

Lepton Flavor Violation in B Decays and other anomalies ...

Benjamín Grinstein Oct 18, 2016

Intersections of BSM phenomenology and QCD for new physics searches

I was asked to talk about

Rodrigo Alonso, Jorge Martin-Camalich & BG, Phys.Rev.Lett. 113 (2014) 24, 241802 (1407.7044);

and

idem, arXiv:1505.05164 (JHEP, accepted for publication)

I was asked to talk about

Rodrigo Alonso, Jorge Martin-Camalich & BG, Phys.Rev.Lett. 113 (2014) 24, 241802 (1407.7044); and

idem, arXiv:1505.05164 (JHEP, accepted for publication)

But then Jorge came...

I was asked to talk about

But then Jorge came...

Mini-max Flavor Violation

Benjamín Grinstein Oct 18, 2016

Intersections of BSM phenomenology and QCD for new physics searches

Gross Outline

- Anomalies in B decays
	- Low energy EFT description
	- SM EFT description
- Adding Flavor: Minimal Flavor Violation
- From Minimal To Maximal: Gauging Flavor

Work done with

Michele Redi and Giovani Villadoro, JHEP 1011 (2010) 067

Rodrigo Alonso and Jorge Martin-Camalich, Phys.Rev.Lett. 113 (2014) 24, 241802 (1407.7044); *idem,* arXiv:1505.05164 (JHEP, accepted for publication)

Rodrigo Alonso, Belen Gavela, Enrique Fernandez Martinez and Luca Merlo, in preparation

An incomplete set of References

- 1) Tobias Huber, Tobias Hurth, Enrico Lunghi. arXiv:1503.04849 [hep-ph].
- 2) Andreas Crivellin, Giancarlo D'Ambrosio, Julian Heeck. arXiv:1503.03477 [hep-ph].
- 3) Sebastien Descotes-Genon, Lars Hofer, Joaquim Matias, Javier Virto. arXiv:1503.03328 [hep-ph].
- 4) T. Blake, T. Gershon, G. Hiller. arXiv:1501.03309 [hep-ex].
- 5) Andreas Crivellin, Giancarlo D'Ambrosio, Julian Heeck. arXiv:1501.00993 [hep-ph].
- 6) Bhubanjyoti Bhattacharya, Alakabha Datta, David London, Shanmuka Shivashankara.
- arXiv:1412.7164 [hep-ph]. Phys.Lett. B742 (2015) 370-374.
- 7) Sebastian Jäger, Jorge Martin Camalich. arXiv:1412.3183 [hep-ph].
- 8) Ben Gripaios, Marco Nardecchia, S.A. Renner. arXiv:1412.1791 [hep-ph].
- 9) Gudrun Hiller, Martin Schmaltz. arXiv:1411.4773 [hep-ph]. JHEP 1502 (2015) 055.
- 10) Wolfgang Altmannshofer, David M. Straub. arXiv:1411.3161 [hep-ph].
- 11) Tobias Hurth, Farvah Mahmoudi. arXiv:1411.2786 [hep-ph].
- 12) T. Hurth, F. Mahmoudi, S. Neshatpour. arXiv:1410.4545 [hep-ph]. JHEP 1412 (2014) 053.
- 13) Jennifer Girrbach-Noe. arXiv:1410.3367 [hep-ph].
- 14) Andrzej J. Buras, Jennifer Girrbach-Noe, Christoph Niehoff, David M. Straub. arXiv:1409.4557 [hep-ph]. JHEP 1502 (2015) 184.
- 15) Andreas Crivellin. arXiv:1409.0922 [hep-ph].
- 16) Sanjoy Biswas, Debtosh Chowdhury, Sangeun Han, Seung J. Lee. arXiv:1409.0882 [hep-ph]. JHEP 1502 (2015) 142.
- 17) Diptimoy Ghosh, Marco Nardecchia, S.A. Renner. arXiv:1408.4097 [hep-ph].JHEP 1412 (2014) 131.
- 18) Gudrun Hiller, Martin Schmaltz. arXiv:1408.1627 [hep-ph]. Phys.Rev. D90 (2014) 5, 054014.

Flavor

The Flavor Puzzle

- Why $3?$
- Why *u* : *c* : *t, d* : *s* : *b, e* : ...
- Why $V_{KM} = 1$ (approx)
- but $(U_{PMNS})_{ij} = 1/\sqrt{3}$ (approx)

and more importantly

• Why have we made no progress?

Rare B-meson Decays

 \sim \approx $\frac{1}{2}$ $\frac{1}{4}$ J_{N} SM:

- In SM:
	- Weak process $(M \sim 100 \text{ GeV})$
	- 1-loop suppressed
	- CKM suppressed
- Large number of processes and observables
- Pure leptonic or semi-leptonic are "reasonably well" predicted
	- ☛ Tests of NP

Examples: \blacksquare ¹⁰⁹ BR 3*.*⁴⁰ *[±]* ⁰*.*²³ ²*.*⁹⁰ *[±]* ⁰*.*70 LHCb+CMS +0*.*⁷

 $\bar{B}^0 \to \bar{K}^{*0} \gamma$

Obs.	SM pred.	measurement		pull
	10^5 BR 4.21 ± 0.68 4.33 ± 0.15 HFAG -0.2			
		-0.02 ± 0.00 -0.16 ± 0.22 HFAG $+0.6$		

 $B_s \to \phi \mu^+ \mu^-$

¹⁰⁴ BR 3*.*¹⁵ *[±]* ⁰*.*²³ ³*.*⁴³ *[±]* ⁰*.*22 HFAG 0*.*⁹ *B*⁺ ! *K*⁺*e*⁺*e* $\bar{B}^0 \to \bar{K}^0 \mu^+ \mu^-$

 $B \to X_s \gamma$

$$
B_s\to\mu^+\mu^-
$$

$B \to X_s \mu^+ \mu^-$

 Note:

•Charmonium windows

• Improved prediction near q^2 _{max}

LE-EFT as parametrization

- SM described by EFT at low energies (or LE-EFT) (pedantic reminder: "low" is $\ll M_W$, "high" is M_W)
- Operators are Poincare and gauge invariant (QCD x EM) of dim 6
- It works pretty well ... (if you do your homework: NLL)
- Anomalies (if any) described by
	- Wilson coefficients modified w.r.t. SM
	- ✴ additional operators, absent from SM

In LE-EFT of the SM (10 operators):

SM:
$$
\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \sum_{p=u,c} \lambda_{ps} \left(C_1 \mathcal{O}_1^p + C_2 \mathcal{O}_2^p + \sum_{i=3}^{10} C_i \mathcal{O}_i \right)
$$

Of particular interest for rare radiative decays:

$$
\mathcal{O}_7 = \frac{e}{(4\pi)^2} \overline{m}_b [\bar{s} \sigma^{\mu\nu} P_R b] F_{\mu\nu}, \quad \mathcal{O}_9 = \frac{e^2}{(4\pi)^2} [\bar{s} \gamma_\mu P_L b] [\bar{l} \gamma^\mu l], \quad \mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} [\bar{s} \gamma_\mu P_L b] [\bar{l} \gamma^\mu \gamma_5 l]
$$

BSM include also $P_R \leftrightarrow P_L$ above, denote by adding a prime

and in addition 4 scalar and 2 tensor new operators:

$$
\mathcal{O}_{S}^{(\prime)} = \frac{e^2}{(4\pi)^2} [\bar{s}P_{R(L)}b][\bar{l}l], \ \mathcal{O}_{P}^{(\prime)} = \frac{e^2}{(4\pi)^2} [\bar{s}P_{R(L)}b][\bar{l}\gamma_5 l],
$$

$$
\mathcal{O}_{T} = \frac{e^2}{(4\pi)^2} [\bar{s}\sigma_{\mu\nu}b][\bar{l}\sigma^{\mu\nu}l], \ \mathcal{O}_{T5} = \frac{e^2}{(4\pi)^2} [\bar{s}\sigma_{\mu\nu}b][\bar{l}\sigma^{\mu\nu}\gamma_5 l].
$$

 $but not (g-2)_e$ \overline{C}

 $F(\chi^2) = 55\%$ Tig. 20. (Color online). Comparison of the results of this analysis (light band, blue) with predictions that include a charged Higgs boson of type II 2HDM (dark band, red). The $\overline{0.5}$ $\mathbf{0.9}$ widths of the two bands represent the uncertainties. The SM

 $R(D^*)=BF(B\rightarrow D^* \tau v_{\tau})/BF(B\rightarrow D^* 1 v_1)$ and $R(D)=BF(B\rightarrow D \tau v_{\tau})/BF(B\rightarrow D 1 v_1)$.

$$
R_K \equiv \frac{\mathcal{B}(B^+ \to K^+ \mu \mu)}{\mathcal{B}(B^+ \to K^+ ee)} = 0.745^{+0.090}_{-0.074} \text{(stat)} \pm 0.036 \text{(syst)}.
$$

 $q^2 \text{ in } [1,6] \text{GeV}^2$

 $T_{\text{A}}^{\text{max}}$ and $T_{\text{A}}^{\text{max}}$ and $T_{\text{A}}^{\text{max}}$ is predicted to be a proximation (you do not need a calculation, they do not need to employ you) SM gives 1.0 to good approximation

The Chase Begins

Model Independent approach: use LE-EFT

Problem: too many parameters,

Aha! We have seen the Higgs.

How can this matter?

In low energy (LE) EFT: Among several ops, find

$$
[\bar{s}\sigma^{\mu\nu}b][\bar{e}\sigma_{\mu\nu}e] \quad \text{and} \quad [\bar{s}\sigma^{\mu\nu}b][\bar{e}\sigma_{\mu\nu}\gamma_5e]
$$

Now in full SM with heavy NP:

quarks:
$$
q_L = 2_{\frac{1}{6}}
$$
, $u_R = 1_{\frac{2}{3}}$, $d_R = 1_{-\frac{1}{3}}$
recall: leptons: $\ell_L = 2_{-\frac{1}{2}}$, $e_R = 1_{-1}$

Only gauge invariant LR combination:

$$
[\bar{s}_{R}\sigma^{\mu\nu}q_{L}][\bar{\ell}_{L}\sigma_{\mu\nu}e_{R}]
$$

Not only is there only one possibility (rather than 2), but in this case it vanishes!

(because $\sigma^{\mu\nu}(1 - \gamma_5) \otimes \sigma_{\mu\nu}(1 + \gamma_5) = 0$ identically)

Full $b \rightarrow s$ l^+ l^- story

With full SM symmetry, EW-gap (14 operators)

dipole like:

$$
Q_{dW} = g_2(\bar{q}_s \sigma^{\mu\nu} b_R) \tau^I H W_{\mu\nu}^I, \ Q_{dB} = g_1(\bar{q}_s \sigma^{\mu\nu} b_R) H B_{\mu\nu},
$$

$$
Q'_{dW} = g_2 H^{\dagger} \tau^I (\bar{s}_R \sigma^{\mu\nu} q_b) W_{\mu\nu}^I, \ Q'_{dB} = g_1 H^{\dagger} (\bar{s}_R \sigma^{\mu\nu} q_b) B_{\mu\nu},
$$

higgs-current

$$
Q_{Hq}^{(1)} = \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right) \left(\overline{q}_{s} \gamma^{\mu} q_{b}\right)
$$

$$
Q_{Hq}^{(3)} = H^{\dagger} i (\tau^{I} \overrightarrow{D}_{\mu} - \overleftarrow{D}_{\mu} \tau^{I}) H (\overline{q}_{s} \tau^{I} \gamma^{\mu} q_{b})
$$

$$
Q_{Hd} = \left(H^{\dagger} i \overleftrightarrow{D}_{\mu} H\right) (\overline{s}_{R} \gamma^{\mu} b_{R})
$$

4-fermion:

$$
Q_{\ell q}^{(1)} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{q}_{s}\gamma^{\mu}q_{b}), \qquad Q_{\ell q}^{(3)} = (\bar{\ell}\gamma_{\mu}\tau^{I}\ell)(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{b}),
$$

\n
$$
Q_{ed} = (\bar{l}_{R}\gamma_{\mu}l_{R})(\bar{s}\gamma^{\mu}b_{R}), \qquad Q_{\ell d} = (\bar{\ell}\gamma_{\mu}\ell)(\bar{s}\gamma^{\mu}b_{R}),
$$

\n
$$
Q_{qe} = (\bar{q}_{s}\gamma_{\mu}q_{b})(\bar{l}\gamma^{\mu}l_{R}), \qquad Q_{\ell edq} = (\bar{q}_{s}b_{R})(\bar{l}_{R}\ell),
$$

\n
$$
Q_{\ell edq}^{'} = (\bar{\ell}l_{R})(\bar{s}_{R}q_{b}),
$$

LE-EFT coefficients given in terms of "high energy" coefficients.

Most interesting:

$$
C_S^l = -C_P^l = \frac{4\pi^2}{e^2 \lambda_{ts}} \frac{v^2}{\Lambda^2} C_{\ell edq}
$$

$$
C_S^{l'} = C_P^{l'} = \frac{4\pi^2}{e^2 \lambda_{ts}} \frac{v^2}{\Lambda^2} C_{\ell edq}'
$$

$$
C_T = C_{T5} = 0
$$

These are 6 LE-EFT-WC's in terms of 2 HE-EFT-WC's !

These are definite predictions that depend on very few assumptions:

- No new light states
- Linear realization
- Corrections of order (*Mw,t,h* / Λ)2

$$
B^0_{s,d}\to l^+l^-
$$

$$
\frac{\overline{\mathcal{B}}_{ql}}{\left(\overline{\mathcal{B}}_{ql}\right)_{\rm SM}} = \frac{1 + \mathcal{A}_{\Delta\Gamma}^{ll} y_q}{1 + y_q} \left(|S|^2 + |P|^2 \right).
$$

*q/*2, *^All* is the mass eigenstate rate as $\sqrt{16}$ $\sqrt{10}$ $\begin{array}{lll} c_{1} & & \ m_{1} + m_{2} & c_{2} & \ c_{2} & & \ m_{3} + m_{4} & & c_{3} & \end{array}$ $\frac{\partial P}{\partial t}$, $r_{ql} = \frac{2m_l (m_b + m_q)C_{10}}{m_p^2}$. $\frac{1}{2}$ $C_S+C'_S$ $\frac{r_{al}}{r_{al}}$ $S =$ $\sqrt{1 - \frac{4m_l^2}{m^2}}$ *l* $m_{B_q}^2$ $C_S - C'_S$ *rql ,* $P = \frac{C_{10}}{C}$ *C*SM 10 $\frac{C_{10}'}{C_{2M}} + \frac{C_{P}}{C_{P}}$ *rql ,* $\sum_{l=1}^{\infty}$ constraints $2m_l(m_h + m_a)C_{10}^{SM}$ $r_{ql} = \frac{m_{B_q}}{m_{B_q}}$. $C_{\rm g}+C_{\rm g}'$ $\begin{array}{c}\nC_S + C'_S \\
\hline\nr_{cl}\n\end{array}$ θ *b* θ *k* θ $=$ $\sqrt{ }$ $\frac{4m_l^2}{m_s^2}C_S$ $\sum_{i=1}^{n}$ *m*² *B^q* $-C'_{S}$ *rql* $P = \frac{C_{10} - C'_{10}}{C_{10}^{\text{SM}}}$ $C_{10}^{\rm SM}$ $+ \frac{C_P - C_P'}{P}$ *rql ,* $2m_l(m_b+m_a)C_{10}^{SM}$ $r_{ql} = \frac{m_{B_q}^2}{m_{B_q}^2}$ C_S' ables. One attractive possibility is the observable *^Aµµ* may be obtained by measuring the effective *^B^s* ! *^µ*⁺*µ* life $r_{ql} = \frac{2m_l (m_b + m_q)C_{10}^{SM}}{m_{B_q}^2}$ *.* (13) $\begin{array}{c} C_S + C'_S \\ \hline\end{array}$

 $B^0_{s,d} \to l^+l^-$

Moral: only "vector \times vector" operators may significantly contribute to R_K

$$
\frac{d\Gamma}{dq^2} = \frac{G_F^2 \alpha_e^2 |\lambda_{ts}|^2 m_B^3}{1536\pi^5} f_+^2 \left(|C_9 + C_9' + 2\frac{\tau_K}{f_+}|^2 + |C_{10} + C_{10}'|^2 \right) \qquad \delta C_9^{\mu} \simeq -1,
$$

where *^f*⁺ is a (*q*2-dependent) hadronic form factor and *^T^K* is a *^q*2-dependent function $\delta C_9^{\mu} - \delta C_9^e \in [-1,0],$ $\delta C_{10}^{\mu} - \delta C_{10}^e \in [0,1],$ $\delta C_9^{\mu\nu} - \delta C_9^{\nu} \in [-1, 0],$ $\delta C_{10}^{\mu\nu} - \delta C_{10}^{\nu} \in [0, 1].$ $\delta C_9^{\mu\nu} - \delta C_9^{\nu} \in [-1, 0],$ $\delta C_{10}^{\mu\nu} - \delta C_{10}^{\nu} \in [0, 1].$ $\delta C_9^{\mu\nu} - \delta C_9^{\nu} \in [-1, 0],$ NP coupled to left-handed quarks and left-handed muons, $\delta C_9^{\mu} - \delta C_9^e \in [-1,0],$ $\delta C_{10}^{\mu} - \delta C_{10}^e \in [0,1],$ $\delta C_{10}^{\mu} - \delta C_{10}^e \in [0,1],$

$$
P_5
$$

$$
\delta C_9^{\mu} \simeq -1,
$$

the *b* ! *s* data agree that the tensions can be ascribed to a negative NP contribution to

or for left-handed, this too: \mathcal{S}^{CH} $\mathcal{S}^{C}^{e} \subset [1, 0]$ \mathcal{S}^{CH} $\mathcal{S}^{C}^{e} \subset [0, 1]$ or for left-handed, this too: SO^u s $\overline{O}e = [1, 1, 0]$ s $\overline{O}e = [0, 1]$ s $\overline{O}e = [0, 1]$ Flavor-changing neutral currents are induced at the quantum level and are GIM [51]

2 The high- and low-energy events theories that the high-

$$
\delta C_9^{\mu} = -\delta C_{10}^{\mu} \simeq -0.5,
$$

 $S_{\rm 83, 84}$ is important to stress, that it is not clear yet if the tensions can expect if the tensions can ex

4.1.2 Anomalies in the angular distribution of *^B* ! *^K*⇤*µ*+*µ* $\text{Consistent with both}$ ⁸ $\delta C_9^{\mu} = - \delta C_{10}^{\mu} = - 0.5,$ $a^c \Omega^e$ collected by the muonic collected by the muonic collected by the muonic channel by the muonic channel Ω $\sigma v_9 - \sigma v_{10} - \sigma$. Consistent with both α complete angular angular angular ang α showed a 3*.*7 discrepancy with the SM in an angular observable called *P*0 $C_9^c = \partial C_1^c$ discrepancies have also been noted in other observables and discrepancies and diverse and diaerent global analyses of $-0.5,$ $SCE = SCE = 0$ $\delta C_9^{\rm s} = \delta C_{10}^{\rm s} = 0.$ $\sqrt{25}$, $\sqrt{25}$ $\frac{10}{3}$ $\delta C_9^e = \delta C_{10}^e = 0.$ \mathcal{S} , and the stress, though, that it is not clear yet if the tensions can increase \mathcal{S} \sum_{S} consistent with both \sum_{S} $\frac{1}{\mu}$ $\sigma U_9 = -\sigma U_{10} = -0.5,$ $\frac{1}{\sqrt{2}}$ and the connection between the operators in eq. (2.1) and that built with the operators in eq. (2.1) and the operators in eq. (2.1) and the operators in the operators in eq. (2.1) and the operators in the ope \mathbf{c} is specific models with \mathbf{c} the presented in Sec.6.6. \sim 0.5 interaction basis to the mass basis. In our convention this implies *qL,i* ! ((*V † uL*)*i, dL,i*), $U_{10}^e = 0.$ choice does not imply a loss of generality. *^s*⌧ *<* 3% [57] $S\Omega^{\mu} = -\delta\Omega^{\mu} = -0.5$ where $\frac{10}{3}$ ⁹*,*¹⁰ not better than $\frac{10}{2}$ $\frac{1}{2}$ through *s* and *d* quarks, and where the *C*1*...*¹⁰ are the Wilson coecients of the e↵ective

grangian [52–54]:

LE-to-HE connection $LE-to-HE$ connection

$$
\delta C_9 = \frac{4\pi^2}{e^2 \lambda_{ti}} \frac{v^2}{\Lambda^2} \left(C_{qe} + C_{\ell q}^{(1)} + C_{\ell q}^{(3)} \right), \qquad \delta C_{10} = \frac{4\pi^2}{e^2 \lambda_{ti}} \frac{v^2}{\Lambda^2} \left(C_{qe} - C_{\ell q}^{(1)} - C_{\ell q}^{(3)} \right),
$$

$$
\mathcal{B}(B^+ \to K^+ \nu \bar{\nu}) < 1.7 \times 10^{-5}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) < 5.5 \times 10^{-5}
$$

$$
\mathcal{B}(B^0 \to K^{*0} \nu \bar{\nu}) < 5.5 \times 10^{-5} \mid \mathcal{O}_{\nu} = \frac{1}{(4.5 \times 10^{-5} \text{ m})} \quad \mathcal{O}_{\nu} = \frac{1}{(4.5 \
$$

discrepancies have also been noted in other observables and discrepancies and discrepancies and discrepancies

an order of magnitude larger than the SM δC_{ν} = \mathcal{L} for the full 3 fb1 data set collected by the discrepancy with the an order of magnitude larger than the SM $\delta C_{\nu} = \frac{\partial C_{\nu}}{e^2 \lambda_{ti}} \frac{\partial C}{\partial q} \left(C_{\ell q}^{\nu} - C_{\ell q}^{\nu} \right)$ ⇤² *^C*`*edq, C*⁰

$$
\mathcal{B}(B^0 \to K^{*0}\nu\bar{\nu}) < 5.5 \times 10^{-5} \mid \mathcal{O}_{\nu} = \frac{e^2}{(4\pi)^2} [\bar{d}_i \gamma^{\mu} P_L b][\bar{\nu} \gamma^{\mu} (1 - \gamma_5) \nu],
$$
\n
$$
\mathcal{B}(B^+ \to K^{*+}\nu\bar{\nu}) < 4.0 \times 10^{-5} \quad \delta C_{\nu} = \frac{4\pi^2}{e^2 \lambda_{ti}} \frac{\nu^2}{\Lambda^2} \left(C_{\ell q}^{(1)} - C_{\ell q}^{(3)} \right)
$$
\nand order of magnitude larger than the SM

 \mathbf{S} eventually can nail down C⁽¹⁾ and C⁽³⁾ separately *sµ B*SM $C^{(1)}$ and $C^{(3)}$ 1 + *y^s* L *separately C*SM $\overline{}$ eventually can nail down $C^{(1)}$ and $C^{(3)}$ separately

recent discussions [4–8]). 4 *Havo R*_{*s*} $\frac{1}{2}$ *B*_{*z*} $\frac{$ natively, by a natively, by a new scenario contractively to example the *b* \sim Flavor??? Completely model independent so far. Let's assume ... `*edq* corresponds to the hermitian of the operator *Q*`*edq* for the flavor entry *ji* = *bs*. α corresponds to the operator α ^{ed} for the flavor entry *i*² α ^{ed f}

Minimal Flavor Violation

Minimal Flavor Violation (MFV)

Chivukula and Georgi, Phys.Lett. B188 (1987) 99 D'Ambrosio et al Nucl.Phys. B645 (2002) 155-187

- Premise: Unique source of flavor braking
- Quark sector in SM, in absence of masses has large flavor (global) symmetry:

 $G_F = SU(3)^3 \times U(1)^3$

In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings Y_U and Y_D

$$
-\mathcal{L}_{\text{Yuk}} = H\bar{q}_L Y_U u_R + \tilde{H}\bar{q}_L Y_D d_R
$$

$$
= \epsilon_U H\bar{q}_L \hat{Y}_U u_R + \epsilon_D \tilde{H}\bar{q}_L \hat{Y}_D d_R
$$

Normalize: $tr(\hat{Y}_U^{\dagger} \hat{Y}_U) = tr(\hat{Y}_D^{\dagger} \hat{Y}_D) = 1$ Breaking of $U(1)^2$ characterized by ϵ_U , ϵ_D

- MFV: all breaking of *G_F* must transform as these
- When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM is automatic
- Approach: via effective field theory: at low energies only SM fields
	- Note that many models are like this. For example, MSSM/gauge-mediation

How does this work? Consider $K_L \rightarrow \pi \nu \bar{\nu}$

Recall,
$$
G_F
$$
 breaking from:
$$
-\mathcal{L}_{\text{Yuk}} = \epsilon_U H \bar{q}_L \hat{Y}_U u_R + \epsilon_D \tilde{H} \bar{q}_L \hat{Y}_D d_R
$$

Implications of G_F ? use *spurion* method:

$$
q_L \to e^{i\theta_q} V_L q_L \qquad \hat{Y}_U \to V_L \hat{Y}_U V_u^{\dagger} \qquad \epsilon_U \to e^{i(\theta_q - \theta_u)} \epsilon_U
$$

\n
$$
u_R \to e^{i\theta_u} V_u u_R \qquad \hat{Y}_D \to V_L \hat{Y}_D V_d^{\dagger} \qquad \epsilon_D \to e^{i(\theta_q - \theta_d)} \epsilon_D
$$

\n
$$
d_R \to e^{i\theta_d} V_d d_R
$$

Effective Lagrangian

$$
\mathcal{L}_{\textrm{eff}}=\frac{1}{\Lambda^2}\sum C_i O_i
$$

among the operators have, for example

$$
O = \bar{q}_L (\hat{Y}_U \hat{Y}_U^{\dagger}) \gamma_{\mu} q_L \, \bar{\nu}_L \gamma^{\mu} \nu_L
$$

In mass basis
$$
\Rightarrow \left(\sum_{q=u,c,t} V_{qs}^* V_{qd} \frac{m_q^2}{v^2} \right) \bar{s}_L \gamma_{\mu} d_L \, \bar{\nu}_L \gamma^{\mu} \nu_L
$$

As needed it includes the factor

 $|V_{ts}^* V_{td}| m_t^2 / v^2 \approx A^2 \lambda^5 \approx 5 \times 10^{-4}$

Minimal Lepton Flavor Violation and Lepton (non)-universality

Minimal Lepton Flavor Violation

Cirigliano et al, NPB728(2005)121, hep-ph/0507001

- Extension of MFV to lepton sector
- Need assumption on origin of neutrino masses: Dirac vs Majorana
- In charged lepton sector

 $-\mathcal{L}_{\text{Yuk}} = \epsilon_E \tilde{H} \bar{\ell}_L \hat{Y}_E e_R$ $G_F = SU(3)^2 \times U(1)^2$

$$
\ell_L \to e^{i\theta_\ell} V_\ell \ell_L \qquad \hat{Y}_E \to V_\ell \hat{Y}_E V_e^{\dagger} \n e_R \to e^{i\theta_e} V_e e_R \qquad \epsilon_E \to e^{i(\theta_\ell - \theta_e)} \epsilon_E
$$

• Ignoring neutrino masses (small!), a symmetry transformation

$$
\hat{Y}_E \rightarrow V_\ell \hat{Y}_E V_e^{\dagger} = \frac{\sqrt{2}}{v|\epsilon_E|} \text{diag}(m_e, m_\mu, m_\tau)
$$

Unbroken symmetry

$$
U(3)^2 \to U(1)_e \times U(1)_\mu \times U(1)_\tau
$$

Flavor conservation without universality! (caveat, up to neutrino "Yukawas")

Application: R_K anomaly. T Thus, the above Lagrangian produces the contributions the contributions the contributions to C

There are claims that violation to lepton universality implies Glashow, G (unacceptably large) lepton flavor violation aims that violation to leptor *F* ersa on to lenton universality implies ϵ closhow Guadagpoli & Lang PPI 114, 001801 (2015) $\frac{1}{2}$ flavor violation

With MLFV lepton flavor violation is controlled by neutrino "Yukawas" (much as in SM+neutrinos) while lepton universality violation is controlled by charged lepton Yukawas *v* or violation is co *read* where *m m*² *M e*² *i neutrino "Yukawas" ^q* + *C*(3) *q sb ,* (5.4) decays, we first study the simplest case introduced in Sec. 3 in which *F*(*Y*ˆ*eY*ˆ *†* where $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$, which is expanded as an array index, which is expanded as an array in the lepton flavor in the lepton fl

4-fermion operators inducing $b \rightarrow sll$ $\overline{}$ *b* ! *s*`` anomalies would be explained by NP coupled predominantly to muons:

 $q \rightarrow s/l$
Alonso. BG. Martin Camalich. arXiv:1505.05164

 s *b*

 $Q_{\ell q}^{(1)} = (\overline{q}\gamma^{\mu}q_{L})(\overline{\ell}\gamma_{\mu}\ell_{L})$ $Q_{\ell q}^{(3)}$ $Q_{\ell q}^{(3)} = (\overline{q}\vec{\tau}\gamma^{\mu}q_L) \cdot (\overline{\ell}\vec{\tau}\gamma_{\mu} \ell_L)$
 $Q = (\overline{\tau}\gamma_{\mu} \ell_{\mu} \gamma_{\mu} \ell_{\mu} \gamma_{\mu} \ell_{\mu} \gamma_{\mu} \gamma_{\mu} \ell_{\mu} \gamma_{\mu} \gamma_{$ $Q_{\ell d} = (\bar d'$ $Q_{qe} = (\overline{q}\gamma_{\mu}q_{L})(\overline{e}\gamma^{\mu}e_{R})$ $Q_{ed} = (\bar{d}_R \gamma^\mu d_R)(\bar{e}\gamma_\mu e_R)$ $\bar{d}_R \gamma^\mu d_R)(\bar{e}\gamma_\mu e_R)$ $Q_{\ell edq} = (\bar{\ell}_L e_R)(\bar{d}_R q) + \text{h.c.}$ $\begin{bmatrix} \mu & \nu \\ \nu & \ell \end{bmatrix}$ *ts* $Q_{qe} = (\overline{q}\gamma_{\mu}q_{L})(\overline{e}\gamma^{\mu}e_{R})$ $\mathcal{L} \epsilon u = (\mathcal{L} \epsilon u + \mathcal{L} \epsilon u)(\mathcal{L} \epsilon \mu \epsilon u)$ *^Bs*⌧ ' ¹ ⇥ ¹⁰³

 $\text{Coefficients constructed by MEV/LMEIV}$ space, *q* and ` are the quark and lepton doublets respectively, *q* = (*uL, dL*) and ` = (⌫*L, lL*) Coefficients constrained by MFV+MFLV In order to discuss the consequences of this ansatz in the physics of the tauonic *B*-meson

$$
C_{\ell q}^{(1)} = c_{\ell q}^{(1)} \hat{Y}_u \hat{Y}_u^{\dagger} \otimes \hat{Y}_e \hat{Y}_e^{\dagger}, \qquad C_{\ell q}^{(3)} = c_{\ell q}^{(3)} \hat{Y}_u \hat{Y}_u^{\dagger} \otimes \hat{Y}_e \hat{Y}_e^{\dagger}, C_{q e} = c_{q e} \hat{Y}_u \hat{Y}_u^{\dagger} \otimes \hat{Y}_e^{\dagger} \hat{Y}_e, \qquad C_{\ell e d q} = c_{\ell e q d} \varepsilon_e \varepsilon_d^* \hat{Y}_d^{\dagger} \hat{Y}_u \hat{Y}_u^{\dagger} \otimes \hat{Y}_e.
$$

Lessons: 1. Scalar operator additionally suppressed! 2. Prediction: τ -enhancement: have ediction: τ-enhancer ⇤² . ⁰*.*⁰¹ *[|]ts|,* (5.8)

 $\overline{\mathcal{B}}_{s\tau} \simeq 1 \times 10^{-3}, \qquad \qquad \mathcal{B}(B \to K\tau^-\tau^+) \simeq 2 \times 10^{-4}$ Enhancement shows up in b \rightarrow svv too. This sets $\left(C_q^{(1)}-C_q^{(3)}\right)_{1} \lesssim 0.03 \left(C_q^{(1)}+C_q^{(3)}\right)_{1}$ $\left(C_q^{(1)} - C_q^{(3)}\right)_{sh} \lesssim 0.03 \left(C_q^{(1)} + C_q^{(2)}\right)_{sh}$ operator's *Qed, Q*`*^d* contributions to *b* ! *s* transitions, whose quark-flavor coecients would $\overline{\mathcal{B}}_{s\tau} \simeq 1 \times 10^{-3}$, *,* (5.6) $\int_{sb} \lesssim 0.03 \left(C_q^{(1)} + C_q^{(3)} \right)$ \setminus

 $100k$ fine tuped but appears naturally in models \mathcal{S} is the dependence on this case, the dependence on this case, the dependence on the corresponding on the corresponding \mathcal{S} by a factor *ms/mb*. Finally we shall also note that the operators *Q*`*^q* do induce neutrino flooks fine tuned, but appears naturally in models constrained than charged lepton flavor violation. looks fine tuned, but appears naturally in models t_{SUS} the stated, our appears fluorithey in includes

implies Glashow, Guadagnoli & Lane, PRL114, 091801 (2015)

$$
\text{Charged currents too!}: \quad Q_{\ell q}^{(3)} = (\overrightarrow{q}\overrightarrow{\tau}\gamma^{\mu}q_{L}) \cdot (\overrightarrow{\ell}\overrightarrow{\tau}\gamma_{\mu}\ell_{L}) \qquad \Leftrightarrow \quad b \to c\tau\nu
$$

So consider
$$
\mathcal{L}^{\text{NP}} = \frac{1}{\Lambda^2} \left[(\bar{q}_L C_q^{(1)} \gamma^\mu q_L) (\bar{\ell}_L F(\hat{Y}_e \hat{Y}_e^{\dagger}) \gamma_\mu \ell_L) + (\bar{q}_L C_q^{(3)} \gamma^\mu \vec{\tau} q_L) \cdot (\bar{\ell}_L F(\hat{Y}_e \hat{Y}_e^{\dagger}) \gamma_\mu \vec{\tau} \ell_L) \right]
$$
with
$$
F'(1) = 1, F(1) = f
$$

 v^2 (and for (2)) space, \mathbf{r} charged current $-0.16 \degree V c \phi = -\frac{1}{\Lambda^2} \left(V_{cs} (C_q^{\alpha}) / s \phi + V_{cb} (C_q^{\alpha}) / b \phi \right) J$ v^2 $\left(\frac{V^2}{V}$ $\left(\frac{V}{V}$ $\left(\frac{V}{V}\right)^3\right)$ is a general regular function whose who $\text{ed current} = 0.16 * V_{cb} = -\frac{v^2}{\Lambda^2} \left(V_{cs} (C_q^{(3)})_{sb} + V_{cb} (C_q^{(3)})_{bb} \right) f$ Need **τ** charged current = 0.16**V_{cb}* = $-\frac{v^2}{\Lambda^2}$ $\left(V_{cs}(C_q^{(3)})_{sb} + V_{cb}(C_q^{(3)})_{bb}\right) f$

Comments

- 1. Surely wrong. At least one anomaly will go away (Feynman?)
- 2. Easy to include MFV on quark sector too
- 3. Can produce this EFT from integrating out leptoquarks.
	- i. Need MFV fields Extended to leptons)
	- ii. Classify all models (scalars and vectors):
		- Get relations between CWs
		- One stands out: vector, $SU(2)_W$ -singlet, $Y = 2/3$, $SU(3)_c$ -fundamental

[Arnold,](http://inspirehep.net/author/profile/Arnold%2C%20Jonathan%20M.?recid=836696&ln=en) [Pospelov,](http://inspirehep.net/author/profile/Pospelov%2C%20Maxim?recid=836696&ln=en) [Trott](http://inspirehep.net/author/profile/Trott%2C%20Michael?recid=836696&ln=en) & [Wise,](http://inspirehep.net/author/profile/Wise%2C%20Mark%20B.?recid=836696&ln=en) 0911.2225 BG, Kagan, Trott & Zupan, 1102.3374 & 1108.4027

Magic!

Magic!

Happenings

You're going to be told lots of things. You get told things every day that don't happen.

It doesn't seem to bother people, they don't— It's printed in the press. The world thinks all these things happen. They never happened.

Everyone's so eager to get the story Before in fact the story's there That the world is constantly being fed Things that haven't happened.

All I can tell you is, It hasn't happened. It's going to happen.

Donald Rumsfeld—Feb. 28, 2003, DoD briefing

Gauging Flavor

• "why have we made no progress" (Why 3? Why hierarchy of quark/lepton masses? Wherefrom texture of CKM and PMNS?)

• Black holes: No global symmetry (other than accidental)

Issues

- How do we make sense of transforming Yukawas?
	- Spurions: VEVs of fields:

under $G_F = SU(3)_q \times SU(3)_u \times SU(3)_d$ introduce new fields $Y_U = (\bar{3}, 3, 1)$ $Y_D = (\bar{3}, 1, 3)$

and Yukawa coupling constants are $\langle Y_U \rangle, \langle Y_D \rangle$,

- New Problems
	- 1. Goldstone's theorem \Rightarrow 8+8+8 Nambu-Goldstone Bosons \Rightarrow FCNC disaster
	- 2. Renormalizability? $H\bar{q}_L Y_U u_R$, $H\bar{q}_L Y_D d_R$, are operators of dimension 5
- Solution to problem 1: gauge G_F
	- New Problems:
		- i. Anomalies: GF^3 and $GF^2 \times U(1)_Y$
		- ii. Invisibility (high scale): next slide
		- iii.Renormalizability (problem 2) still

"Invisibility"

Massive vector bosons mediate FCNC

Masses: $M_V \sim g \langle Y_{U,D} \rangle$

$$
K^0\text{-mixing: }\mathbf{S}\bigtimes_{\mathbf{S}}\mathbf{S}\sim\frac{1}{\langle Y_{U,D}\rangle^2}(\bar{s}d)(\bar{s}d)
$$

 \Rightarrow $\langle Y_{U,D} \rangle \gtrsim 10^5$ TeV

... and much higher scales for heavy generations!

 22 17:25:00 12:25:00 Hence "invisible."

And then a miracle happens...

The minimal anomaly free extension of the SM gives

1. Renormalizable couplings

2. Inverted hierarchy
$$
M_V \sim \frac{1}{y_{U,D}}
$$

where $y_{U,D}$ are the usual Yukawa couplings

so that if $M_V \sim 10^5$ TeV for mediators among light generations, we can have

$$
M_V \sim \frac{m_u}{m_t} 10^5~\text{TeV} \sim \text{few TeV}
$$

for mediators among heaviest generations

When I see this in talks it induces this response

When I see this in talks it induces this response

When I see this in talks it induces this response

I promise it is not so bad...

left-handed fundamental of *SU*(3)*D^R* . In this way the fermions are vector-like with respect to the \mathbf{f} is the SM gauge symmetry. The SM gauge symmetry. The other possibility, \mathbf{f} The Model

 $\mathcal{L} = \mathcal{L}_{kin} - V(Y_u, Y_d, H) +$ $\left(\lambda_u \, \overline{Q}_L \tilde{H} \Psi_{uR} + \lambda_u' \, \overline{\Psi}_u Y_u \Psi_{uR} + M_u \, \overline{\Psi}_u U_R + \right.$ $\lambda_d \overline{Q}_L H \Psi_{dR} + \lambda_d' \overline{\Psi}_d Y_d \Psi_{dR} + M_d \overline{\Psi}_d D_R + h.c.$

Note: all *λ*'s and *M*'s are 1×1 matrices

$$
\mathcal{L} = \mathcal{L}_{kin} - V(Y_u, Y_d, H) +
$$

\n
$$
(\lambda_u \overline{Q}_L \tilde{H} \Psi_{uR} + \lambda'_u \overline{\Psi}_u Y_u \Psi_{uR} + M_u \overline{\Psi}_u U_R +
$$

\n
$$
\lambda_d \overline{Q}_L H \Psi_{dR} + \lambda'_d \overline{\Psi}_d Y_d \Psi_{dR} + M_d \overline{\Psi}_d D_R + h.c.)
$$
,

For example:

$$
W_1/h
$$
 $Y_{v,d} >> M_{v,d}$ get see-saw:

and
$$
similay - yd = \frac{\lambda dMd}{\lambda d \lambda}
$$

$$
B_{vt} \text{ still } M_v \sim g \langle Y_{v,d} \rangle \Rightarrow M_v \sim \frac{1}{\gamma_{v,d}}
$$

$$
1^{st}
$$
 generation, $flaw - change$ \Leftrightarrow $heavies$ $vectors$ 1^{st} $genen \Leftrightarrow light, \Leftrightarrow \Leftrightarrow <math display="</math>$

Example

Excluded/allowed regions of parameter space

Dirty laundry:

Can minimizing a *GF*-invariant potential give the desired values of Yukawas? See: R. Alonso et al, JHEP 1311 (2013) 187 arXiv:1306.5927

Orbit of enhanced symmetry are always extrema. So the natural outcome would be not fully broken *GF*.

Example: SU(3) with scalar field in adjoint, A. Two independent invariants, $Tr(A^2)$ and $det(A)$

Figure 1: Manifold *M* of the *SU*(3) invariants constructed from *x*=octet=hermitian, 3×3 , traceless matrix (green region). Each point of M represents the orbit of x , namely the set of points in octet space given by: $x_g = gxg^{-1}$, when *g* runs over $SU(3)$. Boundaries of *M* are represented by Eq. (3.1). The little groups of the elements of different boundaries are indicated.

Lepton Twist

No SM, really:

- What is the fermion content? (Majorana vs Dirac Neutrinos)
- What is the flavor symmetry

Absent neutrino masses AND new fields,

$$
\begin{array}{c|cc}\n\psi & SU(3)_c & SU(2)_L & U(1)_Y \\
\hline\n\ell_L & 1 & 2 & -1/2 \\
e_R & 1 & 1 & -1\n\end{array}
$$

 $G_F = U(3)_{\ell} \times U(3)_{e}$

Simplest:

$$
\mathcal{L}_Y = \lambda_e \overline{\ell} H \mathcal{E}_R + M_E \overline{\mathcal{E}}_L e_R + \lambda_{\mathcal{E}} \overline{\mathcal{E}}_L \mathcal{Y}_E \mathcal{E}_R + h.c.
$$

+ $\lambda_{\nu} \overline{\ell} \tilde{H} N_R + \frac{\lambda_N}{2} \overline{N_R^c} \mathcal{Y}_N N_R + h.c.$

- P Moutrines are peeded • R-Neutrinos are needed.
- Choice of Y_{ℓ} (in 6-rep) to allow for large Majorana mass.
- Phenomenology, interesting, ongoing, plus I run out of time

Take Home

- Flavor anomalies:
	- Several different processes
	- Several observed by $N > 1$ experiments
	- Several persistent
	- All involve leptons
	- Suggestive pattern: the heavier the lepton, the larger the anomaly
- Fit
	- Assuming linearized HE-EFT, few operators (modulo flavor)
	- Flavor can be incorproated to limit further opertaors
		- MFV+MLFV works well
- Gauged Flavor
	- Neat for quarks
	- Can it explain anomalies in gauged LF case? Ongoing.

The End