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Flavor



The Flavor Puzzle
• Why 3?
• Why u : c : t, d : s : b, e : ...
• Why VKM = 1 (approx) 
• but (UPMNS)ij =1/√3 (approx)

and more importantly
• Why have we made no progress?



Rare B-meson Decays

15/16 Unnamed Doc (15/16)2014-02-23 18:48:05

• In SM:
• Weak process (M ~ 100 GeV)
• 1-loop suppressed
• CKM suppressed

• Large number of processes and observables

• Pure leptonic or semi-leptonic are “reasonably well” 
predicted

☛  Tests of NP 
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Altmannshofer and  Straub, 1411.3161

Note:
•Charmonium windows
•Improved prediction near q2max



LE-EFT as parametrization

Le↵ = �4GFp
2

X

p=u,c

�ps

 
C1Op

1 + C2Op
2 +

10X

i=3

CiOi

!

SM:

Of particular interest for rare radiative decays:

O7 =
e

(4⇡)2
mb[s̄�

µ⌫PR b]Fµ⌫ , O9 =
e2

(4⇡)2
[s̄�µPLb][l̄�

µl], O10 =
e2

(4⇡)2
[s̄�µPLb][l̄�

µ�5l]

In LE-EFT of the SM (10 operators):

• SM described by EFT at low energies  (or LE-EFT)
(pedantic reminder: “low” is ≪ MW, “high” is MW)

• Operators are Poincare and gauge invariant (QCD x EM) of dim 6
• It works pretty well ... (if you do your homework: NLL) 
• Anomalies (if any) described by

✴ Wilson coefficients modified w.r.t. SM
✴ additional operators, absent from SM



BSM include also  PR ↔︎ PL above, denote by adding a prime

and in addition 4 scalar and 2 tensor new operators:

O(0)
S =

e2

(4⇡)2
[s̄PR(L)b][l̄l], O(0)

P =
e2

(4⇡)2
[s̄PR(L)b][l̄�5l],

OT =
e2

(4⇡)2
[s̄�µ⌫b][l̄�

µ⌫ l], OT5 =
e2

(4⇡)2
[s̄�µ⌫b][l̄�

µ⌫�5l].







The danger 

30 10. Electroweak model and constraints on new physics

Table 10.5: Principal Z pole observables and their SM predictions (cf. Table 10.4).
The first s2

ℓ is the effective weak mixing angle extracted from the hadronic charge
asymmetry, the second is the combined value from the Tevatron [163,164,165], and
the third from the LHC [168,169]. The values of Ae are (i) from ALR for hadronic
final states [154]; (ii) from ALR for leptonic final states and from polarized Bhabba
scattering [156]; and (iii) from the angular distribution of the τ polarization at
LEP 1. The Aτ values are from SLD and the total τ polarization, respectively.

Quantity Value Standard Model Pull

MZ [GeV] 91.1876 ± 0.0021 91.1880± 0.0020 −0.2
ΓZ [GeV] 2.4952 ± 0.0023 2.4955± 0.0009 −0.1
Γ(had) [GeV] 1.7444 ± 0.0020 1.7420± 0.0008 —
Γ(inv) [MeV] 499.0 ± 1.5 501.66 ± 0.05 —
Γ(ℓ+ℓ−) [MeV] 83.984 ± 0.086 83.995 ± 0.010 —
σhad[nb] 41.541 ± 0.037 41.479 ± 0.008 1.7
Re 20.804 ± 0.050 20.740 ± 0.010 1.3
Rµ 20.785 ± 0.033 20.740 ± 0.010 1.4
Rτ 20.764 ± 0.045 20.785 ± 0.010 −0.5
Rb 0.21629± 0.00066 0.21576± 0.00003 0.8
Rc 0.1721 ± 0.0030 0.17226± 0.00003 −0.1

A
(0,e)
FB 0.0145 ± 0.0025 0.01616± 0.00008 −0.7

A
(0,µ)
FB 0.0169 ± 0.0013 0.6

A
(0,τ)
FB 0.0188 ± 0.0017 1.6

A
(0,b)
FB 0.0992 ± 0.0016 0.1029± 0.0003 −2.3

A
(0,c)
FB 0.0707 ± 0.0035 0.0735± 0.0002 −0.8

A
(0,s)
FB 0.0976 ± 0.0114 0.1030± 0.0003 −0.5

s̄2
ℓ 0.2324 ± 0.0012 0.23155± 0.00005 0.7

0.23176± 0.00060 0.3
0.2297 ± 0.0010 −1.9

Ae 0.15138± 0.00216 0.1468± 0.0004 2.1
0.1544 ± 0.0060 1.3
0.1498 ± 0.0049 0.6

Aµ 0.142 ± 0.015 −0.3
Aτ 0.136 ± 0.015 −0.7

0.1439 ± 0.0043 −0.7
Ab 0.923 ± 0.020 0.9347 −0.6
Ac 0.670 ± 0.027 0.6676± 0.0002 0.1
As 0.895 ± 0.091 0.9356 − 0.4
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Figure 2: Compilation of recent published re-
sults for aµ (in units of 10−11), subtracted
by the central value of the experimental av-
erage (3). The shaded band indicates the size
of the experimental uncertainty. The SM pre-
dictions are taken from: JN [4], DHMZ [17],
HMNT [21]. Note that the quoted errors in
the figure do not include the uncertainty on the
subtracted experimental value. To obtain for
each theory calculation a result equivalent to
Eq. (15), the errors from theory and experiment
must be added in quadrature.

(with all errors combined in quadrature) represents an inter-

esting but not yet conclusive discrepancy of 3.6 times the

estimated 1σ error. All the recent estimates for the hadronic

contribution compiled in Fig. 2 exhibit similar discrepancies.

Switching to τ data reduces the discrepancy to 2.4σ, assuming

the isospin-violating corrections are under control within the

estimated uncertainties (see Ref. 32 for an analysis leading to a

different conclusion).

An alternate interpretation is that ∆aµ may be a new

physics signal with supersymmetric particle loops as the leading

candidate explanation. Such a scenario is quite natural, since
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R(D*)=BF(B→D*τντ)/BF(B→D* l νl) and R(D)=BF(B→Dτντ)/BF(B→D l νl). 
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FIG. 20. (Color online). Comparison of the results of this
analysis (light band, blue) with predictions that include a
charged Higgs boson of type II 2HDM (dark band, red). The
widths of the two bands represent the uncertainties. The SM
corresponds to tanβ/mH+ = 0.

200 400 600 8000

50

100

σ 3
σ 4
σ 5

Excl. at

1000
mH+ (GeV)

ta
n
β

FIG. 21. (Color online). Level of disagreement between this
measurement of R(D(∗)) and the type II 2HDM predictions
for all values in the tanβ–mH+ parameter space.

by B → Xsγ measurements [22], and therefore, the type
II 2HDM is excluded in the full tanβ–mH+ parameter
space.
The excess in both R(D) and R(D∗) can be explained

in more general charged Higgs models [44–47]. The ef-
fective Hamiltonian for a type III 2HDM is

Heff =
4GFVcb√

2

[

(cγµPLb) (τγ
µPLντ )

+ SL(cPLb) (τPLντ ) + SR(cPRb) (τPLντ )
]

, (31)

where SL and SR are independent complex parameters,
and PL,R ≡ (1 ∓ γ5)/2. This Hamiltonian describes the
most general type of 2HDM for which m2

H+ ≫ q2.
In this context, the ratios R(D(∗)) take the form

R(D) = R(D)SM +A
′

DRe(SR + SL) +B
′

D|SR + SL|2,

R(D∗) = R(D∗)SM +A
′

D∗Re(SR − SL) +B
′

D∗ |SR − SL|2.

The sign difference arises because B → Dτ−ντ decays
probe scalar operators, while B → D∗τ−ντ decays are
sensitive to pseudo-scalar operators.
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FIG. 22. (Color online). Favored regions for real values of the
type III 2HDM parameters SR and SL given by the measured
values of R(D(∗)). The bottom two solutions are excluded by
the measured q2 spectra.

The type II 2HDM corresponds to the subset of
the type III 2HDM parameter space for which SR =
−mbmτ tan2β/m2

H+ and SL = 0.
The R(D(∗)) measurements in the type II 2HDM con-

text correspond to values of SR±SL in the range [−7.4, 0].
Given that the amplitude impacted by NP contributions
takes the form

|Hs(SR ± SL; q
2)| ∝ |1 + (SR ± SL)× F (q2)|, (32)

we can extend the type II results to the full type III
parameter space by using the values of R(D(∗)) ob-
tained with Hs(SR ± SL) for Hs(−SR ∓ SL). Given the
small tanβ/mH+ dependence of R(D∗) (Fig. 20), this
is a good approximation for B → D∗τ−ντ decays. For
B → Dτ−ντ decays, this is also true when the decay am-
plitude is dominated either by SM or NP contributions,
that is, for small or large values of |SR+SL|. The shift in
the m2

miss and q2 spectra, which results in the 40% drop
on the value ofR(D) shown in Fig. 20, occurs in the inter-
mediate region where SM and NP contributions are com-
parable. In this region, Hs(SR + SL) ̸= Hs(−SR − SL),
and, as a result, the large drop in R(D) is somewhat
shifted. However, given that the asymptotic values of
R(D) are correctly extrapolated, R(D) is monotonous,
and the measured value of R(D∗) is fairly constant, the
overall picture is well described by the Hs(SR ± SL) ≈
Hs(−SR ∓ SL) extrapolation.
Figure 22 shows that for real values of SR and SL,

there are four regions in the type III parameter space
that can explain the excess in both R(D) and R(D∗).
In addition, a range of complex values of the parameters
are also compatible with this measurement.

C. Study of the q2 spectra

As shown in Sec. II B, the q2 spectrum of B → Dτ−ντ
decays could be significantly impacted by charged Higgs
contributions. Figure 23 compares the q2 distribution of
background subtracted data, corrected for detector effi-
ciency, with the expectations of three different scenarios.
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All of these numbers are well known, and for the B → τν decay the predicted branch-
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l factor, which in turn is due to helicity suppression: the spinless B meson, like
the pion, prefers to decay to the heaviest possible charged lepton because balancing
the spins of the outgoing leptons requires them to have the same handedness, and
the neutrino forces its charged partner into the unfavoured helicity.

Many “New Physics” models contain a charged Higgs boson, which can also me-
diate the decay, as shown in Figure 2. A minimal model with an additional Higgs
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FIG. 5: Experimental measurements and SM predictions for some B ! K⇤µ+µ� observables. The black crosses are the
experimental LHCb data. The blue band corresponds to the SM predictions for the di↵erential quantities, whereas the purple
boxes indicate the corresponding binned observables.
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effects that could be induced by the Qc

1

and Qc

2

operators at q2 & 6 GeV2 and whose description

requires introducing model-dependence. This is also consistent with the findings of ref. [37].

Other contributions to r
�

can also be investigated. Those induced by the chromomagnetic pen-

guin operator Q
8

have been studied in the context of LCSR in [84] and [85], an their contributions

turn out to be very small. The contributions involving light-quark loops can be problematic at

low q2 since their treatment in QCDF is the dual to the one induced by light vector resonances.

However, they always come doubly CKM suppressed or multiplied by small Wilson coefficients.

A study of the impact of the duality violation (in relation to the QCDF result) was done using

vector-meson dominance in [33] and it turned out to be negligibly small in the binned angular

observables. It was also shown that ru,d,s
+

for the light quarks is also suppressed by (⇤/m
B

)

2.

For all this, we neglect the power corrections to the other terms, effectively absorbing them into

rc
�

and will treat all the corrections to r
+

suppressed by (⇤/m
B

)

2.

III. ANGULAR OBSERVABLES AND THE ANALYSIS OF THE EXPERIMENTAL DATA

The q2-dependent angular distribution (summed over lepton spins) is quadratic in the helicity

amplitudes and has been given in [33]. Certain ratios of angular coefficients are favoured because

of their reduced sensitivity to form factors. In particular, we will discuss the so-called P (0)
i

basis

which was introduced in [23, 31]. This is an exhaustive set of observables, constructed from

ratios of the angular coefficients and engineered to cancel most of the hadronic uncertainties in the

HQ/LE limit.

In order to illustrate this and critically re-examine the residual uncertainties on those observ-

ables, we will focus on two of them, called P
1

and P 0
5

in [23, 31]. In terms of the helicity ampli-

tudes, they read:

P
1

=

�2Re(H+

V

H�⇤
V

+H+

A

H�⇤
A

)

|H+

V

|2 + |H�
V

|2 + |H+

A

|2 + |H�
A

|2 , (21)

P 0
5

=

Re[(H�
V

�H+

V

)H0⇤
A

+ (H�
A

�H+

A

)H0⇤
V

]p
(|H0

V

|2 + |H0

A

|2)(|H+

V

|2 + |H�
V

|2 + |H+

A

|2 + |H�
A

|2) (22)

where we have neglected the muon mass for clarity and have introduced the short-hand notation

H
V,A

(�) = H�

V,A

.

In certain approximations P
1

and P 0
5

become free of nonperturbative uncertainties. In the

HQ/LE limit and neglecting ↵
s

corrections, as well as the contributions h
�

from the hadronic
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weak Hamiltonian, the � = + helicity amplitudes vanish and V
�

(q2) = T
�

(q2). As a result, in

these limits and in the SM 5,

P
1

= 0, (23)
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=
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, C
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7

, and the P (0)
i

are functions of the

Wilson coefficients alone.

Thus, the leading sources of uncertainties for the observables in the P (0)
i

basis are due to the

presence of nonfactorizable contributions as well as to corrections to the HQ/LE form factor rela-

tions. To see this explicitly, note that
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+ further terms
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where for simplicity we have assumed real Wilson coefficients, ˜h
+

denotes the nonlocal term h
�

with its leading term removed (absorbed into Ce↵

9

), and we have neglected the difference between

m
b

and m
B

as a higher-order effect. We see in in the second term on the first line the presence of

the power correction combination a
V� � a

T� . This is invariant under change of soft form factor

scheme [cf. (9)] – in particular it does not matter whether V� or T� is identified with ⇠?, implying

a
V� = 0 or a

T� = 0, respectively. Similarly, power corrections to the helicity-zero form factors

enter only in the combination (a
V0 - a

T0) (second line). Both can be understood by observing

that form factors cancel out of P 0
5

completely if Ce↵

7

, the � = + amplitudes, and nonfactorizable

corrections are all neglected. As a result, form factor uncertainties enter only through interference

of the tensor and vector form factors, and of form factors and nonfactorizable corrections. This

interference is most important if Ce↵

7

and Ce↵

9

(q2) are comparable, as happens in particular around

the zero-crossing of P 0
5

. The term displayed on the last line involves nonfactorizable corrections.

All three terms demonstrate how the soft form factors with their associated uncertainties re-enter

at subleading power. The full expression is quite lengthy and depends on all power-correction

5 We will ignore in this discussion the strange quark mass which produces an effect suppressed by ms/mb in P1.
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FIG. 2: Comparison between the SM predictions (gray boxes), the experimental measurements (blue data points) and the
predictions for the scenario with CNP

9 = �1.5 and other CNP
i = 0 (red squares).

3. ROBUSTNESS OF THE RESULTS

In view of the results of the previous section, it is im-
portant to assess the robustness of the NP interpretation
for the B ! K

⇤
µ

+
µ

� anomaly and how stable the con-
clusion CNP

9 < 0 is, taking into account potential pollu-
tion from SM sources mimicking a negative CNP

9 .

3.1. Charm Loop

One of the key sources of uncertainty in the extraction
of C9 from B ! K

⇤
µ

+
µ

� is related to the charm-loop
contribution (subsequently decaying through a photon
into a dilepton pair) coming from the insertion of 4-quark
current-current (Oc

1,2) or penguin operators (O3�6). The
contributions from Oc

1,2 are particularly important since
the Wilson coe�cients are numerically large and the pro-
cesses are not CKM suppressed. This contribution can
be described through a short-distance (perturbative) con-
tribution, which exhibits a noticeable sensitivity to the
value of m

c

near the threshold of cc̄ production, and
a long-distance (non-perturbative) contribution which is
di�cult to assess.

The perturbative charm-loop contribution is usually

absorbed into the definition of Ce↵
9 (q2) = C9 + Y (q2) [22]

and is given at leading order by

Y

c(q2,m
c

) = � 4

27
(4C1 + 3C2 + 18C3 + 180C5)⇥ (5)

⇥

ln

m

2
c

µ

2
� 2

3
� z + (2 + z)

p
|z � 1| arccot

p
(z � 1)

�

where z = 4m2
c

/q

2. There is a threshold at q2 = 4m2
c

'
6 GeV2, above which Eq. (5) must be continued ana-
lytically and an imaginary part is generated. The real
part exhibits a cusp at this threshold, whose exact po-
sition depends on m

c

. There is a significant variety of
choices in the literature concerning the value of m

c

for
such computation, for instance the pole mass (around 1.4
GeV) [22], the MS mass at the scale µ = m

c

(around 1.27
GeV) [39] or the same mass at the scale µ = 2m

c

(around
1 GeV) [37]. Following Ref. [21], we take the second op-
tion and perform the computation of B ! K

⇤
µ

+
µ

� ob-
servables with a reference value m

c

= 1.27 GeV. We can
study the dependence on m

c

by reinterpreting its change
as a shift in the value of C9, given by:

�Ccc̄,pert
9 = Re[Y c(q2,m

c

)� Y

c(q2,m
c

)] . (6)

The same analysis can be performed for the imaginary

SM
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FIG. 1: Fit to (CNP
7 , CNP

9 ), using the three large-recoil bins
for B ! K⇤µ+µ� observables, together with B ! Xs�, B !
Xsµ

+µ�, B ! K⇤� and Bs ! µ+µ�. The dashed contours
include both large- and low-recoil bins, whereas the orange
(solid) ones use only the 1-6 GeV2 bin for B ! K⇤µ+µ�

observables. The origin CNP
7,9 = (0, 0) corresponds to the SM

values for the Wilson coe�cients CSM
7e↵,9 = (�0.29, 4.07) at

µb = 4.8 GeV.

and dileptonic decays, lead to contours in the (CNP
7 , CNP

9 )
plane similar to Fig. 1.

We would like to understand whether this conclusion
is due to peculiarities of individual bins. For this pur-
pose we repeat the analysis restricting the input for the
B ! K

⇤
µ

+
µ

� observables to [1, 6] GeV2 bins, exploiting
several theoretical and experimental advantages. Such
wider bins collect more events with larger statistics. Fur-
thermore, some theoretical issues are less acute, such as
the e↵ect of low-mass resonances at very low q

2 . 1
GeV2 [36], or the impact of charm loops above ⇠ 6
GeV2 [37]. On the other hand, integrating over such a
large bin washes out some e↵ects related to the q2 depen-
dence of the observables, so that we expect this analysis
to have less sensitivity to NP [15]. This can be seen in
Fig. 1, where the regions in this case are indicated by
the orange curves, and as expected the constraints get
slightly weaker. In addition, due to the fact that the-
oretical uncertainties happen to increase moderately for
large negative NP contributions to C9, the constraints are
looser in the lower region of the (CNP

7 , CNP
9 ) plane. We

emphasise that even in this rather conservative situation
the main conclusion (a NP contribution CNP

9 ⇠ �1.5)
still prevails, whereas the SM hypothesis has still a pull
of 3.2�.

We illustrate the improvement gained by shifting C9 in
Fig. 2, where we show the predictions for CNP

9 = �1.5

(and other CNP
i

= 0) for the observables P2, P 0
4 and P

0
5,

together with the experimental data and SM predictions.
In particular, we observe how the various observables de-
scribed in Sec. 1 change for CNP

9 < 0. If the data is in
general well reproduced in this scenario, there are still a
few observables di�cult to explain theoretically. Looking
at Fig. 2, the most obvious cases are hP 0

5i in the first and
third bins. One can see there is a tension between these
two bins: more negative values for CNP

9 reproduce bet-
ter the third bin, but drive the first bin upwards, whose
experimental value is consistent with the SM. A similar
situation happens with the second and third bins of hP2i,
although in this case a good compromise is achieved.

Concerning the individual constraints to the fit, the
large-recoil bins for P2 and P

0
5 both favour the same

large region away from the SM in the (CNP
7 , CNP

9 ) plane,
providing a negative correlation between CNP

7 and CNP
9 .

B ! X

s

� selects values of CNP
7 close to the SM value,

leading to the combined (smaller) region shown in Fig. 1.
To be more quantitative, we have considered the pulls
obtained by removing in turn one or two observables
from the fit. We find that the largest pulls are as-
sociated to hP 0

5i[4.3,8.68], B ! X

s

�, hP2i[14.18,16] and
hP 0

4i[14.18,16]. B ! X

s

� has a large pull because it plays a
very important role in disfavouring a scenario with large
and negative CNP

7 , which can mimic the CNP
9 scenario in

B ! K

⇤
µ

+
µ

� observables. The observables hP 0
5i[4.3,8.68]

and hP2i[14.18,16] pull in di↵erent directions: the former
favours more negative and the latter less negative values
for CNP

9 , while the best fit point lies somewhat in the
middle, with or without these observables. On the other
hand hP 0

4i[14.18,16] has a marginal e↵ect on the results of
the fit.

The role of individual observables is confirmed by
comparing our analysis with the preliminary results in
Ref. [25], performed in the same framework, but with
only P1,P2 and AFB as inputs for B ! K

⇤
µ

+
µ

�, lead-
ing to a 3� deviation from the SM in the (CNP

7 , CNP
9 )

plane (in our present analysis, this e↵ect is magnified by
the addition of P 0

4,5,6,8 [20] among the observables). We
emphasise the importance of choosing the right set of ob-
servables among the three correlated inputs AFB, P2, FL

:
F

L

has a very significant dependence on the choice of
form factors (Fig. 5), which is less acute in the case of
AFB and P2, so that the choices (F

L

, P2) or (F
L

, AFB)
[38] lead to results that are more biased by the specific
parametrisation of form factors considered and less sen-
sitive to NP compared to (AFB, P2) [25]. For this rea-
son, we use AFB instead of F

L

in our analysis. We have
checked by two di↵erent procedures (NLO QCD factori-
sation and naive factorisation) that the 3� deviation re-
ported in Ref. [25] using [1-6] bins gets reduced to around
1 � if F

L

is used as an input instead of P2 or AFB (in
agreement with Ref. [38], where F

L

is used).



5

The largest entry in, e.g., C(1)

q` above would be c
(1)

`q y2t y
2

⌧ which could be O(1) if c(1)`q ⇠ 1/y2⌧ ; not that this does not
imply unnaturalness and would be compatible with pertubative new physics. Finally we shall also note that operators
Q`q do induce neutrino flavor violation, this however is much less constrained than charged lepton flavor violation,
specially for a four fermion operator that involves the b quark.

III. EXPERIMENTAL DATA

We describe in this section the experimental data that is useful for the discussion of the scenarios with LUV in the
MFV benchmarks described above. Comment on ”large” solutions?

A. Rare exclusive Bd,s (semi-)leptonic decays

1. The RK anomaly

The LHCb measured the following lepton-universality ratio of the B+ ! K+`` decay in the bin q2 2 [1, 6]GeV2,

RK ⌘ B (B+ ! K+µµ)

B (B+ ! K+ee)
= 0.745+0.090

�0.074(stat)± 0.036(syst). (18)

The hadronic matrix elements cancel almost exactly in this ratio and RK is predicted to be approximately equal
to 1 in the SM [1]. Therefore, a confirmation of this observation (currently a discrepancy with the SM of 2.6�
significance) would imply a clear manifestation of NP and LUV. Di↵erent theoretical analyses show that this e↵ect

must be contained in the semileptonic operators O(0)
9,10 of the low-energy Lagrangian [22, 38–41]. In the context of

the SMEFT, the (pseudo)scalar ones are ruled out by the branching fraction of Bs ! `` while tensor operators of
dimension 6 mediating down-type quark transitions are forbiden by the SU(2)L ⇥ U(1)Y symmetry [22].

In the absence of the (pseudo)scalar and tensor contributions and neglecting, for the sake of clarity, m2

`/q
2 and

m2

K/m2

B , the di↵erential decay rate of B ! K`` is,

d�

dq2
=

G2

F ↵2

e|�ts|2
1536⇡5

f2

+

✓
|C

9

+ C 0
9

+ 2
TK
f
+

|2 + |C
10

+ C 0
10

|2
◆
, (19)

where f
+

is a (q2-dependendent) hadronic form factor and TK is a q2-dependent function accounting for the (lepton
universal) contribution of a virtual photon to the decay [1, 42]. Taking into account that CSM

9

(mb) = 4.24 ' �CSM

10

,
inspection of eq. (19) shows that the RK anomaly requires any suitable combination of the scenarios:

�Cµ
9

� �Ce
9

2 [�1, 0], �Cµ
10

� �Ce
10

2 [0, 1],

�Cµ0
9

� �Ce0
9

2 [�1, 0], �Cµ0
10

� �Ce0
10

2 [0, 1]. (20)

2. Anomalies in the angular distribution of B ! K⇤µ+µ�

The B ! K⇤(! K⇡)`+`� is a four body decay with a rich kinematic structure that o↵ers excellent opportunities to
search for NP (see e.g. [43–47] and references therein). In fact, a complete angular analysis of (1 fb�1) data collected
by the LHCb in the muonic channel showed a 3.7� discrepancy with the SM in an angular observable called P 0

5

[3].
Potential discrepancies have also been noted in other observables and di↵erent global analyses agree that the tensions
can be adscribed to a negative NP contribution to Cµ

9

[6, 8, 9, 41, 48],

�Cµ
9

' �1, (21)

or within a (left-handed) scenario where [41],

�Cµ
9

= ��Cµ
10

' �0.5, (22)

Note that these modifications are compatible with the possible scenarios to accommodate RK in Eq. (20). Indeed,
complementarity of these NP interpretations with the measurements of RK and Bs ! µµ can be found in [22, 38–41].
Interestingly, a recent angular analysis of the full 3 fb�1 data set collected by the LHCb ratifies the discrepancy with
the SM [49, 50]. It is important to stress, though, that it is not clear yet if the tensions can be accommodated in the
SM by means of a not-fully-understood hadronic e↵ect (see for recent discussions [47, 51–53]).

The RK anomaly

SM gives 1.0 to good approximation 
(you do not need a calculation, they do not need to employ you)

LHCb, 1406.6482

q2 in [1,6]GeV2



BSM: assume LE-EFT follows from HE-EFT:

assume EW-gap 
                +

linearized realization of EW symmetry

 ➥ SM + dim 6 operators

The Chase Begins
Model Independent approach: use LE-EFT

Problem: too many parameters,
CP

CS

Aha! We have seen the Higgs.

Λ0

LE

m1 m4... MMW Mh mt



How can this matter?
In low energy (LE) EFT: Among several ops, find

[s̄�µ⌫b][ē�µ⌫e] and [s̄�µ⌫b][ē�µ⌫�5e]

Now in full SM with heavy NP:

recall:

quarks:

leptons:

qL = 2 1
6
, uR = 1 2

3
, dR = 1� 1

3

`L = 2� 1
2
, eR = 1�1

Only gauge invariant LR combination: 

[s̄R�
µ⌫qL][¯̀L�µ⌫eR]

Not only is there only one possibility (rather than 2), but in this case it vanishes!
 
(because                                                                         identically)�µ⌫(1� �5)⌦ �µ⌫(1 + �5) = 0



Full b → s l+ l− story
With full SM symmetry, EW-gap (14 operators)

dipole like: 
QdW = g2(q̄s�

µ⌫bR)⌧
IHW I

µ⌫ , QdB = g1(q̄s�
µ⌫bR)HBµ⌫ ,

Q0
dW = g2H

†⌧ I(s̄R�
µ⌫qb)W

I
µ⌫ , Q0

dB = g1H
†(s̄R�

µ⌫qb)Bµ⌫ ,

Q
(1)
Hq =

⇣
H† i
 !
D µH

⌘
(q̄s�

µqb)

Q
(3)
Hq = H† i(⌧ I

�!
Dµ �

 �
Dµ⌧

I)H(q̄s⌧
I�µqb)

QHd =
⇣
H† i
 !
D µH

⌘
(s̄R�

µbR)

higgs-current

4-fermion: 

Q(1)
`q = (¯̀�µ`)(q̄s�

µqb), Q(3)
`q = (¯̀�µ⌧

I`)(q̄s�
µ⌧ Iqb),

Qed = (l̄R�µlR)(s̄�
µbR), Q`d = (¯̀�µ`)(s̄�

µbR),

Qqe = (q̄s�µqb)(l̄�
µlR), Q`edq = (q̄sbR)(l̄R`),

Q0
`edq = (¯̀lR)(s̄Rqb),



LE-EFT coefficients given in terms of “high energy” coefficients. 

Most interesting:

Cl
S = �Cl

P =
4⇡2

e2�ts

v2

⇤2
C`edq

Cl0
S = Cl0

P =
4⇡2

e2�ts

v2

⇤2
C 0

`edq

CT = CT5 = 0

These are 6 LE-EFT-WC’s in terms of 2 HE-EFT-WC’s !

These are definite predictions that depend on very few assumptions:
• No new light states
• Linear realization
• Corrections of order (Mw,t,h / Λ)2 



B0
s,d ! l+l�

3

this reduction is invariance under hypercharge: the tensor-like
operators simply cannot be promoted to be U(1)Y invariant,
and for scalar and pseudo-scalar U(1)Y requires the leptons
to have definite chirality dependent on the b quark chirality.
For the remaining operators the coefficients are independent
linear combinations. However, note that there are additional
correlations between the neutral current and the charged cur-
rent version of the operators that arise from operators involv-
ing doublets. While these play no role directly in FCN lep-
tonic decays of B mesons, they may give rise to additional
constraints on the effects of NP.

Violations to the relations of Eq. (8) of order v2/⇤2 arise
from dimension-8 operators like q̄HbR ¯̀HlR and possibly of
order g2EW /16⇡2 from 1-loop matching.

Consequences in B0

q ! l+l�. A powerful probe of NP is
the decay B0

q ! l+l�. In the SM it is first induced at 1-loop
level and is chirally suppressed. Moreover, the hadronic ma-
trix element is determined fully by B0

q decay constants FBq ,
which are calculated in lattice QCD [14].

The SM predictions for the branching fractions, B, have
been worked out to high accuracy. For the muonic and elec-
tronic modes they currently are [15]:

Bsµ =3.65(23)⇥ 10�9, Bdµ =1.06(9)⇥ 10�10,

Bse =8.54(55)⇥ 10�14, Bde =2.48(21)⇥ 10�15, (9)

where the overline indicates untagged, time-integrated rates
(as required by the sizable width difference in the B̄s � Bs

system, although not for Bd [16]).
The muonic modes have been recently measured by

LHCb [17, 18] and CMS [19], and an average of the results
leads to [20]:

Bexpt

sµ = 2.9(7)⇥ 10�9, Bexpt

dµ = 3.6+1.6
�1.4 ⇥ 10�10, (10)

where the Bdµ mode is not statistically significant yet (< 3�).
For the electronic modes we currently have only upper bounds
at 95% C.L. [21]:

Bexpt

se < 2.8⇥ 10�7, Bexpt

de < 8.3⇥ 10�8. (11)

Useful quantities to compare the theory to are the ra-
tios [16]:

Rql =
Bql�Bql

�
SM

=
1 +All

��

yq
1 + yq

�|S|2 + |P |2� , (12)

where yq = ⌧Bq��q/2, All
��

is the mass eigenstate rate
asymmetry [16] and:

S =

s
1� 4m2

l

m2

Bq

CS � C 0
S

rql
, P =

C
10

� C 0
10

CSM

10

+
CP � C 0

P

rql
,

where rql =
2ml (mb +mq)CSM

10

m2

Bq

. (13)

The contributions of C(0)
S and C

(0)
P are enhanced by the factor

mB/ml, so below we will neglect the NP in C
(0)
10

for sim-
plicity. The decay rate is only sensitive to the differences

(CP � C 0
P ) and (CS � C 0

S) so the sums, (CP + C 0
P ) and

(CS + C 0
S), need to be constrained through other means.

FIG. 1: In the upper panel we show the limits at 68% C.L. and 95%
C.L. on the scalar Wilson coefficients that are induced by the exper-
imental Bqµ in Eq. (10), where the corrections by mixing have been
taken into account. For the electronic modes in the lower panel, we
only show the 95% C.L. allowed regions (11). In both cases the Wil-
son coefficients are understood to be renormalized at µ = mb.

Introducing the hypothesis of this work, we impose (8) in
Eq. (12) and (13) so that now

Rql ' |CS � C 0
S |2

r2ql
+

����1�
CS + C 0

S

rql

����
2

, (14)

where we have neglected ys = 0.075(12)% [22] and the phase
space factor for clarity. In addition to the reduction of free
parameters from 4 to 2 in the scalar and pseudo-scalar sec-
tor, now these two parameters enter the decay rate in two or-
thogonal linear combinations. As a result the Bq ! l+l�

branching fraction alone bounds all directions in our two pa-
rameter space. In particular, for real Wilson coefficients, the
bound of Eq. (14) defines a circle in parameter space centered

at (CS + C 0
S , CS � C 0

S) = (rql, 0) with radius |rql|
q

R
expt

ql .
The contour plots in Fig. 1 show these circular bounds with

the radius in the muonic cases determined by |rqµ| ' 0.16.
This shape is in contrast with the bands, experimentally un-
constrained in one direction, that would be obtained in the
standard analysis. Note that improving the experimental ac-
curacy in these modes will only reduce the width of the ring
and that breaking the degeneracy will require other observ-
ables. One attractive possibility is the observable Aµµ

��

, which
may be obtained by measuring the effective Bs ! µ+µ� life-
time [16].

For the electronic modes, |rqe| ⇠ 10�3 and the strength of
the limits in the parameter space is governed by the size of
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level and is chirally suppressed. Moreover, the hadronic ma-
trix element is determined fully by B0

q decay constants FBq ,
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FIG. 1: In the upper panel we show the limits at 68% C.L. and 95%
C.L. on the scalar Wilson coefficients that are induced by the exper-
imental Bqµ in Eq. (10), where the corrections by mixing have been
taken into account. For the electronic modes in the lower panel, we
only show the 95% C.L. allowed regions (11). In both cases the Wil-
son coefficients are understood to be renormalized at µ = mb.
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where we have neglected ys = 0.075(12)% [22] and the phase
space factor for clarity. In addition to the reduction of free
parameters from 4 to 2 in the scalar and pseudo-scalar sec-
tor, now these two parameters enter the decay rate in two or-
thogonal linear combinations. As a result the Bq ! l+l�

branching fraction alone bounds all directions in our two pa-
rameter space. In particular, for real Wilson coefficients, the
bound of Eq. (14) defines a circle in parameter space centered

at (CS + C 0
S , CS � C 0

S) = (rql, 0) with radius |rql|
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The contour plots in Fig. 1 show these circular bounds with

the radius in the muonic cases determined by |rqµ| ' 0.16.
This shape is in contrast with the bands, experimentally un-
constrained in one direction, that would be obtained in the
standard analysis. Note that improving the experimental ac-
curacy in these modes will only reduce the width of the ring
and that breaking the degeneracy will require other observ-
ables. One attractive possibility is the observable Aµµ
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, which
may be obtained by measuring the effective Bs ! µ+µ� life-
time [16].

For the electronic modes, |rqe| ⇠ 10�3 and the strength of
the limits in the parameter space is governed by the size of

3

this reduction is invariance under hypercharge: the tensor-like
operators simply cannot be promoted to be U(1)Y invariant,
and for scalar and pseudo-scalar U(1)Y requires the leptons
to have definite chirality dependent on the b quark chirality.
For the remaining operators the coefficients are independent
linear combinations. However, note that there are additional
correlations between the neutral current and the charged cur-
rent version of the operators that arise from operators involv-
ing doublets. While these play no role directly in FCN lep-
tonic decays of B mesons, they may give rise to additional
constraints on the effects of NP.

Violations to the relations of Eq. (8) of order v2/⇤2 arise
from dimension-8 operators like q̄HbR ¯̀HlR and possibly of
order g2EW /16⇡2 from 1-loop matching.

Consequences in B0

q ! l+l�. A powerful probe of NP is
the decay B0

q ! l+l�. In the SM it is first induced at 1-loop
level and is chirally suppressed. Moreover, the hadronic ma-
trix element is determined fully by B0

q decay constants FBq ,
which are calculated in lattice QCD [14].

The SM predictions for the branching fractions, B, have
been worked out to high accuracy. For the muonic and elec-
tronic modes they currently are [15]:

Bsµ =3.65(23)⇥ 10�9, Bdµ =1.06(9)⇥ 10�10,

Bse =8.54(55)⇥ 10�14, Bde =2.48(21)⇥ 10�15, (9)

where the overline indicates untagged, time-integrated rates
(as required by the sizable width difference in the B̄s � Bs

system, although not for Bd [16]).
The muonic modes have been recently measured by

LHCb [17, 18] and CMS [19], and an average of the results
leads to [20]:

Bexpt

sµ = 2.9(7)⇥ 10�9, Bexpt

dµ = 3.6+1.6
�1.4 ⇥ 10�10, (10)

where the Bdµ mode is not statistically significant yet (< 3�).
For the electronic modes we currently have only upper bounds
at 95% C.L. [21]:

Bexpt

se < 2.8⇥ 10�7, Bexpt

de < 8.3⇥ 10�8. (11)

Useful quantities to compare the theory to are the ra-
tios [16]:

Rql =
Bql�Bql

�
SM

=
1 +All

��

yq
1 + yq

�|S|2 + |P |2� , (12)

where yq = ⌧Bq��q/2, All
��

is the mass eigenstate rate
asymmetry [16] and:

S =

s
1� 4m2

l

m2

Bq

CS � C 0
S

rql
, P =

C
10

� C 0
10

CSM

10

+
CP � C 0

P

rql
,

where rql =
2ml (mb +mq)CSM

10

m2

Bq

. (13)

The contributions of C(0)
S and C

(0)
P are enhanced by the factor

mB/ml, so below we will neglect the NP in C
(0)
10

for sim-
plicity. The decay rate is only sensitive to the differences

(CP � C 0
P ) and (CS � C 0

S) so the sums, (CP + C 0
P ) and

(CS + C 0
S), need to be constrained through other means.

FIG. 1: In the upper panel we show the limits at 68% C.L. and 95%
C.L. on the scalar Wilson coefficients that are induced by the exper-
imental Bqµ in Eq. (10), where the corrections by mixing have been
taken into account. For the electronic modes in the lower panel, we
only show the 95% C.L. allowed regions (11). In both cases the Wil-
son coefficients are understood to be renormalized at µ = mb.

Introducing the hypothesis of this work, we impose (8) in
Eq. (12) and (13) so that now

Rql ' |CS � C 0
S |2

r2ql
+

����1�
CS + C 0

S

rql

����
2

, (14)

where we have neglected ys = 0.075(12)% [22] and the phase
space factor for clarity. In addition to the reduction of free
parameters from 4 to 2 in the scalar and pseudo-scalar sec-
tor, now these two parameters enter the decay rate in two or-
thogonal linear combinations. As a result the Bq ! l+l�

branching fraction alone bounds all directions in our two pa-
rameter space. In particular, for real Wilson coefficients, the
bound of Eq. (14) defines a circle in parameter space centered

at (CS + C 0
S , CS � C 0

S) = (rql, 0) with radius |rql|
q

R
expt

ql .
The contour plots in Fig. 1 show these circular bounds with

the radius in the muonic cases determined by |rqµ| ' 0.16.
This shape is in contrast with the bands, experimentally un-
constrained in one direction, that would be obtained in the
standard analysis. Note that improving the experimental ac-
curacy in these modes will only reduce the width of the ring
and that breaking the degeneracy will require other observ-
ables. One attractive possibility is the observable Aµµ

��

, which
may be obtained by measuring the effective Bs ! µ+µ� life-
time [16].

For the electronic modes, |rqe| ⇠ 10�3 and the strength of
the limits in the parameter space is governed by the size of

CS + C 0
S

rql
↳



B0
s,d ! l+l�

(1-σ and 3-σ )

(3-σ )

Moral: only “vector × vector” operators may significantly contribute to RK 



RK

MFV in the quark sector, the number of operators that induce QFV reduces and the

predictivity in quark flavor space increases:

C
(1)

`q =c
(1)

`q ŶuŶ
†
u ⌦ ŶeŶ

†
e , C

(3)

`q =c
(3)

`q ŶuŶ
†
u ⌦ ŶeŶ

†
e , (3.7)

Cqe =cqe ŶuŶ
†
u ⌦ Ŷ †

e Ŷe, C`edq =c`eqd "e"
⇤
d Ŷ

†
d ŶuŶ

†
u ⌦ Ŷe. (3.8)

where with our normalization |"d|2 = y2d + y2s + y2b and |"u|2 = y2u + y2c + y2t . Note that the

symmetry argument dictating insertions of " naturally suppresses scalar operators with

respect to the current-current type of 4 fermion operators. On the other hand note that the

operator’sQed, Q`d contributions to b ! s transitions, whose quark-flavor coe�cients would

be Ŷ †
d ŶuŶ

†
u Ŷd, are suppressed with respect to operators with left-handed quark currents

by a factor ms/mb. Finally we shall also note that the operators Q`q do induce neutrino

flavor violation, this however is much less constrained than charged lepton flavor violation,

specially for a four fermion operator that involves the b quark.

4 Experimental data

We describe in this section the experimental data that is useful for the discussion of the

scenarios with LUV in the MFV benchmarks described above.

4.1 Rare exclusive Bd,s (semi-)leptonic decays

4.1.1 The RK anomaly

The LHCb measured the following lepton-universality ratio of the B+ ! K+`` decay in

the bin q2 2 [1, 6]GeV2,

RK ⌘ B (B+ ! K+µµ)

B (B+ ! K+ee)
= 0.745+0.090

�0.074(stat)± 0.036(syst). (4.1)

The hadronic matrix elements cancel almost exactly in this ratio and RK is predicted to

be approximately equal to 1 in the SM [2]. Therefore, a confirmation of this observation,

which currently poses a 2.6� discrepancy with the SM, would imply a clear manifestation

of NP and LUV. Di↵erent theoretical analyses show that this e↵ect must be contained in

the semileptonic operators O(0)
9,10 of the low-energy Lagrangian [30–34]. In the context of

the SMEFT, the (pseudo)scalar ones are ruled out by the branching fraction of Bs ! ``

(see below) while tensor operators of dimension 6 mediating down-type quark transitions

are forbidden by the SU(2)L ⇥ U(1)Y symmetry [30].

In the absence of the (pseudo)scalar and tensor contributions and neglecting, for the

sake of clarity, m2

`/q
2, q2/m2

B and m2

K/m2

B, the di↵erential decay rate of B ! K`` is,

d�

dq2
=

G2

F ↵2

e|�ts|2m3

B

1536⇡5

f2

+

✓
|C

9

+ C 0
9

+ 2
TK
f
+

|2 + |C
10

+ C 0
10

|2
◆
, (4.2)

where f
+

is a (q2-dependent) hadronic form factor and TK is a q2-dependent function

accounting for the (lepton universal) contribution of a virtual photon to the decay [2, 76].
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Taking into account that CSM

9

(mb) = 4.24 ' �CSM

10

, inspection of eq. (4.2) shows that the

RK anomaly requires any suitable combination of the scenarios:

�Cµ
9

� �Ce
9

2 [�1, 0], �Cµ
10

� �Ce
10

2 [0, 1],

�Cµ0
9

� �Ce0
9

2 [�1, 0], �Cµ0
10

� �Ce0
10

2 [0, 1]. (4.3)

4.1.2 Anomalies in the angular distribution of B ! K⇤µ+µ�

The B ! K⇤(! K⇡)`+`� is a four body decay with a rich kinematic structure that o↵ers

excellent opportunities to search for NP (see e.g. [4, 77–80] and references therein). In fact,

a complete angular analysis of (1 fb�1) data collected by the LHCb in the muonic channel

showed a 3.7� discrepancy with the SM in an angular observable called P 0
5

[9]. Potential

discrepancies have also been noted in other observables and di↵erent global analyses of

the b ! s data agree that the tensions can be ascribed to a negative NP contribution to

Cµ
9

[27, 28, 34, 81, 82],

�Cµ
9

' �1, (4.4)

or within a (left-handed) scenario where [34],

�Cµ
9

= ��Cµ
10

' �0.5, (4.5)

Note that these modifications are compatible with the possible scenarios to accommodate

RK in eq. (4.3) and also discard alternatives based on large values of the Wilson coe�cients,

CSM

9,10 + �C
9,10 = �CSM

9,10. Indeed, complementarity of these NP interpretations with the

measurements of RK and Bs ! µµ can be found in [30–34]. Interestingly, a recent angular

analysis of the full 3 fb�1 data set collected by the LHCb ratifies the discrepancy with the

SM [83, 84]. It is important to stress, though, that it is not clear yet if the tensions can

be accommodated in the SM by means of a not-fully-understood hadronic e↵ect (see for

recent discussions [4–8]).

4.1.3 Observation of Bd,s ! µµ

An important constraint on the b ! sµµ operators comes from the observation of Bs !
µµ [85], which has a branching fraction smaller but in good agreement (compatible at 1.2�)

with the SM prediction [86]:

Bexpt

sµ = 2.8+0.7
�0.6 ⇥ 10�9, BSM

sµ = 3.65(23)⇥ 10�9. (4.6)

These modes are chirally suppressed and they induce strong bounds on the (pseudo)scalar

operators [30]. There is a contribution from the operators O(0)
10

which reads

Rsµ =
Bexpt

sµ

BSM

sµ

=
1 +Aµµ

��

ys
1 + ys

��C
µ
10

� Cµ0
10

CSM

10

��2, (4.7)

where ys = ⌧Bs��s/2, Aµµ
��

is the mass eigenstate rate asymmetry [87] and where we have

explicitly indicated the lepton-flavor dependence of the Wilson coe�cients. Taking into

account that CSM

10

= �4.31, a contribution as large as:

�Cµ
10

� �Cµ0
10

' 0.5 & 0 (4.8)
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or for left-handed, this too:

Consistent with both

some of the NP scenarios suggested by the analysis of Bs ! µ+µ� and B ! K⇤µ+µ�, and

with the results of some of the global analyses of the b ! s data [34]; in particular, with

NP coupled to left-handed quarks and left-handed muons,

�Cµ
9

= ��Cµ
10

= �0.5,

�Ce
9

= �Ce
10

= 0. (5.1)

Scenarios with right-handed quark currents are disfavored because they worsen the agree-

ment with the measured branching ratio of Bs ! µ+µ�, eq. (4.8). Scenarios with right-

handed lepton currents do not produce any sizable e↵ect in RK [31]. Note that these

contributions to the semileptonic operators do not run under QCD and, neglecting elec-

troweak e↵ects, they are scale independent.

It is important to keep in mind that the tension in Bs ! µ+µ� is not statistically

very significant and it is not clear yet if the anomalies in B ! K⇤µ+µ� could be caused

by uncontrolled hadronic e↵ects. Thus, the measurement of RK can be explained, alter-

natively, by a NP scenario coupled predominantly to electrons. The b ! see decays are

far less constrained experimentally than their b ! sµµ siblings and all combinations that

could be derived from (4.3) are in principle possible.

Nevertheless, for reasons that will become apparent shortly, in this work we focus on

NP interpretations of RK where the coupling to electrons is not altered. The required left-

handed–left-handed contributions to b ! sµµ can only be generated by the operators Q(1)

`q

and Q
(3)

`q of the SMEFT Lagrangian. These also contribute to the b ! s⌫⌫ transitions and

Q
(3)

`q induces LUV e↵ects in charged-current decays, eq. (2.9). For muon and electrons the

experimental data from rare B decays render these e↵ects negligible; however rare decays

to ⌧ leptons are poorly constrained and the loop-suppression factor characteristic of the

neutral-current transitions in the SM could compensated by a strong flavor hierarchy. This

was illustrated in ref. [36], where the RK and RD(⇤) anomalies were connected assuming

a Q
(3)

`q contribution coupled exclusively to third generation of quarks and leptons (in the

interaction basis) and generic assumptions on the unitary flavor mixing matrices. In fact,

this mechanism had been introduced earlier in ref. [35] to argue that violation of lepton

universality would necessarily lead to lepton-flavor violation in b ! s``0 (semi)leptonic

transitions (see also recently [40]).

5.1 MLFV

Given the MFV assumption for the lepton sector and generalizing eq. (3.6) to all orders

in the Yukawa expansion (see Ref. [96] for a discussion of the quark case), the operators

singled out above, Q(1)

`q and Q
(3)

`q , read:

LNP =
1

⇤2

h
(q̄LC(1)

q �µqL)(¯̀L F (Ŷe Ŷ
†
e )�µ`L) + (q̄LC(3)

q �µ~⌧qL) · (¯̀L F (Ŷe Ŷ
†
e )�µ~⌧`L)

i
,

(5.2)

where Ŷe is the charged lepton Yukawa normalized as in eq. (3.3) and C
(1,3)
q are generic

3 ⇥ 3 hermitian matrices in quark flavor space. F (x) is a general regular function whose

zeroth order we neglect, F (0) = 0, since we are interested in non-trivial flavor e↵ects, and
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LE-to-HE connection

appears in the Lagrangian with a coe�cient Ci/⇤2, such that at low energy one cannot tell

the scale ⇤ from the dimensionless coe�cient Ci. However we will not consider arbitrary

values of the two parameters for a fixed value of the ratio; we will consider only perturbative

coe�cients, in particular C  4⇡. An illustration of the implication of this limit on the

couplings of specific models will be presented in Sec.6.

In order to connect to the e↵ective Lagrangians at low energies, we transform from the

interaction basis to the mass basis. In our convention this implies qL,i ! ((V † uL)i, dL,i),

`↵ ! ((U⌫)↵, l↵) and the right-handed fermions need not be rotated. Please note that this

choice does not imply a loss of generality.

The connection between the Lagrangians in eq. (2.1) and that built with the operators

of eq. (2.6) is (for complete expressions see [30, 61]),

�C
9

=
4⇡2

e2�ti

v2

⇤2

⇣
Cqe + C

(1)

`q + C
(3)

`q

⌘
, �C

10

=
4⇡2

e2�ti

v2

⇤2

⇣
Cqe � C

(1)

`q � C
(3)

`q

⌘
,

�C 0
9

=
4⇡2

e2�ti

v2

⇤2

(Ced + C`d) , �C 0
10

=
4⇡2

e2�ti

v2

⇤2

(Ced � C`d) ,

�C⌫ =
4⇡2

e2�ti

v2

⇤2

⇣
C

(1)

`q � C
(3)

`q

⌘
, �C 0

⌫ =
4⇡2

e2�ti

v2

⇤2

C`d,

�CS = ��CP =
4⇡2

e2�ti

v2

⇤2

C`edq, �C 0
S = �C 0

P =
4⇡2

e2�ti

v2

⇤2

C 0
`edq, (2.8)

where C 0
`edq corresponds to the hermitian of the operator Q`edq for the flavor entry ji = bs.

Note that as discussed in Ref. [30], not all operators in eqs. (2.2-2.4) are generated or

independent; in our particular case only 6 of the 10 operators are independent. The

operator Q(3)

`q also contributes to L
c.c.,

✏ijL = � v2

⇤2

X

k

Vik

Vij
(C(3)

`q )kj , (2.9)

where we have omitted lepton-flavor indices. Note that contributions to ✏ijR up to O(v2/⇤2)

can only be generated by one of the Higgs-current operators, iH̃†DµH ū�µdR, after inte-

grating out the W boson and, therefore, it respects lepton universality [55]. Contributions

to left-handed charged quark currents coupled to anomalous lepton charged currents via

the exchange of a W boson have a negligible e↵ect in meson decays due to the experimen-

tal constraints on the relevant Wl⌫ couplings that can be derived from the weak boson

decays [23, 62]. 2 A corollary of this is that not only for the neutral-current but also for the

charged-current B decays, any NP e↵ect violating lepton universality at O(v2/⇤2) must

originate from the four-fermion operators of the SMEFT Lagrangian.

All the expressions included in this section describe the tree-level matching between

the low- and high-energy EFT. A full analysis connecting the EFT to the parameters of

2There is a notable exception in the W `⌫ couplings as LEP data contains a few-percent excess, at

⇠ 2.5�, of tauonic decays with respect to electronic or muonic. However, this is di�cult to understand in

the light of the per-mille-level lepton-universality tests done with the purely leptonic ⌧ decays (see [63] for

a comprehensive analysis).
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6

3. Observation of Bd,s ! µµ

An important constraint on the b ! sµµ operators comes from the observation of Bs ! µµ [54], which has a
branching fraction smaller but in good agreement (compatible at 1.2�) with the SM prediction [55]:

Bexpt

sµ = 2.8+0.7
�0.6 ⇥ 10�9, BSM

sµ = 3.65(23)⇥ 10�9. (23)

These modes are chirally suppressed and they induce strong bounds on the (pseudo)scalar operators [22]. There is a

contribution from the operators O(0)
10

which reads

Rsµ =
Bexpt

sµ

BSM

sµ

=
1 +Aµµ

��

ys
1 + ys

��C
µ
10

� Cµ0
10

CSM

10

��2, (24)

where ys = ⌧Bs��s/2, Aµµ
��

is the mass eigenstate rate asymmetry [56] and where we have explicitly indicated the
lepton-flavor dependence of the Wilson Coe�cients (WC). Taking into account that CSM

10

= �4.31, a contribution as
large as:

�Cµ
10

� �Cµ0
10

' 0.5 & 0. (25)

improves the agreement with the measurement. A similar constraint on the b ! dµµ operators stems from the
observation, with a significance of 3.2�, of the Bd ! µµ decay [54]:

Bexpt

dµ = 3.9+1.6
�1.4 ⇥ 10�10, BSM

dµ = 1.06(9)⇥ 10�10, (26)

which shows an excess of 2.2� with respect to the SM prediction. Generalizing the formulae introduced above for
Bs ! µµ and having already discarded (pseudo)scalar operators, this measurement allows for contributions of the
order and sign of the SM one:

�Cµ
10

� �Cµ0
10

' CSM

10

< 0, (27)

where the WC correspond to a di↵erent quark-flavor transition as those in eq. (25). However, the two sets can be
connected by flavor symmetries, like for instance through the ratio [54]:

R =
Bexpt

dµ

Bexpt

sµ

= 0.14+0.08
�0.06, (28)

which is at 2.3� above the SM and the MFV prediction, RMFV = RSM = 0.0295+0.0028
�0.0025 [55]. The MFV prediction

follows in particular if one uses MFV in the quark sector to accommodate the anomaly in RK .

4. Tauonic decays

The rare b ! s⌧⌧ transitions are poorly constrained (see [57] for a comprehensive analysis). We focus here on the
current experimental limits in the Bs ! ⌧⌧ and B ! K⌧⌧ decays which give the best bounds on the underlying
semileptonic operators [57]:

BSM

s⌧ = 7.73± 0.49⇥ 10�7 [55], Bexpt

s⌧ < 3% [57]

B(B+ ! K+⌧⌧)SM = 1.44(15)⇥ 10�7 [58], B(B+ ! K+⌧⌧)expt < 3.3⇥ 10�3 [59], (29)

where the experimental limits are at 90% C.L. As described in [57], this leads to constraints on C⌧
9,10 not better than

C⌧
9,10 . 2⇥ 103.

5. Rare exclusive b ! s⌫⌫̄ decays

The exclusive decays into neutrinos have been searched for in the B-factories leading to stringent experimental
limits (90% C.L.):

B(B+ ! K+⌫⌫̄) < 1.7⇥ 10�5 [60],

B(B0 ! K⇤0⌫⌫̄) < 5.5⇥ 10�5 [61],

B(B+ ! K⇤+⌫⌫̄) < 4.0⇥ 10�5 [61], (30)

2 The high- and low-energy e↵ective theories

2.1 The low-energy e↵ective Lagrangians

Flavor-changing neutral currents are induced at the quantum level and are GIM [51]

suppressed in the SM. In particular, �B = 1 decays are described by the e↵ective La-

grangian [52–54]:

L
n.c. = �4GFp

2

X

p=u,c

�pi

 
C
1

Op
1

+ C
2

Op
2

+ C⌫O⌫ +
10X

k=3

CkOk

!
, (2.1)

where Fermi’s constant is, in terms of the electroweak vev, GF = 1/(
p
2v2), v = 246GeV,

the chiral projectors are defined as usual, PR,L = (1 ± �
5

)/2, �pi = VpbV
⇤
pi with i running

through s and d quarks, and where the C
1...10 are the Wilson coe�cients of the e↵ective

theory. The Op
1,2 and O

3�6

are the “current-current” and “QCD penguin” four-quark oper-

ators; O
7

and O
8

encapsulate the e↵ects of the “electromagnetic” and “chromo-magnetic”

penguins [53]. Finally, O
9

, O
10

and O⌫ are semi-leptonic operators involving either charged

leptons or neutrinos and will be the relevant ones for our study. These are defined as:

O
9

=
e2

(4⇡)2
[d̄i�µPLb][l̄�

µl], O
10

=
e2

(4⇡)2
[d̄i�µPLb][l̄�

µ�
5

l], (2.2)

O⌫ =
e2

(4⇡)2
[d̄i�

µPLb][⌫̄�
µ(1� �

5

)⌫],

where b is the bottom quark field, di stands for the strange and down quarks, di = s, d,

and l, ⌫ are the charged lepton and neutrino, respectively. Chirally-flipped (bL(R)

! bR(L))

versions of all these operators are negligible in the SM, although they need not be so in

NP scenarios. In addition, NP can generate scalar and tensor operators [2],

O(0)
S =

e2

(4⇡)2
[d̄iPR(L)b][l̄l], O(0)

P =
e2

(4⇡)2
[d̄iPR(L)b][l̄�5l], (2.3)

OT =
e2

(4⇡)2
[d̄i�µ⌫b][l̄�

µ⌫ l], OT5

=
e2

(4⇡)2
[d̄i�µ⌫b][l̄�

µ⌫�
5

l], (2.4)

where �µ⌫ = i [�µ, �⌫ ]/2. The flavor index for leptons has been omitted, but we bear in

mind that there is an operator for every lepton flavor choice.

The charged current Lagrangian will also be necessary for our study. To leading order

in GF , the most general elementary charged-current Lagrangian mediating semileptonic

decays reads [55, 56]:

L
c.c = �4GFp

2
Vib

h
(1 + ✏ibL) (ūi�

µPLb)(l̄�µUPL⌫) + ✏ibR (ūi�
µPRb)(l̄�µUPL⌫) (2.5)

+ ✏ibsL (ūiPLb)(l̄ UPL⌫) + ✏ibsR (ūiPRb)(l̄ UPL⌫) + ✏ibT (ūi�
µ⌫PLb)(l̄�µ⌫UPL⌫)

i
+ h.c.

where V is the CKM matrix, ui runs through u, c, and t quarks, U stands for the PMNS

matrix, lepton indices have not been made explicit for briefness and the Wilson coe�cients ✏
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an order of magnitude larger than the SM

eventually can nail down C(1) and C(3) separately

Flavor??? Completely model independent so far. Let’s assume ... 



Minimal Flavor Violation



• Premise: Unique source of flavor braking

• Quark sector in SM, in absence of masses has large flavor (global) symmetry: 

• In SM, symmetry is only broken by Yukawa interactions, parametrized by couplings YU and YD

Normalize:  
Breaking of U(1)2 characterized by ϵU, ϵD 

• MFV: all  breaking of GF  must transform as these

• When going to mass eigenstate basis, all mixing is parametrized by CKM and GIM is 
automatic

• Approach: via effective field theory: at low energies only SM fields

• Note that many models are like this. For example, MSSM/gauge-mediation

Minimal Flavor Violation (MFV)

tr(Ŷ †
U ŶU ) = tr(Ŷ †

DŶD) = 1

�LYuk = Hq̄LYUuR + H̃q̄LYDdR

= ✏UHq̄LŶUuR + ✏DH̃q̄LŶDdR

GF = SU(3)3 ⇥ U(1)3

Chivukula and Georgi, Phys.Lett. B188 (1987) 99
D'Ambrosio et al Nucl.Phys. B645 (2002) 155-187



How does this work?
Consider KL � ⇥��̄

Recall, GF breaking from:

Implications of GF? use spurion method:

Effective Lagrangian

among the operators have, for example

In mass basis

|V ⇥
tsVtd|m2

t /v2 ⇥ A2�5 ⇥ 5� 10�4

As needed it includes the factor

Le� =
1
�2

�
CiOi

ŶU ! VLŶUV
†
u

ŶD ! VLŶDV †
d

O = q̄L(ŶU Ŷ
†
U )�µqL ⌫̄L�

µ⌫L

)
 
X

q=u,c,t

V ⇤
qsVqd

m2
q

v2

!
s̄L�µdL ⌫̄L�

µ⌫L

✏U ! ei(✓q�✓u)✏U

✏D ! ei(✓q�✓d)✏D

qL ! ei✓qVLqL

uR ! ei✓uVuuR

dR ! ei✓dVddR

�LYuk = ✏UHq̄LŶUuR + ✏DH̃q̄LŶDdR



Minimal Lepton Flavor Violation
and

Lepton (non)-universality



Minimal Lepton Flavor Violation
• Extension of MFV to lepton sector

• Need assumption on origin of neutrino masses: Dirac vs Majorana

• In charged lepton sector 

• Ignoring neutrino masses (small!), a symmetry transformation

 

• Unbroken symmetry

Flavor conservation without universality! (caveat, up to neutrino “Yukawas”)

`L ! ei✓`V``L

eR ! ei✓eVeeR

ŶE ! V`ŶEV
†
e

✏E ! ei(✓`�✓e)✏E

�LYuk = ✏EH̃ ¯̀
LŶEeR

GF = SU(3)2 ⇥ U(1)2

ŶE ! V`ŶEV
†
e =

p
2

v|✏E |
diag(me,mµ,m⌧ )

U(3)2 ! U(1)e ⇥ U(1)µ ⇥ U(1)⌧

Cirigliano et al, NPB728(2005)121, hep-ph/0507001



Application: RK anomaly.

There are claims that violation to lepton universality implies
(unacceptably large) lepton flavor violation

Glashow, Guadagnoli & Lane, PRL114, 091801 (2015) 

With MLFV lepton flavor violation is controlled by neutrino “Yukawas” (much as in SM+neutrinos)
while lepton universality violation is controlled by charged lepton Yukawas

Alonso, BG, Martin Camalich, arXiv:1505.051644-fermion operators inducing b → sll 

quantify deviations from the SM. The Lagrangian in eq. (2.5) together with that in eq. (2.1)

with the addition of the operators in eqs. (2.3-2.4) constitute the most general low energy

Lagrangian that describes B-meson (semi-)leptonic decays with left-handed neutrinos. 1

2.2 The SM e↵ective field theory

If the relevant mass scale of NP, ⇤, is larger than the electroweak vev, we can integrate out

the new particles in the unbroken phase and obtain operators explicitly invariant under the

SM gauge group: SU(3)c⇥SU(2)L⇥U(1)Y . The e↵ective field theory built with the most

general set of operators will be referred to as the E↵ective Field Theory of the Standard

Model (SMEFT) and relies on the expansion on the ratio of the weak scale v over the high

energy scale ⇤. The first terms in this expansion are dimension five [51] and dimension

six operators [52, 53]. A particular advantage of the SMEFT is that it allows to treat a

wide variety of phenomena spanning di↵erent energy regimes, from Higgs physics to kaon

decays, in a systematic and model-independent fashion. In the following, we assume that

the electro-weak symmetry breaking is linearly realized, meaning that the Higgs doublet

is treated as an elementary set of scalar fields. The non-linear realization would imply a

larger set of operators at leading order [54], breaking the SU(2)L⇥U(1)Y relations of [23].

The contributions that preserve lepton number are, at leading order, operators of

dimension six, L
NP

= 1

⇤

2

P
iCiQi, and the operators contributing to (semi-)leptonic

processes at low energies are of the Higgs-current times fermion-current or four-fermion

type [53]. Those containing a Higgs current nonetheless induce, at the B-meson scale and

for neutral-current decays either QFV or LUV but not both in the same operator at lead-

ing order, so we will neglect them here. The four-fermion operators inducing B-meson

(semi-)leptonic rare decays are:

Q
(1)

`q =(q�µqL)(¯̀�µ`L) Q
(3)

`q =(q~⌧�µqL) · (¯̀~⌧�µ`L)
Q`d =(d̄�µdR)(¯̀�µ`L) Qqe =(q�µqL)(e�

µeR)

Qed =(d̄R�
µdR)(e�µeR) Q`edq =(¯̀LeR)(dRq)+h.c. (2.6)

where color and weak-isospin indices are omitted, ⌧ I stand for the Pauli matrices in SU(2)L-

space, q and ` are the quark and lepton doublets respectively, q = (uL, dL) and ` = (⌫L, lL)

and eR and dR are the right-handed charged leptons and down-type quarks. Contributions

to charged-current or up-quark flavor-neutral decays can also be generated by:

Q
(1)

lequ =(¯̀eR)(qLuR) + h.c. Q
(3)

lequ =(¯̀�µ⌫eR)(qL�
µ⌫uR) + h.c.

Qeu =(e�µeR)(ū�
µuR) Q`u =(¯̀�µ`)(ū�

µuR) (2.7)

where uR stands for up-type right-handed quarks and flavor indices have also been omitted

for brevity. In general we will use greek letters for lepton flavor indices and latin letters

for quark flavor indices, using the notation: (Q(1)

`q )↵�,ij = (qj�µqiL)(
¯̀↵�µ`�). Each operator

1Note that similar operators with right-handed neutrinos do not interfere with the SM in the total decay

rate (summed over final lepton polarizations). Therefore, in this case, the dependence on the corresponding

NP Wilson coe�cients is quadratic instead of linear [50].
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predictivity in quark flavor space increases:

C
(1)

`q =c
(1)

`q ŶuŶ
†
u ⌦ ŶeŶ

†
e , C

(3)

`q =c
(3)

`q ŶuŶ
†
u ⌦ ŶeŶ

†
e , (3.7)

Cqe =cqe ŶuŶ
†
u ⌦ Ŷ †

e Ŷe, C`edq =c`eqd "e"
⇤
d Ŷ

†
d ŶuŶ

†
u ⌦ Ŷe. (3.8)

where with our normalization |"d|2 = y2d + y2s + y2b and |"u|2 = y2u + y2c + y2t . Note that the

symmetry argument dictating insertions of " naturally suppresses scalar operators with

respect to the current-current type of 4 fermion operators. On the other hand note that the

operator’sQed, Q`d contributions to b ! s transitions, whose quark-flavor coe�cients would

be Ŷ †
d ŶuŶ

†
u Ŷd, are suppressed with respect to operators with left-handed quark currents

by a factor ms/mb. Finally we shall also note that the operators Q`q do induce neutrino

flavor violation, this however is much less constrained than charged lepton flavor violation,

specially for a four fermion operator that involves the b quark.

4 Experimental data

We describe in this section the experimental data that is useful for the discussion of the

scenarios with LUV in the MFV benchmarks described above.

4.1 Rare exclusive Bd,s (semi-)leptonic decays

4.1.1 The RK anomaly

The LHCb measured the following lepton-universality ratio of the B+ ! K+`` decay in

the bin q2 2 [1, 6]GeV2,

RK ⌘ B (B+ ! K+µµ)

B (B+ ! K+ee)
= 0.745+0.090

�0.074(stat)± 0.036(syst). (4.1)

The hadronic matrix elements cancel almost exactly in this ratio and RK is predicted to

be approximately equal to 1 in the SM [2]. Therefore, a confirmation of this observation,

which currently poses a 2.6� discrepancy with the SM, would imply a clear manifestation

of NP and LUV. Di↵erent theoretical analyses show that this e↵ect must be contained in

the semileptonic operators O(0)
9,10 of the low-energy Lagrangian [23–27]. In the context of

the SMEFT, the (pseudo)scalar ones are ruled out by the branching fraction of Bs ! ``

(see below) while tensor operators of dimension 6 mediating down-type quark transitions

are forbidden by the SU(2)L ⇥ U(1)Y symmetry [23].

In the absence of the (pseudo)scalar and tensor contributions and neglecting, for the

sake of clarity, m2

`/q
2, q2/m2

B and m2

K/m2

B, the di↵erential decay rate of B ! K`` is,

d�

dq2
=

G2

F ↵2

e|�ts|2m3

B

1536⇡5

f2

+

✓
|C

9

+ C 0
9

+ 2
TK
f
+

|2 + |C
10

+ C 0
10

|2
◆
, (4.2)

where f
+

is a (q2-dependent) hadronic form factor and TK is a q2-dependent function

accounting for the (lepton universal) contribution of a virtual photon to the decay [2, 70].
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Coefficients constrained by MFV+MFLV

Lessons: 1. Scalar operator additionally suppressed!  2. Prediction: τ-enhancement:

it is normalized such that F 0(0) = 1 which can always be done redefining C
(1,3)
q . For the

sake of clarity in the forthcoming discussion, we assume that the two operators have the

same structure in lepton-flavor space. Nonetheless, the same conclusions would follow from

the more general case.

In the present MLFV set-up, the unitary rotation that takes to the mass basis also

diagonalizes the flavor structure of the NP operators, generating LUV e↵ects governed by

the normalized leptonic Yukawa couplings and without introducing LFV in the process.

Thus, the above Lagrangian produces the contributions to C↵
9

:

�C↵
9

=
⇣
C(1)

q + C(3)

q

⌘

sb
F

✓
m2

↵

m2

⌧

◆
4⇡2v2

e2�ts⇤2

(5.3)

=

 
O
✓
m2

e

m2

⌧

◆
,
m2

µ

m2

⌧
+O

 
m4

µ

m4

⌧

!
, f

!
4⇡2v2

e2�ts⇤2

⇣
C(1)

q + C(3)

q

⌘

sb
, (5.4)

where f ⌘ F (1), ↵ denotes the lepton flavor index, which is expanded as an array in the

second line, and the subindex sb denotes the entry in the C
(1,3)
q matrices. In this case, the

b ! s`` anomalies would be explained by NP coupled predominantly to muons:

⇣
C(1)

q + C(3)

q

⌘

sb

v2

⇤2

=

✓
m⌧

mµ

◆
2

�ts
↵e

⇡
�Cµ

9

' 0.33 |�ts| , (5.5)

where we have applied the scenario in eq. (5.1) which, for Wilson coe�cients of order one,

yields an e↵ective NP scale of ⇤ ' 2 TeV.

In order to discuss the consequences of this ansatz in the physics of the tauonicB-meson

decays, we first study the simplest case introduced in Sec. 3 in which F (ŶeŶ
†
e ) = ŶeŶ

†
e or,

equivalently, f = 1. The most striking consequence of this scenario is the large enhancement

produced in the tauonic transitions as the corresponding operators are multiplied by a large

factor. For instance, for the rare Bs ! ⌧⌧ and B ! K⌧�⌧+ decays one is led to:

Bs⌧ ' 1⇥ 10�3, B(B ! K⌧�⌧+) ' 2⇥ 10�4, (5.6)

These are still an order of magnitude below the bounds obtained from the experimental

limits in eqs. (4.12), although the predicted boost of ⇠ 103 in these decay rates with respect

to the SM should be testable in a next round of experiments at Belle II.

A similar enhancement is produced in other operators. In particular, b ! s⌫k⌫̄l, where

the neutrinos are in the mass basis, receives a contribution,

�Ckl
⌫ = U †

k⌧

⇣
C(1)

q � C(3)

q

⌘

sb
U⌧ l

4⇡2v2

e2�ts⇤2

. (5.7)

Unlike b ! s⌧⌧ , this decay is well constrained experimentally; according to eq. (4.13) we

have ⇣
C(1)

q � C(3)

q

⌘

sb

v2

⇤2

. 0.01 |�ts|, (5.8)

that, in combination with eq. (5.5), gives
⇣
C(1)

q � C(3)

q

⌘

sb
. 0.03

⇣
C(1)

q + C(3)

q

⌘

sb
, (5.9)
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Enhancement shows up in b →sνν too. This sets 

it is normalized such that F 0(0) = 1 which can always be done redefining C
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q . For the

sake of clarity in the forthcoming discussion, we assume that the two operators have the

same structure in lepton-flavor space. Nonetheless, the same conclusions would follow from
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where f ⌘ F (1), ↵ denotes the lepton flavor index, which is expanded as an array in the

second line, and the subindex sb denotes the entry in the C
(1,3)
q matrices. In this case, the

b ! s`` anomalies would be explained by NP coupled predominantly to muons:

⇣
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q
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v2
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where we have applied the scenario in eq. (5.1) which, for Wilson coe�cients of order one,

yields an e↵ective NP scale of ⇤ ' 2 TeV.

In order to discuss the consequences of this ansatz in the physics of the tauonicB-meson

decays, we first study the simplest case introduced in Sec. 3 in which F (ŶeŶ
†
e ) = ŶeŶ

†
e or,

equivalently, f = 1. The most striking consequence of this scenario is the large enhancement

produced in the tauonic transitions as the corresponding operators are multiplied by a large

factor. For instance, for the rare Bs ! ⌧⌧ and B ! K⌧�⌧+ decays one is led to:

Bs⌧ ' 1⇥ 10�3, B(B ! K⌧�⌧+) ' 2⇥ 10�4, (5.6)

These are still an order of magnitude below the bounds obtained from the experimental

limits in eqs. (4.12), although the predicted boost of ⇠ 103 in these decay rates with respect

to the SM should be testable in a next round of experiments at Belle II.

A similar enhancement is produced in other operators. In particular, b ! s⌫k⌫̄l, where

the neutrinos are in the mass basis, receives a contribution,

�Ckl
⌫ = U †

k⌧

⇣
C(1)

q � C(3)

q

⌘

sb
U⌧ l

4⇡2v2

e2�ts⇤2

. (5.7)

Unlike b ! s⌧⌧ , this decay is well constrained experimentally; according to eq. (4.13) we

have ⇣
C(1)

q � C(3)

q

⌘

sb

v2

⇤2

. 0.01 |�ts|, (5.8)

that, in combination with eq. (5.5), gives
⇣
C(1)

q � C(3)

q

⌘

sb
. 0.03

⇣
C(1)

q + C(3)

q

⌘

sb
, (5.9)
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looks fine tuned, but appears naturally in models
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Charged currents too!:

quantify deviations from the SM. The Lagrangian in eq. (2.5) together with that in eq. (2.1)

with the addition of the operators in eqs. (2.3-2.4) constitute the most general low energy

Lagrangian that describes B-meson (semi-)leptonic decays with left-handed neutrinos. 1

2.2 The SM e↵ective field theory

If the relevant mass scale of NP, ⇤, is larger than the electroweak vev, we can integrate out

the new particles in the unbroken phase and obtain operators explicitly invariant under the

SM gauge group: SU(3)c⇥SU(2)L⇥U(1)Y . The e↵ective field theory built with the most

general set of operators will be referred to as the E↵ective Field Theory of the Standard

Model (SMEFT) and relies on the expansion on the ratio of the weak scale v over the high

energy scale ⇤. The first terms in this expansion are dimension five [57] and dimension

six operators [58, 59]. A particular advantage of the SMEFT is that it allows to treat a

wide variety of phenomena spanning di↵erent energy regimes, from Higgs physics to kaon

decays, in a systematic and model-independent fashion. In the following, we assume that

the electro-weak symmetry breaking is linearly realized, meaning that the Higgs doublet

is treated as an elementary set of scalar fields. The non-linear realization would imply a

larger set of operators at leading order [60], breaking the SU(2)L⇥U(1)Y relations of [30].

The contributions that preserve lepton number are, at leading order, operators of

dimension six, L
NP

= 1

⇤

2

P
iCiQi, and the operators contributing to (semi-)leptonic

processes at low energies are of the Higgs-current times fermion-current or four-fermion

type [59]. Those containing a Higgs current nonetheless induce, at the B-meson scale and

for neutral-current decays either QFV or LUV but not both in the same operator at lead-

ing order, so we will neglect them here. The four-fermion operators inducing B-meson

(semi-)leptonic rare decays are:

Q
(1)

`q =(q�µqL)(¯̀�µ`L) Q
(3)

`q =(q~⌧�µqL) · (¯̀~⌧�µ`L)
Q`d =(d̄�µdR)(¯̀�µ`L) Qqe =(q�µqL)(e�

µeR)

Qed =(d̄R�
µdR)(e�µeR) Q`edq =(¯̀LeR)(dRq)+h.c. (2.6)

where color and weak-isospin indices are omitted, ⌧ I stand for the Pauli matrices in SU(2)L-

space, q and ` are the quark and lepton doublets respectively, q = (uL, dL) and ` = (⌫L, lL)

and eR and dR are the right-handed charged leptons and down-type quarks. Contributions

to charged-current or up-quark flavor-neutral decays can also be generated by:

Q
(1)

lequ =(¯̀eR)(qLuR) + h.c. Q
(3)

lequ =(¯̀�µ⌫eR)(qL�
µ⌫uR) + h.c.

Qeu =(e�µeR)(ū�
µuR) Q`u =(¯̀�µ`)(ū�

µuR) (2.7)

where uR stands for up-type right-handed quarks and flavor indices have also been omitted

for brevity. In general we will use greek letters for lepton flavor indices and latin letters

for quark flavor indices, using the notation: (Q(1)

`q )↵�,ij = (qj�µqiL)(
¯̀↵�µ`�). Each operator

1Note that similar operators with right-handed neutrinos do not interfere with the SM in the total decay

rate (summed over final lepton polarizations). Therefore, in this case, the dependence on the corresponding

NP Wilson coe�cients is quadratic instead of linear [56].
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, b ! c⌧⌫

some of the NP scenarios suggested by the analysis of Bs ! µ+µ� and B ! K⇤µ+µ�, and

with the results of some of the global analyses of the b ! s data [34]; in particular, with

NP coupled to left-handed quarks and left-handed muons,

�Cµ
9

= ��Cµ
10

= �0.5,

�Ce
9

= �Ce
10

= 0. (5.1)

Scenarios with right-handed quark currents are disfavored because they worsen the agree-

ment with the measured branching ratio of Bs ! µ+µ�, eq. (4.8). Scenarios with right-

handed lepton currents do not produce any sizable e↵ect in RK [31]. Note that these

contributions to the semileptonic operators do not run under QCD and, neglecting elec-

troweak e↵ects, they are scale independent.

It is important to keep in mind that the tension in Bs ! µ+µ� is not statistically

very significant and it is not clear yet if the anomalies in B ! K⇤µ+µ� could be caused

by uncontrolled hadronic e↵ects. Thus, the measurement of RK can be explained, alter-

natively, by a NP scenario coupled predominantly to electrons. The b ! see decays are

far less constrained experimentally than their b ! sµµ siblings and all combinations that

could be derived from (4.3) are in principle possible.

Nevertheless, for reasons that will become apparent shortly, in this work we focus on

NP interpretations of RK where the coupling to electrons is not altered. The required left-

handed–left-handed contributions to b ! sµµ can only be generated by the operators Q(1)

`q

and Q
(3)

`q of the SMEFT Lagrangian. These also contribute to the b ! s⌫⌫ transitions and

Q
(3)

`q induces LUV e↵ects in charged-current decays, eq. (2.9). For muon and electrons the

experimental data from rare B decays render these e↵ects negligible; however rare decays

to ⌧ leptons are poorly constrained and the loop-suppression factor characteristic of the

neutral-current transitions in the SM could compensated by a strong flavor hierarchy. This

was illustrated in ref. [36], where the RK and RD(⇤) anomalies were connected assuming

a Q
(3)

`q contribution coupled exclusively to third generation of quarks and leptons (in the

interaction basis) and generic assumptions on the unitary flavor mixing matrices. In fact,

this mechanism had been introduced earlier in ref. [35] to argue that violation of lepton

universality would necessarily lead to lepton-flavor violation in b ! s``0 (semi)leptonic

transitions (see also recently [40]).

5.1 MLFV

Given the MFV assumption for the lepton sector and generalizing eq. (3.6) to all orders

in the Yukawa expansion (see Ref. [96] for a discussion of the quark case), the operators

singled out above, Q(1)

`q and Q
(3)

`q , read:

LNP =
1

⇤2

h
(q̄LC(1)

q �µqL)(¯̀L F (Ŷe Ŷ
†
e )�µ`L) + (q̄LC(3)

q �µ~⌧qL) · (¯̀L F (Ŷe Ŷ
†
e )�µ~⌧`L)

i
,

(5.2)

where Ŷe is the charged lepton Yukawa normalized as in eq. (3.3) and C
(1,3)
q are generic

3 ⇥ 3 hermitian matrices in quark flavor space. F (x) is a general regular function whose

zeroth order we neglect, F (0) = 0, since we are interested in non-trivial flavor e↵ects, and
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Figure 1: Constraints at 90% CL on the Wilson coe�cients of the SMEFT as defined in

eq. (5.2) in the two MLFV scenarios discussed in the text. Left-hand: Scenario in which

flavor breaking in the lepton sector is given by Ŷe Ŷ
†
e and where we have used ⇤ = 1 TeV as

a reference for the NP scale. Right-hand: Scenario with lepton-flavor breaking given by the

function F (Ŷe Ŷ
†
e ), where ⇤ = 3 TeV and using as labels Cµ = (C(3)

q )sb and C⌧ = f (C(3)

q )sb.

which e↵ectively sets the constraint C
(1)

q = C
(3)

q . Although eq. (5.9) seems to impose a

fine-tuning, we will see in Sec. 6 how the relation C
(1)

q` = C
(3)

q` can arise in a specific model

from the quantum numbers for the new particles.

There is another modification in the charged-current e↵ective Lagrangian, eq. (2.9).

Neglecting for simplicity the k = 1 flavor entry one finds that all these decays are modified

by the combination:

✏ib,⌧L = � v2

⇤2

✓
Vis

Vib

⇣
C(3)

q

⌘

sb
+

⇣
C(3)

q

⌘

bb

◆
. (5.10)

The first term is the same entering in RK , eq. (5.5), once the constraint from b ! s⌫⌫̄,

eq. (5.9), is taken into account. The second term is double-CKM suppressed and if (C(3)

q )bb
is of the same order of magnitude as (C(3)

q )sb, then its contribution is negligible and the

correction to the charged current (semi)leptonic B tauonic decays is entirely given by

the one required to understand the b ! s`` anomalies. For example, in B ! D(⇤)⌧⌫ one

obtains that ✏cb,⌧L = �0.16. This has the right size but the opposite sign necessary to explain

RD(⇤) , eq. (4.20), producing a deficit of tauonic decays with respect to the electronic and

muonic ones instead of the excess observed experimentally. The same e↵ect appears in the

b ! u⌧�⌫̄ transition, ✏ub,⌧L = �0.16, leading to a similar conflict with the experimental rate

of B� ! ⌧�⌫̄, eq. (4.24).

A first strategy to solve this problem is to introduce a hierarchy in the quark flavor

structure such that �Vcb (C
(3)

q )bb � (C(3)

q )sb. Another solution is to re-introduce the generic

function F (YeY
†
e ) such that f ' �1. In this case one can neglect the contribution from

(C(3)

q )bb and explain simultaneously the b ! s`` and tauonic B-decay anomalies without
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F = ŶeŶ
†
e ⇤ = 1 TeV

= (C(3)
q )sb

=
�
(C

(3
)

q
) s

b
F
(1
)

⇤ = 3 TeV (C(3)
q )bb ⌧ 1

So consider

F 0(1) = 1, F (1) = f

= � v2

⇤2

⇣
Vcs(C

(3)
q )sb + Vcb(C

(3)
q )bb

⌘
f

with

Need τ charged current  = 0.16*Vcb



1. Surely wrong. At least one anomaly will go away (Feynman?)

2. Easy to include MFV on quark sector too

3. Can produce this EFT from integrating out leptoquarks. 

i. Need MFV fields Extended to leptons)

ii. Classify all models (scalars and vectors):

• Get relations between CWs

• One stands out: vector, SU(2)W-singlet, Y = 2/3, SU(3)c-fundamental

Comments

Arnold, Pospelov, Trott & Wise, 0911.2225 
BG, Kagan, Trott & Zupan, 1102.3374 & 1108.4027
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Happenings

You're going to be told lots of things.
You get told things every day that don't happen.

It doesn't seem to bother people, they don't—
It's printed in the press.
The world thinks all these things happen.
They never happened.

Everyone's so eager to get the story
Before in fact the story's there
That the world is constantly being fed
Things that haven't happened.

All I can tell you is,
It hasn't happened.
It's going to happen.

Donald Rumsfeld—Feb. 28, 2003, DoD briefing



Gauging Flavor



• “why have we made no progress” 
(Why 3? Why hierarchy of quark/lepton masses? Wherefrom texture of 
CKM and PMNS?)

• Black holes: No global symmetry (other than accidental) 

?



• How do we make sense of transforming Yukawas?

• Spurions: VEVs of fields:

under 

and Yukawa coupling constants are 

• New Problems

1. Goldstone’ s theorem ⇒ 8+8+8 Nambu-Goldstone Bosons ⇒ FCNC disaster

2. Renormalizability?                                          are operators of dimension 5

• Solution to problem 1: gauge GF

• New Problems:

i. Anomalies: GF3 and GF2 × U(1)Y

ii.  Invisibility (high scale):  next slide 

iii.Renormalizability (problem 2) still

Issues

YU = (3̄, 3, 1)

YD = (3̄, 1, 3)

hYU i, hYDi,

Hq̄LYUuR, H̃q̄LYDdR,

GF = SU(3)q ⇥ SU(3)u ⇥ SU(3)d introduce new fields

12/14 Unnamed Doc (12/14)2014-02-23 17:25:00



“Invisibility”

Massive vector bosons mediate FCNC

Masses: MV ⇠ ghYU,Di

12/14 Unnamed Doc (12/14)2014-02-23 17:25:00

K0-mixing: ⇠ 1

hYU,Di2 (s̄d)(s̄d)

) hYU,Di & 105 TeV

... and much higher scales for heavy generations!

Hence “invisible.”



And then a miracle happens...

The minimal anomaly free extension of the SM gives

1. Renormalizable couplings

2. Inverted hierarchy MV ⇠ 1

yU,D

where yU,D are the usual Yukawa couplings 

so that if                              for mediators among light generations, we can haveMV ⇠ 105 TeV

MV ⇠ mu

mt
105 TeV ⇠ few TeV

for mediators among heaviest generations



I am going to show you a model as a table of fields and their transformation properties



I am going to show you a model as a table of fields and their transformation properties

When I see this in talks it induces this response 



I am going to show you a model as a table of fields and their transformation properties

When I see this in talks it induces this response 



I am going to show you a model as a table of fields and their transformation properties

When I see this in talks it induces this response 

I promise it is not so bad... 



In the rest of the paper we give the details on how the mechanism works, we will discuss where the

strongest bounds on the model come from and possible signatures at hadron colliders. For definiteness

we will focus on the quark sector, gauging the full flavor group and considering mainly the minimal

set of flavon fields, although the same mechanism can easily be applied to more general situations.

2 Inverted Hierarchies From Anomaly Cancellation

In the absence of Yukawas, focusing on the quark sector, the SM enjoys at the classical level the global

symmetry

U(3)QL ⌦ U(3)UR ⌦ U(3)DR , (2.1)

where QL, UR and DR transform as fundamentals.

We assume this to be an exact symmetry of nature. In order to allow Yukawa couplings the flavor

symmetry should be broken spontaneously by the vacuum. This can be most simply realized by the

VEVs of two bifundamentals flavon fields transforming as

Yu = (3̄, 3, 1) ,

Yd = (3̄, 1, 3) .
(2.2)

In general the VEVs of these fields, while related, should not be confused with the Yukawa matrices,

as functions of Yu,d may have equal transformation properties. Indeed this will be the crucial feature

of our model. To avoid problematic flavor violating GBs, the symmetry should be gauged. Within the

SM the gauging of the SM flavor symmetry (2.1) is anomalous due to cubic and mixed hypercharge

anomalies. The simplest option to cancel the cubic non-abelian anomalies is to add two right-handed

colored fermions in the fundamental of SU(3)QL , one left handed fundamental of SU(3)UR and one

left-handed fundamental of SU(3)DR . In this way the fermions are vector-like with respect to the

flavor gauge group but remain chiral with respect to the SM gauge symmetry. The other possibility,

with the two right-handed triplets in an SU(2)L doublet is an uninteresting, non-chiral model. We

are therefore led rather uniquely to the following model:

SU(3)QL SU(3)UR SU(3)DR SU(3)c SU(2)L U(1)Y

QL 3 1 1 3 2 1/6

UR 1 3 1 3 1 2/3

DR 1 1 3 3 1 -1/3

 uR 3 1 1 3 1 2/3

 dR 3 1 1 3 1 -1/3

 u 1 3 1 3 1 2/3

 d 1 1 3 3 1 -1/3

Yu 3 3 1 1 1 0

Yd 3 1 3 1 1 0

H 1 1 1 1 2 1/2

3

Remarkably, with the above matter content all the anomalies except U(1)QL ⇥SU(2)2L and U(1)QL ⇥
U(1)2Y automatically cancel. When, as required by cancellation of SM anomalies, the leptons are

introduced U(1)B�L remains anomaly free, so that U(1)QL could also be gauged by gauging the B�L

combination. The VEVs of Yu and Yd break U(1)QL ⇥U(1)UR ⇥U(1)DR to the diagonal U(1) and an

additional scalar field must be introduced in order to break also U(1)B�L spontaneously. From now

on we will focus on the gauging of SU(3)3⇥U(1)2 which is the largest symmetry group broken by the

SM Yukawa, other gaugings will be considered later.

The most general renormalizable Lagrangian reads,

L =Lkin � V (Yu, Yd, H)+
�
�uQLH̃ uR + �0

u uYu uR +Mu uUR+

�dQLH dR + �0
d dYd dR +Md dDR + h.c.

�
,

(2.3)

where Mu,d are universal mass parameters and �(0)
u,d are universal coupling constants. By a rotation

of  u and  uR these parameters can be chosen to be real. The kinetic terms are built from covariant

derivatives, which in our conventions are given by

DQL = @QL + igQAQQL + ig3AcQL + igWQL + ig0 16BQL (2.4)

and similarly for the other fields.

In general, the VEVs of Yu,d break the flavor symmetry to baryon number.2 By a flavor transfor-

mation we can take Yd = Ŷd diagonal and Yu = ŶuV where V is a unitary matrix. Integrating out the

heavy fermions generates Yukawa interactions for the SM fields. At leading order for Yu,d � Mu,d one

immediately finds that the Yukawa couplings of the SM are

yu = V †�uMu

�0
uŶu

,

yd =
�dMd

�0
dŶd

.
(2.5)

Importantly the masses of the SM fermions follow an inverted hierarchy controlled by the inverse

of Ŷu,d (see also [9,10] for related works implementing the inverted hierarchy mechanism with models

where the chiral diagonal SU(3) flavor symmetry is gauged). On the other hand, the exotic fermions

have a mass proportional to Ŷu,d so that the lightest partner is the one associated to the top quark. As

we will see this kind of see-saw mechanism is a general feature of the model through which all flavor

and electroweak precision bounds can be easily avoided. The unitary matrix V plays the role of the

CKM matrix of the SM. The formulas above receive important corrections for the third family since

in this case the condition Yu,d � Mu,d is not satisfied, particularly for the top quark. As we will see

in the next section once this is properly accounted for it modifies the SM couplings. This produces

important corrections to precision observables, in particular to the electroweak oblique parameters

and the Zbb̄ coupling, which impose the most stringent bounds on the model.
2
We use the same notation both for the fields Yu,d and their VEVs, except when the meaning is not immediate from

the context.
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Note: all λ‘s and M’s are 1×1 matrices

The Model
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5 Examples

The details of a particular realization of the mechanism described in Sec. 2 depend strongly on the

actual model and parameters chosen. Depending on the gauge group (U(3)3, SU(3)3⇥U(1)2, SU(3)3,

SU(3), U(1)n,. . . ), the number and representations of scalar flavon fields and the di↵erent parameters

of the Lagrangian, the spectrum of the new particles and their couplings may vary substantially. Still

there are some features that are rather model independent and characterize the model.

As shown before, with the exception of the top quark sector, the structure of the fermionic part

of the model is quite rigid, depending only on the two scales Mu and Md, the rest being fixed by

the SM Yukawa couplings. Once the gauge group and the scalar content has been chosen so is the

basic structure of the spin-1 sector. But as a result of the larger number of parameters connecting

its spectrum and couplings to the SM Yukawa terms, such as the gauge couplings and extra Yukawa

couplings (�u,d, �0
u,d), it is far from being specified in detail.

In the following we will provide two explicit examples where all the parameters have been fixed,

in order to demonstrate how easy it is to build explicit models with O(1) couplings, new flavor non-

universal states at the TeV scale and compatibility with all existing experimental bounds. In fact,

depending on the choice of the parameters the strongest bounds may come from di↵erent sources, such

as EWPT, Z ! bb̄, single top production at Tevatron, Z 0 searches and other direct bounds for spin-1

and spin-1/2 particles, �MK , etc...

The two examples below correspond to the two di↵erent flavor gaugings SU(3)3 and SU(3)3⇥U(1)2,

respectively. For definiteness in both cases the flavon content have been chosen to be minimal: just

the two Yu and Yd fields of Sec. 2. The couplings have been chosen to be O(1) and the two mass scales

Mu and Md to be low enough to produce interesting physics for high-energy colliders and possibly for

next generation flavor experiments.

5.1 First example: An SU(3)

3 model

In the first example we choose the following parameters:

Mu (GeV) Md (GeV) �u �0
u �d �0

d gQ gU gD

400 100 1 0.5 0.25 0.3 0.4 0.3 0.5

Given the parameters above the entries of the flavon VEVs are fixed by requiring the right SM Yukawa

couplings be reproduced, this gives6:

Yu ⇡ Diag
�
1 · 105 , 2 · 102 , 8 · 10�2

� · V TeV ,

Yd ⇡ Diag
�
5 · 103 , 3 · 102 , 6

�
TeV ,

(5.1)

6
The values of the Yu,d VEVs (and the the results that follow) have been calculated taking into account the running

of the Yukawa couplings only up to the TeV scale. The e↵ects coming from the running from the TeV scale up to the

flavor breaking scales are more model dependent and a↵ect mainly the value of the highest Yu,d VEVs, which we do not

need to know with high accuracy. In fact the knowledge of the order of magnitude for these quantities is enough for our

purposes.
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Figure 3: Spectrum of the flavor spin-1 (left) and spin-1/2 (right) fields for the first example (see text for

details). Each vector fields is represented by a set of three 3⇥ 3 matrices representing the associated generators

to the three gauged SU(3) groups (SU(3)Q, SU(3)U , SU(3)D respectively), the intensity of the color (from white

to red) correspond to the size of each entry in the generators (from 0 to 1). The position in the vertical axis

represent instead the corresponding mass in TeV, analogously for the masses of the heavy quark partners, on

the right.

where V is the unitary experimental CKM matrix [12].

The couplings are chosen to be smaller than 1 to avoid possible problems with early Landau-poles

except for �u, which must be larger than yt =
p
2mt/v ' 1 (or slightly smaller when mt0 < mt; see

Sec. 3). For �u = 1, as in this example, the mixing of the left doublet is small and the lowest eigenvalue

of Yu approaches zero.

Given the parameters above we can calculate both the spectrum and couplings of the spin-1 and

spin-1/2 sectors of the theory. The spectrum is summarized in Fig. 3.

The masses of the four lightest spin-1 states are 2.8, 53, 53, and 66 TeV. The lightest state, which

is one order of magnitude lighter than the next to lightest one, couples to fermions through the �8

flavor generator and with equal strength to left/right up/down type fermions (the unequal intensity of

shading in Fig. 3 is compensated by the di↵erent values of the gauge couplings). Although its coupling

18

Spectrum:

(V †V = 1)



Figure 2: Allowed region of parameter space in the �u vs Mu plane. The shaded grey region is

unphysical. The thick green line labeled EWPT shows the region allowed at 95% CL by the EW

oblique parameters for mH = 115 GeV. For mH = 350 GeV the allowed region becomes the one

between the green dashed lines. The thin green line labeled Vtb shows the 95% CL limit from direct

single top production while the green short-dashed line shows the 95% CL bound from b ! s�. Of

the region allowed by EWPT, Vtb and b ! s� we have distinguished mt0 > 335 GeV shaded in green

from 45 GeV < mt0 < 335 GeV, shaded in yellow. For the latter direct mass bounds may (or not)

apply, depending on the Higgs mass and other model parameters. Contours of constant mt0(GeV) in

red dashed lines and contours of fixed �0
uŶt(GeV) in black dash-dot lines. The black circle and cross

show the choice of parameters in the examples of Sec. 5.

of custodial symmetry generates a correction to the T -parameter.4 For simplicity we only consider

the contributions of the third family, which are the dominant ones. In the limit mb ! 0 the exact one

4
This was also studied recently in [14] in a model with vector like top partners. For the third generation fermions our

model reduces to theirs.
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Excluded/allowed regions of parameter space

Figure 1: Allowed region of parameter space in the �d vs Md plane. The yellow and green shaded

regions are allowed by Rb, the thick green line labeled Z ! bb̄ corresponding to the 95% CL limit. The

green one corresponds to mb0 > 385 GeV, while the yellow one to 45 GeV < mb0 < 385 GeV. Contours

of constant mb0(GeV) are shown in red dashed lines and contours of fixed �0
dŶb(GeV) in black dash-dot

lines. The black circle and cross show the choice of parameters in the examples of Sec. 5.

and writing �Rb/RSM
b = (1�RSM

b )(��bb̄/�
SM
bb̄

) ⇡ 0.78(��bb̄/�
SM
bb̄

) we have

�Rb

RSM
b

⇡ �1.8s2dL3
, (3.13)

to be compared to the current bound �Rb/RSM
b 2 [�4, 8] · 10�3 at 95% CL [12].

Additional contributions to �Rb from couplings to light quarks are negligible. The virtual t and

t0 contributions deviate from the SM’s virtual t contribution by an amount that vanishes both with

mt0 �mt and with s2uL3
. The resulting bound on these parameters is weaker than bounds presented

below from Vtb (and the direct limit on mt0).

Fig. 1 shows the 95% CL bound from �Rb in the �d/yb vs Md/mb plane, where yb =
p
2mb/v.

10



Can minimizing a GF-invariant potential give the desired values of Yukawas?
See: R. Alonso et al,  JHEP 1311 (2013) 187  arXiv:1306.5927

Figure 1: Manifold M of the SU(3) invariants constructed from x=octet=hermitian, 3 ⇥ 3, traceless

matrix (green region). Each point of M represents the orbit of x, namely the set of points in octet space

given by: xg = gxg

�1
, when g runs over SU(3). Boundaries of M are represented by Eq. (3.1). The little

groups of the elements of different boundaries are indicated.

3 Natural extrema of an invariant potential

We summarize here the elements to identify the natural extrema of an invariant potential
V (x), that is those extrema that are less or not at all dependent from specific tuning of
the coefficients in the potential, compared to the generic extrema. We do not make any
assumption about the convergence of the expansion of the potential in powers of higher-
dimensional invariants, as done e.g. in Ref. [24, 25].

The variables x are the field components, transforming as given representations of the
invariance group G. In order to be invariant, V (x) = V [Ii(x)], where Ii are the independent
invariants one can construct out of x. The crucial point is that the space of the x has no
boundary, while the manifold M, spanned by Ii(x), does have boundaries. The situation
is exemplified in Fig. 1, with G = SU(3), and x=octet=hermitian, 3⇥ 3, traceless matrix.
Defining the invariants I1 = Tr(x2) and I2 = Det(x), the boundary is

I1 � (54 I22 )
1/3 , �1 < I2 < +1 . (3.1)

In general, let N be the number of algebraically independent invariants. One sees easily
that [12, 13]:

• each point of M represents the orbit of x, namely the set of points in octet space
given by: xg = gxg�1, when g runs over G;

• points on each boundary admit little (i.e. invariance) groups , which are the same up
to a G conjugation.

The boundaries of M are characterized by the rank of the Jacobian matrix being less
than maximum [13]:

J =

@(I1, I2, · · · )
@(x1, x2, · · · ) , Rank(J) = R < N . (3.2)

– 5 –

Orbit of enhanced symmetry are always extrema. 
So the natural outcome would be not fully broken GF.

Example: SU(3) with scalar field in adjoint, A. Two independent invariants, Tr(A2) and det(A)

Dirty laundry:



Lepton Twist

No SM, really:
• What is the fermion content? (Majorana vs Dirac Neutrinos)
• What is the flavor symmetry

Absent neutrino masses AND new fields, 

 SU(3)c SU(2)L U(1)Y
`L 1 2 -1/2
eR 1 1 -1

GF = U(3)` ⇥ U(3)e



Simplest: 
SU(2)L U(1)Y SU(3)` SU(3)e

`L 2 �1/2 3 1
eR 1 �1 1 3
ER 1 �1 3 1
EL 1 �1 1 3
NR 1 0 3 1
YE 1 0 3̄ 3
YN 1 0 6̄ 1

to the gauge bosons of SU(3)

`

and SU(3)

e

and their couplings by A`

µ

and AE

µ

and g
`

and
g
E

respectively. The Yukawa and Mass terms are:

!
+ L

Y

=�
e

`H E
R

+M
E

E
L

e
R

+ �E EL

Y
E

E
R

+ h.c.

+ �
⌫

` ˜H N
R

+

�
N

2

N c

R

Y
N

N
R

+ h.c. (2.2)

where all �’s and M
E

are overall constants. A prominent feature of this Lagrangian is that
the Dirac limit for active neutrinos cannot be taken since it does not allow for mixing angles.
The argument is: if we omit Y

⌫

, we are left with a Dirac mass term which however is forced to
be proportional to the identity by the flavor symmetry. Even if quantum corrections would
split the mass states, such a Lagrangian has an unbroken U(1)

e,µ,⌧

symmetry which will
prevent any flavor transition and in particular the appearance of mixing angles. Majorana
neutrino masses are therefore imposed on us.

The above Lagrangian has two accidental U(1) symmetries that, remarkably, are in
addition anomaly free under the flavor gauge group; they are an extension of Lepton Number
(LN) under which all fermions have the same charge and Y

N

minus twice that charge, and
the abelian U(1)

eR that completes the SU(3)

e

to a unitary group, and under which Y
E

also transforms. Both of these symmetries are broken when the flavor fields take a vev;
this implies that to avoid Goldstone bosons one either gauges those symmetries or breaks
the symmetry explicitly in the scalar potential giving mass to the would be Goldstone
bosons. The latter can be achieved at the renormalizable level via the introduction of the
SU(3)

`

⇥SU(3)

e

-invariant terms det(Y
E

), det(Y
N

). Note also that taking into account the
SM electro-weak group and quarks, only the combination B � L remains anomaly free.

The covariant derivative contains both SM and gauge bosons, e.g.

D
µ

` =

✓

@
µ

� i
g0

2

B
µ

+ i
g

2

�
I

W I

µ

+ ig
`

A`

µ

◆

` (2.3)

where A`

µ

is a traceless hermitian matrix in flavor space A`

µ,↵�

= (A`

µ,�↵

)

⇤ ,⌃
↵

A`

µ,↵↵

= 0

which we can alternatively decompose in Gell-Mann matrices A`

µ

= A`,a

µ

T a, with Tr(T aT b

) =

�
ab

/2. Then the covariant derivatives of scalar bosons are given by:

D
µ

Y
E

= @
µ

Y
E

+ ig
E

AE

µ

Y
E

� ig
`

Y
E

A`

µ

,

D
µ

Y
N

= @
µ

Y
N

� ig
`

(A`

µ

)

T Y
N

� ig
`

Y
N

A`

µ

,
(2.4)

and field strengths F
µ⌫

by their commutators.
The mass and Yukawa Lagrangian requires both EWSB and flavor symmetry breaking,

hY
E

i 6= 0, hY
N

i 6= 0, to yield masses for all fermions. If both conditions are met, the
spectrum contains 6 Dirac (e-m) charged fermions and 6 Majorana neutral fermions. There
are no extra scalars charged under the SM gauge group so EWSB proceeds as usual, in
particular we take hH†Hi = v2/2, v = 246GeV. Flavor breaking is encoded in the scalar
potential, which has been studied in Refs. [5–7]. The study of the potential is involved due
to the great structure of flavor that it is intended to explain, but some general results and
approximate conserved symmetries where found in Refs [5–7]. In particular a connexion of

– 5 –

• R-Neutrinos are needed. 
• Choice of  YN   (in 6-rep) to allow for large Majorana mass.
• Phenomenology, interesting, ongoing, plus I run out of time 



Take Home
• Flavor anomalies:

• Several different processes

• Several observed by N > 1 experiments

• Several persistent

• All involve leptons

• Suggestive pattern: the heavier the lepton, the larger the anomaly

• Fit

• Assuming linearized HE-EFT, few operators (modulo flavor)

• Flavor can be incorproated to limit further opertaors

• MFV+MLFV works well

• Gauged Flavor

• Neat for quarks

• Can it explain anomalies in gauged LF case? Ongoing.



The End


