reference vector vµ unchanged.
Hence, it may be readily employed even when the reference vector is fixed, e.g., to vµ = (1,0) in the
rest frame of the heavy particle.

2Here C is the charge conjugation matrix acting on the spinor index of �v. It is symmetric and unitary and satisfies
C†�µC = ��⇤

µ. For the extension to arbitrary spin see Ref. [31].
3The phases ⇠, ⌘ and ⇣ under C, P and T do not a↵ect scattering observables.
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Table 2: The seven operator classes: vector
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V
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�

, axial-vector
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A
q
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, tensor
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T
q

�

, scalar
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O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)
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, C-even spin-2
�

O(2)
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, O(2)

g

�

and C-odd spin-2
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O(2)
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�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.
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Renormalization and matching (sample):

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e�ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on ⌃v or involving ⇥5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

L⌃0,SM =
1

m3
W

⌃�
v⌃v

⇧⌥

q

⇤
c(0)1q O

(0)
1q + c(2)1q vµv⇧O

(2)µ⇧
1q

⌅
+ c(0)2 O(0)

2 + c(2)2 vµv⇧O
(2)µ⇧
2

⌃
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µ⇧)

2 ,

O(2)µ⇧
1q = q̄

�
⇥{µiD⇧} � 1

d
gµ⇧iD/

⇥
q , O(2)µ⇧

2 = �GAµ⇤GA⇧
⇤ +

1

d
gµ⇧(GA

�⇥)
2 . (20)

Here A{µB⇧} ⇥ (AµB⇧ + A⇧Bµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 � 2⇤ the spacetime dimension. We use the background field method
for gluons in the e�ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe⌅cients c(S)2 through O(�s) and c(S)1q through O(�0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇤ mt ⇤ mW ⇤ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
⇤
� 1

x2
h

⌅
, c(0)1D(µt) = C

⇤
� 1

x2
h

� |VtD|2
xt

4(1 + xt)3

⌅
,

c(2)1U(µt) = C
⇤
2

3

⌅
, c(2)1D(µt) = C

⇤
2

3
� |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

⌅
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇧�2
2(µt)][J(J +

1)/2], xh ⇥ mh/mW and xt ⇥ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.
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are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n
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= 3 (or n
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= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
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Renormalization group evolution from weak scale to hadronic scales, with 
perturbative corrections at heavy quark mass thresholds

focus on the scalar case, S = 0, where the sum rule for n
f

flavors is given by the trace part as

h✓µ
µ

i = m
N

= (1� �
m

)

nf
X

q=u,d,s,...

hO(0)

q

i+ �̃

2
hO(0)

g

i . (30)

The sum rule relating matrix elements hO0(S)
i

i in a theory with n
f

+1 flavors has the analogous form.
Consistency between Eqs. (29) and (30) yields a system of equations which imposes constraints

on the matrices R(0) and M (0). In the following, we drop the superscript (0) for brevity. In the case
of scale evolution, the sum rule determines R. Starting from the general form,

R(µ, µ
h

) =

0

B

B

B

B

B

B

@

1 R
qg

. . .
...

1 R
qg

0 · · · 0 R
gg

1

C

C

C

C

C

C

A

, (31)

which follows from the scale invariance of hO(0)

q

i, the functions R
qg

and R
gg

are determined by the
system of equations derived from Eqs. (29) and (30):

2

�̃(µ)
R

gg

=
2

�̃(µ
h

)
, R

qg

� 2

�̃(µ)

⇥

1� �
m

(µ)
⇤

R
gg

= � 2

�̃(µ
h

)

⇥

1� �
m

(µ
h

)
⇤

. (32)

This yields the results given in Table 5.
In the case of heavy quark threshold matching, relations between elements of the matrix M can

be similarly derived. Consider the general form,

M(µ
Q

) =

0

B

B

B

B

@

M
qQ

M
qg

1(M
qq

�M
qq

0) + JM
qq

0
...

...

M
qQ

M
qg

M
gq

· · · M
gq

M
gQ

M
gg

1

C

C

C

C

A

, (33)

where the n
f

⇥ n
f

matrices 1 and J are respectively the identity matrix and the matrix with all
elements equal to unity. The system of equations derived from Eqs. (29) and (30) yield the following
relations

0 = �̃(nf ) � �̃(nf+1)M
gg

� 2
⇥

1� �
(nf+1)

m

⇤

(M
gQ

+ n
f

M
gq

) ,

0 = 2
n

1� �
(nf )
m

� ⇥

1� �
(nf+1)

m

⇤

(M
qQ

+M
qq

+ (n
f

� 1)M
qq

0)
o

� �̃(nf+1)M
qg

, (34)

where the superscripts on �
m

and �̃ denote the n
f

dependence, while the µ
Q

dependence is implicit.
We may further simplify the matrix (33). By dimensional analysis, the gauge invariant operator

m
q

q̄q matches onto (GA

µ⌫

)2 with power suppression, ⇠ m
q

/m
Q

, and hence M
gq

⌘ 0. Conserved global
chiral symmetries, q

L,R

! ei✏L,Rq
L,R

when m
q

! 0, imply that integrating out the heavy quark Q
in the presence of m

q

q̄q does not induce m
q

0 q̄0q0 for q0 6= q, i.e., M
qq

0 ⌘ 0.11 Finally, since the quark

11 We are free to assume here an anticommuting �5 prescription, since �5 does not enter the QCD analysis of the scalar
operators. The assumption of diagonal quark matching underlies the light quark mass decoupling analysis [48, 49]. For
an explicit comparison of decoupling relations for pseudoscalar and axial currents using di↵erent �5 prescriptions, see
[46].
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Operator Solution to matching condition

Vq MV = 1

Aq MA = 1 +O(↵2

s)

Tq MT = 1 +O(↵2

s)

O(0)

q , O(0)

g M (0)

gQ = �↵0
s(µQ)

12⇡

n

1 + ↵0
s(µQ)

4⇡

h

11� 4

3

log µQ

mQ

i

+O(↵2

s)
o

,

M (0)

gg = 1� ↵0
s(µQ)

3⇡ log µQ

mQ
+O(↵2

s)

O(0)

5q , O(0)

5g M (0)

5,gQ = ↵0
s(µQ)

8⇡ +O(↵2

s) , M (0)

5,gg = 1 +O(↵s)

O(2)

q , O(2)

g M (2)

gQ = ↵0
s

3⇡ log µQ

mQ
+O(↵2

s) , M (2)

gg = 1 +O(↵s)

O(2)

5q M (2)

5

= 1 +O(↵2

s)

Table 6: Heavy quark threshold matching relations for the seven operator classes. The strong
coupling in the (n

f

+ 1)-flavor theory is denoted ↵0
s

.

two-loop. For the tensor current and C-odd spin-two operator we have presented the leading log-
arithmic order solutions. The chosen renormalization prescription ensures scale invariance of the
quark pseudoscalar operators to all orders.

For most phenomenological applications we may simply evaluate the matrix elements of the C-
even spin-two operators in terms of parton distribution functions (PDFs) at the weak scale µ

h

⇠ m
W

.
This avoids the need for renormalization group analysis (apart from matching to a convenient scale to
evaluate matrix elements) and heavy-quark threshold matching conditions. Nonetheless, we include
the above results for future analyses which may require an evaluation of tensor matrix elements at
low scales, such as in considering multi-nucleon contributions to matrix elements [43, 24, 44], or in
investigating the power-suppressed mixing between scalar and tensor operators.

3.4 Heavy quark threshold matching

After evolving to the scale µ
Q

⇠ m
Q

, we integrate out the heavy quark, i.e., the bottom or charm
quark, of mass m

Q

. The coe�cients in the n
f

- and (n
f

+ 1)-flavor theories are related by matching
physical matrix elements. In terms of renormalized coe�cients and operators the matching condition
is

c0
i

hO0
i

i = c
i

hO
i

i+O(1/m
Q

) , (26)

where primed and unprimed quantities are in the (n
f

+1)- and n
f

-flavor theories, respectively.8 Let
us express the solution to the matching condition as

c
i

(µ
Q

) = M
ij

(µ
Q

)c0
j

(µ
Q

) . (27)

8For example, the matching condition for scalar operators, between physical matrix elements in the 5- and 4-flavor
theories, is given by c

(0)0
g hO(0)0

g i+P
q=u,d,s,c,b c

(0)0
q hO(0)0

q i = c
(0)
g hO(0)

g i+P
q=u,d,s,c c

(0)
q hO(0)

q i+O(1/mb) , where primed
and unprimed quantities are in the 5- and 4-flavor theories, respectively, and the scale dependence is implicit.
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
qq

0 ⌘ 0 , M
gq

⌘ 0 ,

M
gg

=
�̃(nf )

�̃(nf+1)

� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
gQ

,

M
gq

=
2

�̃(nf+1)

⇥

�
(nf+1)

m

� �
(nf )
m

⇤� 2

�̃(nf+1)

⇥

1� �
(nf+1)

m

⇤

M
qQ

. (35)

Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
(nf+1)

s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find

M (2)

gg

=
11

36
� 11

6
log

µ
Q

m
Q

+
1

9
log2

µ
Q

m
Q

. (37)

At NNNLO, we find

M (3)

gg

=
564731

41472
� 2821

288
log

µ
Q

m
Q

+
3

16
log2

µ
Q

m
Q

� 1

27
log3

µ
Q

m
Q

� 82043

9216
⇣(3)

+ n
f

"

� 2633

10368
+

67

96
log

µ
Q

m
Q

� 1

3
log2

µ
Q

m
Q

#

,

M (2)

qg

= �89

54
+

20

9
log

µ
Q

m
Q

� 8

3
log2

µ
Q

m
Q

. (38)

Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by

hO0(0)
Q

i/m
N

= M
qQ

�+M
gQ

2

�̃(nf )
[1� (1� �

(nf )
m

)�]

=
1

3�
(nf )

0

(

2� 2�

)

+
↵
(nf+1)

s

(µ
Q

)

⇡

 

1

3�
(nf )

0

!

2

(

57

2
� 321�

2
+ 8n

f

)

12In the notation of Ref. [48], MgQ = C1 and MqQ = C2 � 1. Scheme dependence of C1 and C2 enters at O(↵3
s).
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masses in the n
f

and n
f

� 1 flavor theories are defined to include the induced e↵ects of the heavy
quark, we have simply M

qq

⌘ 1. These arguments imply from (33) a solution for all elements in
terms of M

gQ

and M
qQ

:

M
qq

⌘ 1 , M
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0 ⌘ 0 , M
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M
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Let us consider solutions for the elements of M (0) expanded in powers of ↵
s

,

M =
1
X

n=0

 

↵
(nf+1)

s

(µ
Q

)

⇡

!

n

M (n) , (36)

where the superscript signifies that the strong coupling constant is defined in the (n
f

+ 1)-flavor
theory. Employing this ↵

s

counting and the O(↵4

s

) results for M
gQ

and M
qQ

from Ref. [48], we may
solve the relations in Eq. (34) order by order.12 Let us work in the MS scheme, employing results for

M
gQ

and M
qQ

, as well as for the nontrivial matching condition between ↵
(nf )
s

(µ
Q

) and ↵
(nf+1)

s

(µ
Q

)
found in Ref. [48], expressed in terms of the heavy quark mass m

Q

defined in this scheme. Working
through NLO, we recover the result in Table 6. At NNLO, we find
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At NNNLO, we find
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Conversely, if M is known, the relation in Eq. (29) determines quark matrix elements in the
(n

f

+ 1)-flavor theory in terms of those in the n
f

-flavor theory, up to power corrections. Employing
the results for M

gQ

and M
qQ

from Ref. [48], the matrix element for the heavy quark in the (n
f

+1)-
flavor theory is given by
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s).
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2

(pure states), the above lagrangian is completely
specified by electroweak quantum numbers since
gauge-invariance implies f(H) = 0, and �m can be
chosen to vanish for degenerate heavy-particle states.
In particular, the first term in (1) does not depend
on the WIMP mass, spin or other properties beyond
the choice of gauge quantum numbers. Model de-
pendence is systematically encoded in operator co-
e�cients representing 1/M corrections. For exten-
sions with two electroweak multiplets (mixed states),
f(H) and �m are non-vanishing and depend on �,
the mass splitting of the multiplets, and , their cou-
pling strength mediated by the Higgs field.

Weak-scale matching. Interactions of the lightest,
electrically neutral, self-conjugate WIMP, �v, with
quarks and gluons, relevant for spin-independent (SI),
low-velocity scattering with a nucleon, are given at
energies E ⌧ mW by the EFT

L�v,SM =
�̄v�v

m3
W

X

S

X

q

c(S)
q O(S)

q +c(S)
g O(S)

g

�
+. . . ,

(2)

where q = u, d, s, c, b is an active quark flavor and
we have chosen QCD quark and gluon operators of

definite spin, S = 0, 2: O(0)
q = mq q̄q, O

(0)
g = (GA

µ⌫)
2,

O(2)µ⌫
q = 1

2 q̄
⇣
�{µiD⌫}

� � gµ⌫iD/ �/4
⌘
q, and O(2)µ⌫

g =

�GAµ�GA⌫
� + gµ⌫(GA

↵�)
2/4. Here Dµ

� ⌘
�!
Dµ � �Dµ,

and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 denotes sym-
metrization. The ellipsis in Eq. 2 denotes higher-
dimension operators suppressed by powers of 1/mW .

We match EFTs (1) and (2) at reference scale
µt ⇠ mW ⇠ mt by integrating out weak scale par-
ticles W±, Z0, h0 and t. In the heavy WIMP limit,
matching coe�cients, ci, of (2) may be expanded as

ci = ci,0 + ci,1
mW

M
+ . . . . (3)

We compute the complete set of twelve matching co-
e�cients ci,0 at leading order in perturbation theory.

Weak-scale matching for mixed states requires
renormalization of the Higgs-WIMP vertex for a con-
sistent evaluation of loop-level amplitudes, and a gen-
eralized basis of heavy-particle loop integrals to ac-
count for non-vanishing residual masses. Details of
the matching computation can be found in [4].

QCD analysis. Having encoded physics of the
heavy WIMP sector in matching coe�cients of (2),
the remaining analysis is independent of the M �
mW assumption, and consists of renormalization
group (RG) running to a low scale µ0 < mc, matching

N
LO

N
N
LO

NN
NL
O

LO

90 100 110 120 130 14010-50

10-49

10-48

10-47

mh (GeV)

�
S
I
(c
m

2
)

FIG. 1: SI cross section for low-velocity scattering on
the proton as a function of mh, for the pure-triplet case.
Labels refer to inclusion of LO, NLO, NNLO and NNNLO
corrections in the RG running from µc to µ0 and in the
spin-0 gluon matrix element. Bands represent 1� uncer-
tainty from neglected higher order pQCD corrections.

at heavy quark thresholds, and evaluating hadronic
matrix elements. This module is systematically im-
provable in subleading corrections and is applicable
to generic direct detection calculations. An extension
of the operator basis would allow robust connections
between contact interactions constrained at colliders
and low-energy observables of direct detection [7].
RG evolution accounts for perturbative corrections
involving large logarithms, e.g., ↵s(µ0) logmt/µ0.
Fig. 1 illustrates the impact of higher order pQCD
corrections. We collect in Refs. [3, 5] the details
of mapping high-scale matching coe�cients onto the
low-energy theory where hadronic matrix elements
are evaluated [24]. Cross sections for scattering on
the neutron and proton are numerically similar; we
present results for the latter.

Pure-state cross sections. Consider the situation
where the SM is extended by a single electroweak
multiplet. For definiteness let us take the cases of
a Majorana SU(2)W triplet of Y = 0, and a Dirac
SU(2)W doublet of Y = 1

2 . For the doublet we
assume that higher-dimension operators cause the
mass eigenstates after electroweak symmetry break-
ing (EWSB) to be self-conjugate combinations D1

andD2, thus forbidding a tree-level �̄v�vZ0 coupling,
and moreover that inelastic scattering is suppressed.

Upon performing weak-scale matching [4] and map-
ping to a low-energy theory for evaluation of matrix
elements [5], we obtain parameter-free cross section
predictions as illustrated in Fig. 2. The triplet cross
section is

�T
SI = 1.3+1.2

�0.5
+0.4
�0.3 ⇥ 10�47 cm2, (4)

where the first (second) error represents 1� uncer-

• the heavy lifting is necessary
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Scale separation: 
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mπ
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# params.SM
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d QCD operator basis

3 V µ
q = q̄�µq

Aµ
q = q̄�µ�

5

q

4 Tµ⌫
q = imq q̄�µ⌫�

5

q

O(0)

q = mq q̄q , O(0)

g = GA
µ⌫G

Aµ⌫

O(0)

5q = mq q̄i�5q , O(0)

5g = ✏µ⌫⇢�GA
µ⌫G

A
⇢�

O(2)µ⌫
q = 1

2

q̄
⇣

�{µiD⌫}
� � gµ⌫

4

iD/�

⌘

q , O(2)µ⌫
g = �GAµ�GA⌫

� + gµ⌫

4

(GA
↵�)

2

O(2)µ⌫
5q = 1

2

q̄�{µiD⌫}
� �

5

q

Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�

T
q

�

, scalar
�

O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)

5q

, O(0)

5g

�

, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8

} complete 
QCD basis 

for d≤7

• For canonical example (heavy electroweak multiplet), 
scalar operators

• Selected other examples
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d QCD operator basis
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are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8

• C-even spin-2: determined by PDF moments 

hN |O(2)µ⌫ |Ni = kµk⌫
Z 1

0
dx x[q(x) + q̄(x)]
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d QCD operator basis
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are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.
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• C-even spin-0: nucleon sigma terms (nucleon mass 
sum rule for gluon operator)

mN = (1� �m)
X

q

hN |mq q̄q|Ni+ 1

2
�hN |(Ga

µ⌫)
2|Ni
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• up, down quarks & isospin-violating dark matter

The functions �q(x, µ) are not yet well constrained experimentally. Table 9 lists values for the proton
tensor charges t

q,p

from a nonrelativistic quark model with SU(6) spin flavor symmetry and from a
lattice measurement [60]. Other estimates of t

u,p

, t
d,p

or t
u,p

� t
d,p

have been obtained using lattice
QCD methods [61, 62, 63], QCD sum rules [64], modeling [65, 66] and semi-inclusive deep inelastic
scattering data [67].

The tensor charges at µ = 1, 2 GeV in Table 9 are obtained by scale evolution of the tensor
charges at µ = 1.4 GeV using the anomalous dimension �

T

��
m

with �
T

given in Table 4 and �
m

the
quark mass anomalous dimension given in Appendix A. Together with m

q

(µ), e.g., taken from the
PDG [68] or Ref. [69], the tensor charges in Table 9 specify the matrix element of the antisymmetric
tensor current Tµ⌫

q

. Following from (42), the neutron tensor charges are

t
d,n

= t
u,p

, t
u,n

= t
d,p

, t
s,n

= t
s,p

. (54)

4.4 Scalar matrix elements

For the dimension four scalar operators, we restrict attention to forward nucleon matrix elements.
Let us define

E
k

m
N

hN(k)|O(0)

q

|N(k)i ⌘ m
N

f (0)

q,N

,
�9↵

s

(µ)

8⇡

E
k

m
N

hN(k)|O(0)

g

(µ)|N(k)i ⌘ m
N

f (0)

g,N

(µ) , (55)

where the appearance of the numerical factor involving ↵
s

(µ) is purely conventional. The operator
matrix elements are not independent, being linked by the sum rule in Eq. (30) as
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, the scale dependence is implicit, and the second equality is obtained by

neglecting �
m

and O(↵2

s

) contributions to �̃. In Sec. 6, we will see that corrections to the leading
order relation are numerically important in the case of electroweak-charged WIMPs.

We may extract the up and down quark scalar nucleon matrix elements from the scale-invariant
combinations,
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where the upper (lower) sign in ⌃� is for the proton (neutron) [70]. The numerical value for the
pion-nucleon sigma term ⌃

⇡N

is the lattice result from Ref. [71] with errors symmetrized. For the

strange scalar nucleon matrix element, we use the updated lattice result m
N

f (0)

s,N

= 40±20MeV from
Ref. [72], where we assume a conservative 50% uncertainty compared to their estimate of 25%.
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The functions �q(x, µ) are not yet well constrained experimentally. Table 9 lists values for the proton
tensor charges t

q,p

from a nonrelativistic quark model with SU(6) spin flavor symmetry and from a
lattice measurement [60]. Other estimates of t

u,p

, t
d,p

or t
u,p

� t
d,p

have been obtained using lattice
QCD methods [61, 62, 63], QCD sum rules [64], modeling [65, 66] and semi-inclusive deep inelastic
scattering data [67].

The tensor charges at µ = 1, 2 GeV in Table 9 are obtained by scale evolution of the tensor
charges at µ = 1.4 GeV using the anomalous dimension �

T

��
m

with �
T

given in Table 4 and �
m

the
quark mass anomalous dimension given in Appendix A. Together with m

q

(µ), e.g., taken from the
PDG [68] or Ref. [69], the tensor charges in Table 9 specify the matrix element of the antisymmetric
tensor current Tµ⌫

q

. Following from (42), the neutron tensor charges are

t
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= t
u,p

, t
u,n

= t
d,p

, t
s,n
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s,p

. (54)

4.4 Scalar matrix elements

For the dimension four scalar operators, we restrict attention to forward nucleon matrix elements.
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matrix elements are not independent, being linked by the sum rule in Eq. (30) as
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, the scale dependence is implicit, and the second equality is obtained by

neglecting �
m

and O(↵2

s

) contributions to �̃. In Sec. 6, we will see that corrections to the leading
order relation are numerically important in the case of electroweak-charged WIMPs.

We may extract the up and down quark scalar nucleon matrix elements from the scale-invariant
combinations,

⌃
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=
m
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d

2
hN |(ūu+ d̄d)|Ni = 44(13)MeV ,
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)hN |(ūu� d̄d)|Ni = ±2(2)MeV , (58)

where the upper (lower) sign in ⌃� is for the proton (neutron) [70]. The numerical value for the
pion-nucleon sigma term ⌃
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is the lattice result from Ref. [71] with errors symmetrized. For the

strange scalar nucleon matrix element, we use the updated lattice result m
N

f (0)

s,N

= 40±20MeV from
Ref. [72], where we assume a conservative 50% uncertainty compared to their estimate of 25%.

For models with identical couplings to up and down quarks, it is su�cient to take as input
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= ⌃
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, neglecting the small contribution from ⌃�. For general
applications requiring separately the up and down quark scalar matrix elements let us write
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=
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Figure 3: Light-quark sigma term results based on lattice QCD. The colours denoted the number of dy-
namical flavours of quarks: green is N

f

= 0, blue N

f

= 2 and red N

f

� 2+ 1. References: Fukugita et

al. [37], Dong et al. [38], SESAM [39], Leinweber et al. (2000) [40], Leinweber et al. (2003) [41], Procura
et al. (2003) [42], Procura et al. (2006) [43], ETM [44], JLQCD [45], QCDSF (2011) [46], QCDSF (2012)
[47], Young & Thomas [48], PACS-CS [49], Martin-Camalich et al. [50], Dürr et al. [51], QCDSF-UKQCD
[52], Shanahan et al. [53], Ren et al. [54].

4. Dark Matter

The smaller values of s
s

revealed in the recent lattice studies are particularly significant in
the context of the direct search for dark matter. The most precise limits on WIMP–nucleon cross
sections are being constrained by the XENON100 Collaboration, with the latest update placing an
upper bound on the cross section of less than 10�44 cm2 over a wide range of WIMP masses [61].
Figure 3 of [61] suggests these limits are continuing to reduce the parameter space of potential
supersymmetric candidates for dark matter.

The XENON100 Collaboration results are plotted against predicted cross sections for some
favoured supersymmetric models [62, 63, 64]. The predicted cross section rates are based on a
determination of the strange quark sigma term, s

s

,1 as outlined in Section 2. Hence s
s

in these
studies exhibits the extreme sensitivity to s

l

displayed in Figure 1.
As the WIMP–nucleon interactions are largely Higgs-coupling driven, the difference between

a small and large s
s

can have a dramatic influence on the predicted cross sections. This is high-
1Or in an alternative common notation, f

T s

= s
s

/M

p

, for the proton mass M

p

.
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The functions �q(x, µ) are not yet well constrained experimentally. Table 9 lists values for the proton
tensor charges t

q,p

from a nonrelativistic quark model with SU(6) spin flavor symmetry and from a
lattice measurement [60]. Other estimates of t

u,p

, t
d,p

or t
u,p

� t
d,p

have been obtained using lattice
QCD methods [61, 62, 63], QCD sum rules [64], modeling [65, 66] and semi-inclusive deep inelastic
scattering data [67].

The tensor charges at µ = 1, 2 GeV in Table 9 are obtained by scale evolution of the tensor
charges at µ = 1.4 GeV using the anomalous dimension �

T

��
m

with �
T

given in Table 4 and �
m

the
quark mass anomalous dimension given in Appendix A. Together with m

q

(µ), e.g., taken from the
PDG [68] or Ref. [69], the tensor charges in Table 9 specify the matrix element of the antisymmetric
tensor current Tµ⌫

q

. Following from (42), the neutron tensor charges are

t
d,n

= t
u,p

, t
u,n

= t
d,p

, t
s,n

= t
s,p

. (54)

4.4 Scalar matrix elements

For the dimension four scalar operators, we restrict attention to forward nucleon matrix elements.
Let us define

E
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m
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,
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g
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f (0)
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(µ) , (55)

where the appearance of the numerical factor involving ↵
s

(µ) is purely conventional. The operator
matrix elements are not independent, being linked by the sum rule in Eq. (30) as

m
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q

q̄q|N(k)i+ �̃

2
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ignoring O(1/m
N

) power corrections. Combining (55) and (56) we have
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where � =
P

q=u,d,s

f (0)

q,N

, the scale dependence is implicit, and the second equality is obtained by

neglecting �
m

and O(↵2

s

) contributions to �̃. In Sec. 6, we will see that corrections to the leading
order relation are numerically important in the case of electroweak-charged WIMPs.

We may extract the up and down quark scalar nucleon matrix elements from the scale-invariant
combinations,

⌃
⇡N

=
m

u

+m
d

2
hN |(ūu+ d̄d)|Ni = 44(13)MeV ,

⌃� = (m
d

�m
u

)hN |(ūu� d̄d)|Ni = ±2(2)MeV , (58)

where the upper (lower) sign in ⌃� is for the proton (neutron) [70]. The numerical value for the
pion-nucleon sigma term ⌃

⇡N

is the lattice result from Ref. [71] with errors symmetrized. For the

strange scalar nucleon matrix element, we use the updated lattice result m
N

f (0)

s,N

= 40±20MeV from
Ref. [72], where we assume a conservative 50% uncertainty compared to their estimate of 25%.

For models with identical couplings to up and down quarks, it is su�cient to take as input

m
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+ f (0)

d,N
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= ⌃
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, neglecting the small contribution from ⌃�. For general
applications requiring separately the up and down quark scalar matrix elements let us write

f (0)

u,N

=
R

ud

1 +R
ud

⌃
⇡N

m
N

(1 + ⇠) , f (0)

d,N

=
1

1 +R
ud

⌃
⇡N

m
N

(1� ⇠) , ⇠ =
1 +R

ud

1�R
ud

⌃�
2⌃

⇡N

, (59)

21

The functions �q(x, µ) are not yet well constrained experimentally. Table 9 lists values for the proton
tensor charges t

q,p

from a nonrelativistic quark model with SU(6) spin flavor symmetry and from a
lattice measurement [60]. Other estimates of t

u,p

, t
d,p

or t
u,p

� t
d,p

have been obtained using lattice
QCD methods [61, 62, 63], QCD sum rules [64], modeling [65, 66] and semi-inclusive deep inelastic
scattering data [67].

The tensor charges at µ = 1, 2 GeV in Table 9 are obtained by scale evolution of the tensor
charges at µ = 1.4 GeV using the anomalous dimension �

T

��
m

with �
T

given in Table 4 and �
m

the
quark mass anomalous dimension given in Appendix A. Together with m

q

(µ), e.g., taken from the
PDG [68] or Ref. [69], the tensor charges in Table 9 specify the matrix element of the antisymmetric
tensor current Tµ⌫

q

. Following from (42), the neutron tensor charges are

t
d,n

= t
u,p

, t
u,n

= t
d,p

, t
s,n

= t
s,p

. (54)

4.4 Scalar matrix elements

For the dimension four scalar operators, we restrict attention to forward nucleon matrix elements.
Let us define
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(µ) , (55)

where the appearance of the numerical factor involving ↵
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(µ) is purely conventional. The operator
matrix elements are not independent, being linked by the sum rule in Eq. (30) as
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) power corrections. Combining (55) and (56) we have
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where � =
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q=u,d,s
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q,N

, the scale dependence is implicit, and the second equality is obtained by

neglecting �
m

and O(↵2

s

) contributions to �̃. In Sec. 6, we will see that corrections to the leading
order relation are numerically important in the case of electroweak-charged WIMPs.

We may extract the up and down quark scalar nucleon matrix elements from the scale-invariant
combinations,

⌃
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=
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d

2
hN |(ūu+ d̄d)|Ni = 44(13)MeV ,

⌃� = (m
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)hN |(ūu� d̄d)|Ni = ±2(2)MeV , (58)

where the upper (lower) sign in ⌃� is for the proton (neutron) [70]. The numerical value for the
pion-nucleon sigma term ⌃

⇡N

is the lattice result from Ref. [71] with errors symmetrized. For the

strange scalar nucleon matrix element, we use the updated lattice result m
N

f (0)

s,N

= 40±20MeV from
Ref. [72], where we assume a conservative 50% uncertainty compared to their estimate of 25%.

For models with identical couplings to up and down quarks, it is su�cient to take as input

m
N

�

f (0)

u,N
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, neglecting the small contribution from ⌃�. For general
applications requiring separately the up and down quark scalar matrix elements let us write
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=
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Gasser, Leutwyler (1982)

= ±2(1)MeV

Crivellin, Hoferichter, Procura (2014)

q f (0)

q,p

f (0)

q,n

u 0.016(5)(3)(1) 0.014(5)(+2

�3

)(1)

d 0.029(9)(3)(2) 0.034(9)(+3

�2

)(2)

s 0.043(21) 0.043(21)

Table 10: Scale independent scalar form factors for the proton and neutron for light quark flavors
u, d, s. The first, second and third uncertainties are from ⌃

⇡N

, m
u

/m
d

and ⌃�, respectively. As
discussed below Eq. (60), the parameterization in Eq. (59) leads to highly correlated uncertainties in

f (0)

u,N

and f (0)

d,N

.

where we employ the quark mass ratios adopted from PDG values [68] (symmetrizing errors),

R
ud

⌘ m
u

m
d

= 0.49± 0.13 , R
sd

⌘ m
s

m
d

= 19.5± 2.5 . (60)

The resulting numerical values for the light quark scalar matrix elements are collected in Table 10.

The uncertainties in f (0)

u,N

and f (0)

d,N

are highly correlated, and for applications we use Eq. (59), varying
the inputs ⌃

⇡N

, R
ud

and ⌃� whose uncertainties are taken as uncorrelated. For both proton and

neutron, the gluon matrix element f (0)

g,N

is obtained from the quark matrix elements via the sum rule
in Eq. (56).

From the analysis of heavy quark matching conditions in Sec. 3.5, we may determine the scalar
matrix elements of heavy quark flavors. For definiteness, let us consider 4-flavor QCD with a heavy
charm quark. Denoting quantities in the 4-flavor (3-flavor) theory with (without) a prime, the results
in Eqs. (39) and (40) yield

f (0)0
c,N

= 0.083� 0.103�+O(↵4

s

, 1/m
c

) = 0.073(3) +O(↵4

s

, 1/m
c

) ,

f (0)0
q,N

= f (0)

q,N

+O(1/m
c

) , (61)

where we use � ⇡ ⌃
⇡N

/m
N

+ f (0)

s,N

= 0.089(26)MeV, neglecting the small contribution from ⌃�. An

expression for f (0)0
c,N

in terms of ↵0
s

(µ
c

) is given in Appendix B; in particular, the O(↵3

s

) term in f (0)0
c,N

employs hO0(0)
Q

i
4

derived in Sec. 3.5. The uncertainty in f (0)0
c,N

is presently dominated by hadronic
inputs, and in (61) we neglect the small uncertainty (< 1%) from scale variation of µ

c

. Recent lattice
measurements of the charm matrix element in Refs. [73] and [74] have determined

f (0)0
c,N

=

(

0.10(3) [73]

0.07(3) [74]
, (62)

which are consistent within large errors with (61). As discussed below (39), we find discrepancies
with previous determinations of the heavy quark scalar matrix elements [51, 52].14 Nonetheless, due
to a large O(30%) uncertainty in �, the resulting numerical values are consistent. A nonperturbative
determination of the charm and light quark matrix elements in 4-flavor lattice QCD would avoid
uncertainties associated with the charm scale µ

c

⇠ m
c

, such as O(1/m
c

) power corrections and
O(↵

s

) perturbative corrections. In Sec. 6, we investigate the evaluation of the spin-independent
cross section for heavy electroweak-charged WIMPs in the 4-flavor theory.

14In Ref. [72], the result of Ref. [52] was presented with updated inputs.
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Figure 1: The ratio f
n

/f
p

of the e↵ective WIMP-neutron (f
n

) and WIMP-proton (f
p

) couplings in
terms of the parameters b

i

in Eq. (91). For b
g

= 0 (left panel), f
n

/f
p

is independent of ⇤ and depends
on only the ratio b

u

/b
d

. The uncertainty bands are from variation of the matrix element ⌃� (gray)
and the ratio R

ud

= m
u

/m
d

(red), with ranges given in (58) and (60). We illustrate the e↵ect of
non-zero b

g

in the right panel, with b
d

= �b
u

= 0.01 and ⇤ = 400GeV. The solid (dashed) line is the
prediction assuming that the coe�cients b

i

are defined at a high (low) scale µ ⇠ m
t

(µ ⇠ m
c

). The
inset shows the curves over the same vertical range, including uncertainty bands for the solid line
from variation of ⌃� (gray) and R

ud

(red). In both cases the variation from ⌃
⇡N

is subdominant.

6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

L
�v , SM = �̄

v

�
v

⇢

X

q=u,d,s,c,b



c(0)
q

O(0)

q
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v
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v
⌫

O(2)µ⌫

q

�

+ c(0)
g

O(0)

g

+ c(2)
g

v
µ

v
⌫

O(2)µ⌫

g

�

+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
completeness:19
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

L
�v , SM = �̄

v

�
v

⇢

X

q=u,d,s,c,b



c(0)
q

O(0)

q

+ c(2)
q

v
µ

v
⌫

O(2)µ⌫

q

�

+ c(0)
g

O(0)

g

+ c(2)
g

v
µ

v
⌫

O(2)µ⌫

g

�

+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)

q,g

and O(2)

q,g

, are given in Table 2, and the coef-
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) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
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, are given in Table 2, and the coef-
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We consider the heavy WIMP limit (M � m
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) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by

L
�v , SM = �̄

v

�
v

⇢

X

q=u,d,s,c,b



c(0)
q

O(0)

q

+ c(2)
q

v
µ

v
⌫

O(2)µ⌫

q

�

+ c(0)
g

O(0)

g

+ c(2)
g

v
µ

v
⌫

O(2)µ⌫

g

�

+ . . . , (92)

where the scalar and C-even spin-two operators, O(0)
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and O(2)
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, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3
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. The bare matching coe�cients for both
wino-like and higgsino-like cases were computed explicitly in Ref. [4] and are reproduced here for
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6.2 Heavy, electroweak-charged WIMPs

We consider the heavy WIMP limit (M � m
W

) for the cases of a self-conjugate electroweak triplet
of hypercharge zero (“wino-like”), and an electroweak doublet of hypercharge 1/2 (“higgsino-like”).
For the latter, we assume mass perturbations that cause the mass eigenstates after EWSB to be self-
conjugate combinations, thus forbidding a phenomenologically disfavored tree-level vector coupling
between the lightest electrically neutral state and Z0 (see Section 4 of Ref. [4] for details). The
bare e↵ective lagrangian at the weak-scale describing interactions of the lightest electrically neutral
self-conjugate WIMP (of arbitrary spin) with low-energy SM degrees of freedom is given by
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and O(2)
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, are given in Table 2, and the coef-
ficients are defined to include the mass suppression 1/m3

W

. The bare matching coe�cients for both
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FIG. 8: Comparison and average of lattice QCD calculations of fs as described in the text. Only
values that have been extrapolated to the physical quark masses are used. Results that quote
mshN |s̄s|Ni are normalized by mN = 938.9 MeV to convert to fs. The quoted uncertainties are
taken as the statistical and systematic uncertainties added in quadrature from a given reference.
nf = 2 + 1 indicates a dynamical strange quark as well as up and down. SU(3) is used to indicate
results that rely heavily on SU(3) baryon �PT. Some results are excluded for various reasons but
displayed to demonstrate their consistency: [29] was updated in [30], the nf = 2 results [22, 24]
were not averaged with the nf = 2 + 1, the results in [25] were preliminary and not extrapolated
to the physical pion mass, the results in [26, 36] are preliminary and only exist in a conference
proceedings. All excluded results are presented as quoted in the literature, with no attempt to
perform chiral extrapolations

For the scalar strange content of the nucleon, the current state of results is such that a
simple weighted average of good (green star) results can not be performed in a meaningful
way. As can be seen in Fig. 8, there is good consistency between most of the results.
There are not a large number of orange circle results, so we chose to include all results in
the average. Moreover, we believe despite their red-square assignment, these results o↵er
valuable information which should not be ignored at this time.

A simple weighted average, using the quoted uncertainties as the inverse weights, pro-
duces an unbelievably small final uncertainty. This also ignores the fact that systematic
uncertainties are typically non-Gaussian, and in the case of lattice QCD calculations, not
cleanly separable from the statistical uncertainties. Moreover, it does not account for the
quality of the results, judged using the rubric of the FLAG working group. In an attempt
to include all these issues, the following ad hoc procedure is used to perform a weighted
average of all the results (presented in Figure 8):

i) for each of the Nlatt = 11 results, fi ± �±
i , an independent random sample is generated

with a sample size of Ndist = 104, drawn from a uniform distribution between the quoted

17

from Junnarkar and Walker-Loud, 
1301.1114

⌃s = hN |s̄s|Ni
= 40± 20MeV
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Figure 3: Cross section for low-velocity scattering on a nucleon for a heavy real scalar in the
isospin J = 1 representation of SU(2). The dark shaded region represents the 1� uncertainty
from perturbative QCD, estimated by varying factorization scales. The light shaded region
represents the 1� uncertainty from hadronic inputs.

heavy quark matching from µt to µc at NLO. Hadronic input uncertainties from each source
in Table 1 and Table 2 are added in quadrature. We have ignored power corrections appearing
at relative order ↵s(mc)⇤2

QCD/m
2
c ; typical numerical prefactors appearing in the coe�cients of

the corresponding power-suppressed operators [18] suggest that these e↵ects are small.
Due to a partial cancellation between spin-0 and spin-2 matrix elements, the total cross

section and the fractional error depend sensitively on subleading perturbative corrections and
on the Higgs mass parameter mh. We find

�p(mh = 120GeV) = 0.7±0.1+0.9
�0.3⇥10�47cm2 , �p(mh = 140GeV) = 2.4±0.2+1.5

�0.6⇥10�47cm2 ,
(33)

where the first error is from hadronic inputs, assuming ⌃lat
s and ⌃lat

⇡N from Table 1, and the
second error represents the e↵ect of neglected higher order perturbative QCD corrections. For
the illustrative value mh = 120GeV, and as a function of the scalar strange-quark matrix
element ⌃s, we display the separate contributions of each of the quark and gluon operators in
Fig. 4.

7 Summary

We have presented the e↵ective theory for heavy, weakly interacting dark matter candidates
charged under electroweak SU(2). Having determined the general form of the e↵ective la-
grangian (4) through 1/M3, we demonstrated matching conditions for subleading operators in
a simple model. Using the e↵ective theory, we demonstrated universality of the mass splitting

12

lattice QCD inputs

baryon spectroscopy
inputs 

determines if cross section is above or below neutrino 
background for direct detection

Pavan et al. hep-ph/0111066

Borasoy and Meissner, hep-ph/9607432

⌃⇡N = 47(9)MeV

⌃s = 50(8)MeV



35

• charm quarks & heavy higgsino dark matter

Freeman et al [MILC] 1204.3866 
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D
SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with

had
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,
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The couplings to the Higgs field and residual mass
matrix are respectively given by

f(H) =
g21p

2

0

B@
0 HT iHT

H 02 02

iH 02 02

1

CA+

"
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+ h.c. ,

�m = diag(MS ,MD14)�Mref15 , (7)

where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading

{
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present lattice QCD range

1/mc could potentially shift cancellation region
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,
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We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0 � M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).
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where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0
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2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading
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d QCD operator basis

3 V µ
q = q̄�µq

Aµ
q = q̄�µ�

5

q

4 Tµ⌫
q = imq q̄�µ⌫�
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q = mq q̄q , O(0)

g = GA
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Table 2: The seven operator classes: vector
�

V
q

�

, axial-vector
�

A
q

�

, tensor
�

T
q

�

, scalar
�

O(0)

q

, O(0)

g

�

,

pseudoscalar
�

O(0)

5q

, O(0)

5g

�

, C-even spin-2
�

O(2)

q

, O(2)

g

�

and C-odd spin-2
�

O(2)

5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.
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Figure 2: The 90% CL upper limits on the �-nucleon cross section as a function of M� for (a)
spin-independent and (b) spin-dependent scattering. Also shown are the limits from selected
experiments with published [27–34] and preliminary [35] results.

Table 1: (a) Observed (expected) 90% CL upper limits on the DM production cross section �,
and 90% CL lower limits on the cutoff scale � for vector and axial-vector operators as a function
of the DM mass M�. (b) Expected and observed lower limits on MD at 95% CL, as a function of
extra dimensions n, with K-factors (and without, i.e., K = 1).

M� [GeV] Vector Axial-Vector
� [fb] � [GeV] � [fb] � [GeV]

1 14.3 (14.7) 572 (568) 14.9 (15.4) 565 (561)
10 14.3 (14.7) 571 (567) 14.1 (14.5) 573 (569)

100 15.4 (15.3) 558 (558) 13.9 (14.3) 554 (550)
200 14.3 (14.7) 549 (545) 14.0 (14.5) 508 (504)
500 13.6 (14.0) 442 (439) 13.7 (14.1) 358 (356)
1000 14.1 (14.5) 246 (244) 13.9 (14.3) 172 (171)

(a) 90% CL Limits on DM model parameters.

n K-factors Expected Observed
MD [TeV] MD [TeV]

3 1.5 1.70 (1.53) 1.73 (1.55)
4 1.4 1.65 (1.53) 1.67 (1.55)
5 1.3 1.63 (1.54) 1.64 (1.56)
6 1.2 1.62 (1.55) 1.64 (1.57)

(b) 95% CL Limits on ADD parameters.

�3 fb at 90% CL. For spin-dependent scattering, the upper limits surpass all previous con-
straints for the mass range of 1–100 GeV. The results presented are valid for mediator masses
larger than the limits on �, assuming unity for the couplings g� and gq. The specific case of
light mediators is discussed in Ref. [3, 36]. The assumptions on � interactions made in calcu-
lating the limits vary with experiment. Further, in the case of direct and indirect searches, an
astrophysical model must be assumed for the density and velocity distribution of DM.

A set of 95% confidence level (CL) upper limits are also placed on the ADD cross sections and
translated into exclusions on the parameter space of the model. The upper limits are calculated
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Table 1: (a) Observed (expected) 90% CL upper limits on the DM production cross section �,
and 90% CL lower limits on the cutoff scale � for vector and axial-vector operators as a function
of the DM mass M�. (b) Expected and observed lower limits on MD at 95% CL, as a function of
extra dimensions n, with K-factors (and without, i.e., K = 1).

M� [GeV] Vector Axial-Vector
� [fb] � [GeV] � [fb] � [GeV]

1 14.3 (14.7) 572 (568) 14.9 (15.4) 565 (561)
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(a) 90% CL Limits on DM model parameters.
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3 1.5 1.70 (1.53) 1.73 (1.55)
4 1.4 1.65 (1.53) 1.67 (1.55)
5 1.3 1.63 (1.54) 1.64 (1.56)
6 1.2 1.62 (1.55) 1.64 (1.57)

(b) 95% CL Limits on ADD parameters.

�3 fb at 90% CL. For spin-dependent scattering, the upper limits surpass all previous con-
straints for the mass range of 1–100 GeV. The results presented are valid for mediator masses
larger than the limits on �, assuming unity for the couplings g� and gq. The specific case of
light mediators is discussed in Ref. [3, 36]. The assumptions on � interactions made in calcu-
lating the limits vary with experiment. Further, in the case of direct and indirect searches, an
astrophysical model must be assumed for the density and velocity distribution of DM.

A set of 95% confidence level (CL) upper limits are also placed on the ADD cross sections and
translated into exclusions on the parameter space of the model. The upper limits are calculated
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Fig. 1. Dark matter cross sections for spin-independent (a) and spin-dependent (b) dark matter. [2].
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Fig. 2. Dark matter cross sections for targets with an odd number of protons (blue) or an odd number of neutrons (red) for negative
values of �s (solid) or a zero value (dashed). Calculated using the DarkSUSY simulation tool assuming SUSY parameters of µ = +1,
A0 = 0, and tan � = 20 [3][4].
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d QCD operator basis

3 V µ
q = q̄�µq
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Table 2: The seven operator classes: vector
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V
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, axial-vector
�

A
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, tensor
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5q

�

. Here A[µB⌫] ⌘
(AµB⌫ � A⌫Bµ)/2 and A{µB⌫} ⌘ (AµB⌫ + A⌫Bµ)/2 respectively denote antisymmetrization and
symmetrization, and the subscript q denotes an active quark flavor. The antisymmetric tensor current

T
q

and the quark pseudoscalar operator O(0)

5q

both include a conventional quark mass prefactor.

are nonetheless present once a complete analysis is performed. It is essential to include a complete
basis that is closed under renormalization and contains all operators not forbidden by symmetry.

Weak scale matching for an electroweak singlet Dirac fermion or (real or complex) scalar can be
similarly performed. Weak scale matching for the case of electroweak charged dark matter, requires
a more intricate analysis as detailed in Ref. [4].

3 Operator renormalization, scale evolution and matching at heavy
quark thresholds

Having determined the basis of e↵ective operators and their coe�cients at the weak scale, we may
proceed to map onto a theory valid at lower energy scales. We identify the relevant QCD operators
and compute their anomalous dimensions. We then solve the corresponding renormalization group
evolution equations and enforce matching conditions at heavy quark thresholds, passing from n

f

= 5
renormalized at µ ⇠ m

W

to n
f

= 3 (or n
f

= 4) renormalized below the charm (or bottom) threshold.

3.1 QCD operator basis

Inspection of the low-energy SM building blocks in (1) shows that, up to field redefinitions, the
strong interaction matrix elements relevant for WIMP-SM interactions through dimension seven
involve seven QCD operator classes collected in Table 2: at dimension three we have the vector
and axial-vector currents; at dimension four we have the antisymmetric tensor currents, the scalar
operators, the pseudoscalar operators, the C-even spin-2 operators and the C-odd spin-2 operators.
Each of these classes transforms irreducibly under continuous and discrete Lorentz transformations,
and is separately closed under renormalization.

8

• flavor singlet pseudoscalar & low-mass WIMPs



42

q f (0)

5q,p

Ref. [75] f (0)

5q,n

Ref. [75]

u 0.42(8)(1) 0.43 -0.41(8)(1) -0.42

d -0.84(8)(3) -0.84 0.85(8)(3) 0.85

s -0.48(8)(1)(3) -0.50 -0.06(8)(1)(3) -0.08

Table 11: Scale invariant quark pseudoscalar form factors evaluated at (0, µ) = 0. We list numbers
for the proton and neutron obtained from (65) with inputs from (60) and (49), and compare to the
values in Table II of Ref. [75]. The first, second and third uncertainties are respectively from R

ud

,

F (p,3)

A

and F (p,8)

A

; negligible uncertainties are not shown.

4.5 Pseudoscalar matrix elements

For the quark and gluon pseudoscalar operators we parametrize the matrix elements as

E
k

m
N

hN(k0)|O(0)

5q

|N(k)i ⌘ m
N

f (0)

5q,N

(q2)ū(k0)i�
5

u(k) ,

E
k

m
N

hN(k0)|O(0)

5g

|N(k)i ⌘ m
N

f (0)

5g,N

(q2)ū(k0)i�
5

u(k) , (63)

where the quark pseudoscalar operators have been defined independent of renormalization scale,
while the gluon operators have a weak scale dependence. The matrix elements in Eq. (63) are related
to the matrix elements of the axial vector current through the axial anomaly in Eq. (18). Employing
the matrix elements for the non-singlet axial-vector currents in Eq. (49), together with the additional
definition,

X

q=u,d,s

hN(k0)|q̄i�
5

q|N(k)i ⌘ (q2, µ)ū(k0)i�
5

u(k) , (64)

we find the following quark pseudoscalar form factors at q2 = 0:

f (0)

5u,p

(0) =
R

ud

⇣p
3F (p,8)

A

(0) +
⇥

1 + 2R
sd

⇤

F (p,3)

A

(0)
⌘

R
sd

+R
ud

+R
sd

R
ud

+ ! ,

f (0)
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(0) =

p
3F (p,8)

A

(0)R
ud

� ⇥

R
ud

+ 2R
sd

⇤

F (p,3)

A

(0)

R
sd

+R
ud

+R
sd

R
ud

+ ! ,

f (0)
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(0) =
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sd

⇣

�p
3
⇥

1 +R
ud

⇤

F (p,8)

A

(0)� ⇥

1�R
ud

⇤

F (p,3)

A

(0)
⌘

R
sd

+R
ud

+R
sd

R
ud

+ ! , (65)

where the quark mass ratios R
qq

0 = m
q

/m
q

0 are given in (60) and ! is the scale independent quantity,

! =
(0, µ)m

d

(µ)R
sd

R
ud

m
N

⇣

R
sd

+R
ud

+R
sd

R
ud

⌘ . (66)

In the absence of better information on the quantity (q2, µ), we list numerical values for the quark
form factors in Table 11 setting (0, µ) = 0, as motivated by large N

c

arguments [75]. This standard
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FIG. 1. 2-dimensional credible regions for DAMA (shaded/black solid, 90% and 99% CL) and exclusion limits (99S% CL) in
the (mDM,⇤a) plane, for flavor-universal (left), Higgs-like (center) and isoscalar (right) couplings.

The scattering rate is

dRT

dER
=

⇠T

mT

⇢

mDM

Z

v>vmin

d3v v f(~v)
d�T

dER
, (6)

with ⇠T the target’s mass fraction in the detector, ⇢ the
local DM density, and f(~v) the DM velocity distribution
in Earth’s frame, corresponding to a truncated Maxwell-
Boltzmann with characteristic speed v0 and escape veloc-
ity vesc in the galactic frame. Considering elastic scatter-
ing and denoting with µT the DM-nucleus reduced mass,
vmin =

p
mTER/2µ2

T is the minimum speed a WIMP
needs in order to impart the target nucleus with a recoil
energy ER. In order to compare with the experimental
results, the rate in (6) must be convolved with the de-
tector resolution function and the experimental e�ciency
(see e.g. [20, 27]).

We analyze data by LUX, XENON100, PICASSO,
SIMPLE, COUPP, KIMS and DAMA. We use Bayesian
statistics to infer the 99S% credible interval for the ex-
clusion limits and both the 90% and 99% credible regions
for DAMA from the posterior probability density func-
tion, as detailed in [28, 29] where it was demonstrated
that the procedure is robust against the choice of prior
and matches well a profile likelihood analysis. We con-
sider log priors for both our relevant parameters: the DM
mass mDM, from 1 GeV to 1 TeV, and the scale ⇤a, from
0.01 GeV to 100 GeV, not to favor a particular mass scale
range. For each experiment we marginalize over the nui-
sance parameters, given by the uncertain astrophysical
parameters ⇢, v0, vesc (the central values for the Gaus-
sian priors are ⇢̄ = 0.3GeV/cm3, v̄0 = 230 km/s and
v̄esc = 544 km/s), as well as the experimental uncertain-
ties as described in [28, 29]. The details on the likelihood
functions for the LUX and COUPP experiments are pro-
vided in the appendix.

Fig. 1 shows the results of our analysis for our three
choices of couplings: flavor-universal, Higgs-like and
isoscalar. The two DAMA regions correspond respec-

tively to scattering o↵ Na (peaked around mDM ⇠ 8
GeV) and I (peaked around mDM ⇠ 40 GeV). Part of the
regions is compatible with all null experiments for flavor-
universal couplings at 99S% CL. Notice how the large
enhancement of the WIMP-proton coupling with respect
to the WIMP-neutron coupling suppresses the LUX and
XENON100 bounds but not COUPP, PICASSO, SIM-
PLE and KIMS. For Higgs-like couplings the LUX and
XENON100 bounds are less suppressed due to the re-
duced gp/gn enhancement, and the exclusion limits disfa-
vor both sodium and iodine regions. In the isoscalar case
instead there is no enhancement and DAMA is largely
disfavored at 99S% CL by both XENON100 and LUX.
It is intriguing that the allowed DAMA iodine region

lies in the ballpark of DM masses that can account for the
�-ray GC excess. In the following we investigate whether
the two signals can be both accommodated within the
Coy DM scenario.

THE GC EXCESS

Various authors reported evidence for an excess of
1 – 3 GeV �-rays from the GC. Taking as a reference
Fig. 15 of [13], DM particles with a mass mDM ⇠ 20 – 40
GeV annihilating mostly into quarks with a cross section
h�vi ⇠ 1 – 2 ⇥ 10�26 cm3/s are shown to fit the spec-
trum of the observed excess. In particular, the results
of the fit are shown for models with flavor-universal and
Higgs-like couplings (right panel), and can be then di-
rectly compared with our results.3

In this section we show that the Coy DM interpreta-
tion of the DAMA data is compatible with a DM expla-

3 Notice that Ref. [13] assumes, in the definition of the �-ray flux,
that the DM is self-conjugated. This implies that, in order to
predict the same signal in the GC, our cross section needs to be
a factor of 2 larger than the one found in Ref. [13].

 ⇠ 0?

Impacts tension between experiments

|gp/gn| ⇠ 15� 45

L = g�a�̄i�5�+
X

q

gfaq̄i�5q

L ⇠ 1

⇤2

X

N=p,n

gN �̄�5�N̄�5N
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1: One loop contributions to matrix elements of Oi

3

mW

M

where the factors
p

2E for each external particle convert to nonrelativistic state normalization (de-

noted by subscript “NR”), and we have introduced the reduced amplitude, M
⇣

[��]i ! �(✏)�(✏0)
⌘

=

✏⇤ · ✏0⇤M
⇣

[��]i ! ��
⌘

. Identifying DiscM = 2iAbsM,5 gives the field theory side of the matching

condition.

Figure 2: Diagrams contributing to hard scale matching for neutral WIMPs. Wavy lines are photons,
zigzag lines are W± bosons.

For neutral WIMP annihilation, the relevant amputated loop diagrams are shown in Fig. 2.

Considering kinematics at both the neutral and charged WIMP thresholds, we have
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where C
potential

depends on whether the matrix element is evaluated at the neutral or charged WIMP

threshold:
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We have here ignored higher order corrections involving the mass splitting (cf. (22) below). For

5For a single channel, the absorptive part is identified with the imaginary part, AbsM ⌘ ImM.
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Here the circular blob denotes insertion of iW , while the elliptical blob denotes insertion of V . For

neutral particle production at threshold, k = k0 = 0, this gives
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where m� is a photon mass regulating IR divergences.

For the mixed channel:
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Evaluated at the threshold for charged particle production, k0 = 0 and k2 = 2M
0

�, this expression

yields
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For the neutral channel:
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14

hard annihilation 
(makes it happen)

Sudakov suppression
(makes it slower)

Sommerfeld enhancement
(makes it faster)

Extend Heavy WIMP Effective Theory to describe annihilation.  
Worked example: SU(2) triplet annihilation to photons 
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8 Implications

Having completed the high scale matching (71), RG running (79) and finally low scale matching (90),

we may proceed to use the Hamiltonian to compute interesting physical observables and investigate

the impact of perturbative corrections.

� � � � ��

��-��
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��-��

��-��

��-��

��-��

��-��

M
⇥

TeV
⇤

�
v
⇥

cm
3
/s
⇤

Figure 10: Sommerfeld enhanced WIMP annihilation cross sections for � � ! � � employing three
approximations. The fixed O(↵2) result is shown in dotted blue. The fixed O(↵3) result, including
the first non-vanishing O(↵4) contribution to w

00

, is shown in dashed green. The LL resummed
result, including one-loop matching coe�cients at the high and weak scales and resummation of the
collinear anomaly contribution, is shown in solid red.

Figure 10 shows the Sommerfeld enhanced annihilation cross section to line photons for three

approximations, taking � = 0.17 GeV and v = 10�3 as above. The blue dotted and green dashed

lines are fixed order results at O(↵2) and O(↵3), respectively, with the latter also including the first

non-vanishing O(↵4) contribution to w
00

. The red solid line is the result including LL resummation,

one-loop matching coe�cients at the high and weak scales, and resummation of the collinear anomaly

contribution. The uncertainty from scale variation would not be resolved on this log plot, hence we

only show the central value and discuss perturbative uncertainties below. As previously discussed

the fixed O(↵3) result (green dashed) becomes negative for M & 6 TeV, indicating a breakdown in

perturbation theory, while the resummed result does not lead to a negative cross section for the range

of masses plotted here.

There is a robust suppression of the resummed result due to the LL correction from the (universal)

38

one loop

tree level

resummed

Bauer, Cohen, Hill, Solon (2014)

ph
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WIMP mass

General framework in which to reliably compute annihilation 
signals for heavy WIMPs.  

see also: 
Ovanesyan, Slatyer, Stewart 2014
Baumgart, Rothstein, Vaidya 2014
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Novel field theory tools for DM have broad application
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• QCD corrections are important to dark matter 
searches

• determine discovery potential (heavy wino)

• determine compatibility of potential signals 
between experiments

• interplay with perturbative and nonperturbative QCD

• lattice matrix elements

• high-order decoupling relations

• novel nuclear responses

• has motivated new field theory tools for particle and 
nuclear physics
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Additional states in the dark sector

singlet-doublet (e.g., bino-higgsino) 

interplay of mass-suppressed (tree level) and loop 
suppressed contributions

4
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FIG. 4: SI cross sections for low-velocity scattering on the
proton for the singlet-doublet and doublet-triplet admix-
tures, as a function of the mass splitting between pure-
state constituents, �/[(4⇡)2mW ] (in conveniently cho-
sen units such that interesting features of the curves with
di↵erent  may be displayed on the same scale). We in-
dicate pure case limits and label each curve with the 
value used. Inset plots use the same units.

presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading
order when |�| . mW , or more precisely |�| .
mW (4⇡)2. Within this regime, the purely spin-
0 contributions from tree-level Higgs exchange can
dominate (cf. [18]). However, when mW /� suppres-
sion is significant, loop-induced contributions become
relevant, and the opposite signs of spin-0 and spin-2
amplitudes lead to cancellations in the -� plane. In
the decoupling limit of SUSY,  depends on t� and
the sign of µ, taking values   tan ✓W /2 (  1/2)
for a bino-higgsino (wino-higgsino) mixture.

Extended gauge and Higgs sectors. A sim-
ple dimensional estimate of the pure-state cross sec-
tion yields �SI ⇠ (↵2mN/mW )4 ⇠ 10�45 cm2 [25].
However, destructive interference between spin-0 and
spin-2 amplitudes leads to anomalously small cross
sections. The degree of cancellation depends on SM
parameters such as mh in Fig. 2, and on the choice
of WIMP quantum numbers. Extending our compu-
tation to pure states of arbitrary isospin, J , and hy-
percharge, Y , the resulting cross section is minimum
for (J, Y ) = ( 12 ,

1
2 ) corresponding to the doublet, and

(1,0)

(2,0)

I 12 , 12 M
had
pert
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FIG. 5: SI cross sections for low-velocity scattering on
the proton as a function of ⌘ ⌘ t� cos(� � ↵), for pure
states with quantum numbers (J, Y ) indicated. The re-
gions |⌘|, |⌘ � 2| . 0.5 are phenomenologically allowed.
Cross sections assuming only a SM-like Higgs are at ⌘ = 0.

increases for larger J at fixed Y ; e.g., the result for

Y = 0 is �(J,0)
SI = [J(J + 1)/2]2�T

SI.

Additional structure in the Higgs sector may also
have impact. We illustrate this with a second CP-
even Higgs of mass mH > mh = 126GeV, aris-
ing in the context of the type-II two-Higgs-doublet
model. Upon including diagrams with both Higgses,
we obtain pure-state cross sections in terms of mH ,
t� ⌘ tan� and ⌘ ⌘ t� cos(� � ↵) (choosing vari-
ables suitable for parameterizing departures from the
“alignment limit” [15]). For t� � 1 and |⌘|  O(1),
the couplings of the SM-like Higgs to W±, Z0, u, c, t
are given by 1 + O(1/t2�), while those to d, s, b are

given by (1� ⌘) +O(1/t2�), measured relative to SM
values. Existing phenomenological constraints are
not sensitive to the sign of the latter, allowing for
values ⌘ ⇡ 0, 2 where the magnitude is near the SM
value. Figure 5 shows cross section predictions for
pure states with quantum numbers (J, Y ) indicated,
including (2, 0), the smallest representation for which
WIMP decay by dimension five operators is forbidden
by gauge invariance [16]. The results do not change
appreciably for mH & 500 and t� & 5 since the lead-
ing corrections are proportional to ⌘(1 � m2

h/m
2
H)

with subleading corrections of O(1/t2�).

Discussion. We constructed the EFT for heavy
WIMPs interacting with SM gauge and Higgs bosons,
and used it to compute predictions with minimal
model dependence for cross sections to be probed
in future DM search experiments. We presented
absolute predictions for WIMPs transforming un-
der irreducible representations of SU(2)W ⇥ U(1)Y
(Fig. 2), and considered the impact of additional
WIMPs (Fig. 4) and of an extended Higgs sector
(Fig. 5). We also demonstrated the significance of
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FIG. 4: SI cross sections for low-velocity scattering on the
proton for the singlet-doublet and doublet-triplet admix-
tures, as a function of the mass splitting between pure-
state constituents, �/[(4⇡)2mW ] (in conveniently cho-
sen units such that interesting features of the curves with
di↵erent  may be displayed on the same scale). We in-
dicate pure case limits and label each curve with the 
value used. Inset plots use the same units.

presence of a scale separation M,M 0 � mW , im-
plies that the partner state contributes at leading
order when |�| . mW , or more precisely |�| .
mW (4⇡)2. Within this regime, the purely spin-
0 contributions from tree-level Higgs exchange can
dominate (cf. [18]). However, when mW /� suppres-
sion is significant, loop-induced contributions become
relevant, and the opposite signs of spin-0 and spin-2
amplitudes lead to cancellations in the -� plane. In
the decoupling limit of SUSY,  depends on t� and
the sign of µ, taking values   tan ✓W /2 (  1/2)
for a bino-higgsino (wino-higgsino) mixture.

Extended gauge and Higgs sectors. A sim-
ple dimensional estimate of the pure-state cross sec-
tion yields �SI ⇠ (↵2mN/mW )4 ⇠ 10�45 cm2 [25].
However, destructive interference between spin-0 and
spin-2 amplitudes leads to anomalously small cross
sections. The degree of cancellation depends on SM
parameters such as mh in Fig. 2, and on the choice
of WIMP quantum numbers. Extending our compu-
tation to pure states of arbitrary isospin, J , and hy-
percharge, Y , the resulting cross section is minimum
for (J, Y ) = ( 12 ,

1
2 ) corresponding to the doublet, and
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FIG. 5: SI cross sections for low-velocity scattering on
the proton as a function of ⌘ ⌘ t� cos(� � ↵), for pure
states with quantum numbers (J, Y ) indicated. The re-
gions |⌘|, |⌘ � 2| . 0.5 are phenomenologically allowed.
Cross sections assuming only a SM-like Higgs are at ⌘ = 0.

increases for larger J at fixed Y ; e.g., the result for

Y = 0 is �(J,0)
SI = [J(J + 1)/2]2�T

SI.

Additional structure in the Higgs sector may also
have impact. We illustrate this with a second CP-
even Higgs of mass mH > mh = 126GeV, aris-
ing in the context of the type-II two-Higgs-doublet
model. Upon including diagrams with both Higgses,
we obtain pure-state cross sections in terms of mH ,
t� ⌘ tan� and ⌘ ⌘ t� cos(� � ↵) (choosing vari-
ables suitable for parameterizing departures from the
“alignment limit” [15]). For t� � 1 and |⌘|  O(1),
the couplings of the SM-like Higgs to W±, Z0, u, c, t
are given by 1 + O(1/t2�), while those to d, s, b are

given by (1� ⌘) +O(1/t2�), measured relative to SM
values. Existing phenomenological constraints are
not sensitive to the sign of the latter, allowing for
values ⌘ ⇡ 0, 2 where the magnitude is near the SM
value. Figure 5 shows cross section predictions for
pure states with quantum numbers (J, Y ) indicated,
including (2, 0), the smallest representation for which
WIMP decay by dimension five operators is forbidden
by gauge invariance [16]. The results do not change
appreciably for mH & 500 and t� & 5 since the lead-
ing corrections are proportional to ⌘(1 � m2

h/m
2
H)

with subleading corrections of O(1/t2�).

Discussion. We constructed the EFT for heavy
WIMPs interacting with SM gauge and Higgs bosons,
and used it to compute predictions with minimal
model dependence for cross sections to be probed
in future DM search experiments. We presented
absolute predictions for WIMPs transforming un-
der irreducible representations of SU(2)W ⇥ U(1)Y
(Fig. 2), and considered the impact of additional
WIMPs (Fig. 4) and of an extended Higgs sector
(Fig. 5). We also demonstrated the significance of

triplet-doublet (e.g., wino-higgsino) 

Δ: mass splitting of multiplets, in units where tree/
loop crossover occurs at ~1
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5.2 Nucleon e↵ective theory for light mediators

The forgoing analysis, with additional matching onto multinucleon operators, provides a general
framework for WIMP-nucleus scattering in the case where all new states in the dark sector have
mass � ⇤

QCD

, such that below this scale, a complete description is possible in terms of a systematic
expansion of operators in n

f

= 3 flavor QCD. Subsequent matching onto nucleon operators is given
simply by evaluating the necessary form factors, whose low-q2 behavior may be determined by lattice
QCD, chiral perturbation theory or other nonperturbative methods.

For completeness let us consider a more general situation allowing for light degrees of freedom,
with mass only assumed large compared to a typical WIMP-nucleon momentum transfer.15 We
assume that all new states of the dark sector are integrated out, and consider the resulting basis of
operators in the one-nucleon sector. Specializing to the choice vµ = uµ = (1, 0, 0, 0), and neglecting
electromagnetic interactions, the kinetic terms may be written,

L
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where N and � denote the nonrelativistic nucleon and WIMP fields, respectively. For interactions
even under P and T , we find through dimension eight the operators [34, 78],
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where the naming scheme for Wilson coe�cients is from Ref. [34]. (Note in particular that d
i

for
i = 7, 10 are absent in (79), since these operators are proportional to electromagnetic field strength.)
Lorentz symmetry is imposed by enforcing invariance under the infinitesimal boost ⌘ [31, 34]
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This implies the constraints,
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15We are here also assuming that the considered momentum transfers are small enough that pions may be integrated
out.
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where r = m
�

/m
N

. With these constraints in place there are ten independent P and T conserving
four-fermion operators through dimension eight, including two operators at dimension six.

Operators even under T but odd under P are
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Relativistic invariance enforces the constraints
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leaving three independent operators. Operators odd under both P and T are
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Relativistic invariance enforces the constraints
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leaving three independent operators. Operators even under P and odd under T are
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Relativistic invariance enforces the constraints
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leaving four independent operators.

5.2.1 Lorentz versus Galilean invariance

We remark that the basis of operators in Eq. (79) under the constraints in (81) is Lorentz invariant.
If in place of the transformations in (80) we instead enforced Galilean symmetry [19], defined by

N ! eimN⌘·xN , � ! eim�⌘·x� , @
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2.3 Operator basis

Upon combining the SM building blocks in (1) with the DM building blocks in Table 1, and perform-
ing field redefinitions to eliminate redundant operators, we obtain the e↵ective lagrangian for DM
interactions below the weak scale.

For the relativistic scalar case we have the following interactions,
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For antisymmetric tensors we define the shorthand notation T̃µ⌫ = ✏µ⌫⇢�T
⇢�

/2 (we use the convention
✏0123 = +1). The ellipsis in (5) denotes operators of dimension six and higher involving the photon,
and operators of dimension seven and higher involving quarks and gluons. For a real scalar the
coe�cients c

�n

vanish for n = 3, 4.
For the relativistic fermion case we have the following interactions,
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. For a Majorana fermion the coe�cients
c
 n

with n = 1, 2, 5, 6, 11, 12, 13, 14, 15, 16 vanish, leaving ten types of operators through dimension
seven as considered in Ref. [15].
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
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2.3 Operator basis

Upon combining the SM building blocks in (1) with the DM building blocks in Table 1, and perform-
ing field redefinitions to eliminate redundant operators, we obtain the e↵ective lagrangian for DM
interactions below the weak scale.
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
employed field redefinitions and chosen a basis of Hermitian QCD operators as in the following Sec-
tion 3.1.5 Lorentz-invariance constraints on the coe�cients in Eq. (7) may be derived by performing
an infinitesimal boost,
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
transformation vanishes upon enforcing the constraints
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where the subscript q on coe�cients of quark operators is suppressed. This leaves sixteen independent
quark operators (for each quark flavor) through dimension seven, which reduce, upon imposing
parity and time-reversal symmetry, to the seven operators describing nucleon-lepton interactions in
NRQED [34].

The basis for a heavy scalar is obtained by omitting in Eq. (7) operators containing the spin
structure �µ⌫

? . The basis for a self-conjugate heavy particle is obtained by imposing invariance under
Eq. (3) or Eq. (4); in particular we find that the coe�cients c

�n

vanish for n=1, 2, 5, 6, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24.
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
employed field redefinitions and chosen a basis of Hermitian QCD operators as in the following Sec-
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
of dimension eight and higher involving quarks and gluons. In each of (5), (6) and (7) we have
employed field redefinitions and chosen a basis of Hermitian QCD operators as in the following Sec-
tion 3.1.5 Lorentz-invariance constraints on the coe�cients in Eq. (7) may be derived by performing
an infinitesimal boost,
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
transformation vanishes upon enforcing the constraints
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where the subscript q on coe�cients of quark operators is suppressed. This leaves sixteen independent
quark operators (for each quark flavor) through dimension seven, which reduce, upon imposing
parity and time-reversal symmetry, to the seven operators describing nucleon-lepton interactions in
NRQED [34].

The basis for a heavy scalar is obtained by omitting in Eq. (7) operators containing the spin
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? . The basis for a self-conjugate heavy particle is obtained by imposing invariance under
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where the ellipsis denotes operators of dimension six and higher involving the photon, and operators
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where the ellipsis denotes terms higher order in 1/M . Working through O(M�1) for photon operators
and O(M�3) for quark and gluon operators, we find that the variation of Eq. (7) under the boost
transformation vanishes upon enforcing the constraints
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where the subscript q on coe�cients of quark operators is suppressed. This leaves sixteen independent
quark operators (for each quark flavor) through dimension seven, which reduce, upon imposing
parity and time-reversal symmetry, to the seven operators describing nucleon-lepton interactions in
NRQED [34].

The basis for a heavy scalar is obtained by omitting in Eq. (7) operators containing the spin
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? . The basis for a self-conjugate heavy particle is obtained by imposing invariance under
Eq. (3) or Eq. (4); in particular we find that the coe�cients c
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