Long-distance contributions to the rare kaon decay ${\cal K}^+ \to \pi^+ \nu \bar{\nu}$

Xu Feng (Columbia University)

Workshop@INT, 09/28/2015

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 1 / 27

• on behalf of RBC-UKQCD collaboration

• people involved in this project

UKQCD

Andreas Jüttner (Southampton) Andrew Lawson (Southampton) Antonin Portelli (Southampton) Chris Sachrajda (Southampton)

RBC

Norman Christ (Columbia) Xu Feng (Columbia) Christoph Lehner (BNL) Amarjit Soni (BNL)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: Experiment vs Standard model

As FCNC process, $K \rightarrow \pi \nu \bar{\nu}$ decay through second-order weak interaction

SM effects highly suppressed in the second order \rightarrow ideal probes for NP

Past experimental measurement is 2 times larger than SM prediction

 $Br(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = 1.73^{+1.15}_{-1.05} \times 10^{-10} \qquad \text{arXiv:0808.2459}$ $Br(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = 9.11 \pm 0.72 \times 10^{-11} \qquad \text{arXiv:1503.02693}$

but still consistent with > 60% exp. error

New experiments

New generation of experiment: NA62 at CERN aims at

- observation of O(100) events in 2-3 years
- 10%-precision measurement of ${\rm Br}(K^+ \to \pi^+ \nu \bar{\nu})$

Fig: 09/2014, the final straw-tracker module is lowered into position in NA62

 $K_L \to \pi^0 \nu \bar{\nu}$

- \bullet even more challenging since π^0 decays quickly to two photons
- only upper bound was set by KEK E391a in 2010
- new KOTO experiment at J-PARC designed to observe K_L decays

Methodology

Xu Feng (Columbia U.) Long-distance contributions to the rare kaon (Workshop@INT, 09/28/2015 5 / 27

Top quark contribution

Top quark is very heavy, $m_t = 173 \text{ GeV}$

• effective Hamiltonian described by a dim-6 operator $(\bar{s}d)_{V-A}(\bar{\nu}\nu)_{V-A}$

hadronic effects can be given by the hadronic matrix elements, e.g.

 $\langle \pi^+ | (\bar{s}d)_{V-A} | K^+ \rangle \quad \stackrel{\text{isospin rotation}}{\longleftarrow} \quad \langle \pi^0 | (\bar{s}u)_{V-A} | K^+ \rangle$

 $\langle \pi^0 | (\bar{s}u)_{V-A} | K^+ \rangle$ is precisely measured in $K^+ \to \pi^0 \ell^+ \nu$

 $K \rightarrow \pi \nu \bar{\nu}$ decays are theoretically clean

question: how about the charm quark contribution?

Xu Feng (Columbia U.)

Charm quark contribution

• first-order effective field theory

$$\mathcal{H}_{eff} = -i\frac{G_F}{\sqrt{2}}\sum_{q=u,c} \left(V_{qs}^* O_{q\ell}^{\Delta S=1} + V_{qd} O_{q\ell}^{\Delta S=0} \right) - i\frac{G_F}{\sqrt{2}}\sum_{q=u,c} \lambda_q O_q^W - i\frac{G_F}{\sqrt{2}} O_\ell^Z$$

W-W diagram

$$O_{q\ell}^{\Delta S=1} = (\bar{s}q)_{V-A} (\bar{\nu}\ell)_{V-A}, \quad O_{q\ell}^{\Delta S=0} = (\bar{\ell}\nu)_{V-A} (\bar{q}d)_{V-A}$$

Z-exchange diagram

$$O_q^W = C_1(\mu)Q_{1,q}(\mu) + C_2(\mu)Q_{2,q}(\mu), \quad O_\ell^Z = J_\mu^Z \, \bar{\nu}_\ell \gamma^\mu (1-\gamma_5)\nu_\ell$$

2nd-order EFT

• In the 2nd-order EFT, one can construct the bilocal product

$$\mathcal{B}(y) = \frac{G_F}{\sqrt{2}} \frac{\alpha}{2\pi \sin^2 \theta_W} \frac{\pi^2}{M_W^2} \lambda_c \sum_{\ell=e,\mu,\tau} \mathcal{B}_{WW}(y) + \mathcal{B}_Z(y)$$

$$\mathcal{B}_{WW}(y) = \int d^4 x \, T[O_{u\ell}^{\Delta S=1}(x) O_{u\ell}^{\Delta S=0}(y)] - \{u \to c\}$$

$$\mathcal{B}_Z(y) = \int d^4 x \, T[O_u^W(x) O_\ell^Z(y)] - \{u \to c\}$$

• Evaluate the hadronic matrix element of bilocal operators

 $\langle \pi \nu \bar{\nu} | \mathcal{B}_{WW}(0) + \mathcal{B}_{Z}(0) | \mathcal{K}^{+} \rangle + \langle \pi \nu \bar{\nu} | \mathcal{C}_{W} O^{(6)}(0) | \mathcal{K}^{+} \rangle$

Counter term $C_W O^{(6)}$ is introduced to remove the singularities in \mathcal{B}_{WW} and \mathcal{B}_Z . Here $O^{(6)} = (\bar{s}d)_{V-A}(\bar{\nu}\nu)_{V-A}$

Generic feature of 2nd-order weak interaction

- Bilocal structure is a generic feature of 2^{nd} -order weak interaction
- Method originally proposed by [N.H. Christ, Lat2010]
- Successfully applied to the lattice calculation of *K*_L-*K*_S mass difference [Bai et. al., PRL 113('14) 112003]

$$\int d^4x \langle \bar{K}^0 | T\{H_W(x)H_W(0)\} | K^0 \rangle$$

• A summary of "Long-distance contributions to flavour-changing processes" is given by [C.T. Sachrajda, plenary talk, Lat2014]

Minkowski vs Euclidean

Given a non-local matrix element in Minkowski space

$$\mathcal{T}^{M} = i \int dt \langle f | \mathcal{T} [O^{\Delta S=1}(t) O^{\Delta S=0}(0)] | \mathcal{K} \rangle$$

=
$$\sum_{n_{s}} \frac{\langle f | O^{\Delta S=1} | n_{s} \rangle \langle n_{s} | O^{\Delta S=0} | \mathcal{K} \rangle}{E_{n_{s}} - E_{f} + i\epsilon} - \sum_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle \langle n | O^{\Delta S=1} | \mathcal{K} \rangle}{E_{K} - E_{n} + i\epsilon}$$

In Euclidean space

$$\mathcal{T}^{E} = \sum_{t=-T_{a}}^{T_{b}} \langle f | T [O^{\Delta S=1}(t) O^{\Delta S=0}(0)] | K \rangle$$

$$= \sum_{n_{s}} \frac{\langle f | O^{\Delta S=1} | n_{s} \rangle \langle n_{s} | O^{\Delta S=0} | K \rangle}{E_{n_{s}} - E_{f}} \left(1 - e^{(E_{f} - E_{n_{s}})T_{b}} \right)$$

$$- \sum_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle \langle n | O^{\Delta S=1} | K \rangle}{E_{K} - E_{n}} \left(1 - e^{(E_{K} - E_{n})T_{a}} \right)$$

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 10 / 27

Infinite volume vs finite volume

- Above two-pion threshold, \sum_n and \sum_{n_s} shall be replaced by \slash_n and \slash_{n_s}
- For infinite volume, integral is well defined using principal value

$$\mathcal{I}^{\infty} = \mathcal{P} \oint_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle^{\infty \infty} \langle n | O^{\Delta S=1} | K \rangle}{E_{K} - E_{n}}$$

• For finite volume, energy states are always discrete, we still have

$$\mathcal{I}^{L} = \sum_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle^{LL} \langle n | O^{\Delta S=1} | K \rangle}{E_{K} - E_{n}}$$

• Finite-volume correction $\mathcal{I}^{\infty} = \mathcal{I}^{L} - \delta \mathcal{I}$

 $\delta \mathcal{I} = \cot(\phi(E) + \delta(E))(\phi'(E) + \delta'(E))\langle f | O^{\Delta S = 0} | \pi \pi, E \rangle^{LL} \langle \pi \pi, E | O^{\Delta S = 1} | K \rangle \Big|_{E_{-}}$

• $\phi(E)$: a known function depending on L; $\delta(E)$: $\pi\pi$ scattering phase

- $\cot(\phi(E) + \delta(E))$ is singular at $E = E_n$; it cancels the singularity of \mathcal{I}^L
- For a complete derivation of δI , see [N. Christ, XF, G. Martinelli, C. Sachrajda, arXiv:1504.01170]

Xu Feng (Columbia U.)

Physical cutoff vs lattice cutoff

• By dimensional counting the loop integrals are quadratically divergent

- GIM mechanism reduces the divergence to logarithmic
- In the physical world, the SD divergence is cut off by physical M_W
- In the lattice calculation it is cut off by an energy scale $\Lambda_{lat} \sim \frac{\pi}{a}$
- Correction can be made through $A A_{SD}^{lat} + A_{SD}^{cont} =$

 $\int d^4x \langle f | T \{ O_1(x) O_2(0) \} | K \rangle - \langle f | C^{lat}(\mu) O^{(6)} | K \rangle + \langle f | C^{cont}(\mu) O^{(6)} | K \rangle$

- $C^{lat}(\mu)$ is determined non-perturbatively using RI/SMOM approach
- $C^{cont}(\mu)$ can be calculated perturbatively, currently in LO

Short-distance subtraction

- Evaluate off-shell Green's function with $p_i^2 \gg \Lambda_{QCD}^2$
- Energy scale of internal mom. is forced to be larger than $\mu^2 = p_i^2$
- At high energy scale μ, mainly SD contribution to off-shell Green's function
- Correctly represented by a SD operator multiplying with Wilson coefficient C^{lat}(μ)

Preliminary lattice results

通 ト イヨ ト イヨト

Lattice setup

- $16^3 \times 32$, DWF+Iwasaki, $m_{\pi} \approx 420$ MeV, $m_K \approx 540$ MeV, $a^{-1} = 1.73$ GeV, $m_c = 860$ MeV, 800 configurations
- Construct 4-point correlator $\langle \phi_{\pi}(t_{\pi})O_{1}(t_{1})O_{2}(t_{2})\phi_{K}^{\dagger}(t_{K}) \rangle$
- One can extract the scalar amplitude $F^\ell_{BL}(p_{\mathcal{K}},p_{\nu},p_{ar{
 u}})$

 $\int dt \langle \pi^+ \nu \bar{\nu} | T\{O_1(t)O_2(0)\} | K^+ \rangle = F_{BL}^{\ell}(p_K, p_\nu, p_{\bar{\nu}}) \, \bar{u}(p_\nu) \not p_K(1 - \gamma_5) v(p_{\bar{\nu}})$

周 ト イ ヨ ト イ ヨ ト

W-W diagram: type 1

- ∢ ≣ →

Double integration

Perform the double integration to gain a better precision

$$\sum_{t_{1}=t_{a}}^{t_{b}} \sum_{t_{2}=t_{a}}^{t_{b}} \langle f | T[O^{\Delta S=1}(t_{2})O^{\Delta S=0}(t_{1})] | K \rangle e^{m_{K}t_{1}} e^{-m_{f}t_{1}}$$

$$= \sum_{n_{s}} \frac{\langle f | O^{\Delta S=1} | n_{s} \rangle \langle n_{s} | O^{\Delta S=0} | K \rangle}{E_{n_{s}} - E_{f}} \left(T_{\text{box}} - \frac{1 - e^{(E_{f} - E_{n_{s}})T_{\text{box}}}}{E_{n_{s}} - E_{f}} \right)$$

$$- \sum_{n} \frac{\langle f | O^{\Delta S=0} | n \rangle \langle n | O^{\Delta S=1} | K \rangle}{E_{K} - E_{n}} \left(T_{\text{box}} + \frac{1 - e^{(E_{K} - E_{n})T_{\text{box}}}}{E_{K} - E_{n}} \right)$$

here $T_{box} = t_b - t_a + 1$ is defined as size of the integral window

• Remove the exponential growing contamination, and fit with $a + bT_{box}$, the slope b is what we want

Integrated matrix element

Xu Feng (Columbia U.)

F_{BL}^{ℓ} for type 1 diagram

F_{BL}^{ℓ}	lattice	model
е	$3.244(90) imes 10^{-2}$	$3.352(12) imes 10^{-2}$
μ	$3.506(77) imes 10^{-2}$	$3.511(13) imes 10^{-2}$
au	$-2.871(70) imes 10^{-3}$	$-2.836(10) \times 10^{-3}$

• Vacuum saturation approximation assumes only single-lepton contribution in the intermediate state

$$f_{K} p_{K,\mu} \bar{u}(p_{\nu}) \gamma_{\mu} (1 - \gamma_{5}) \frac{\not q}{q^{2} - m_{\ell}^{2}} \gamma_{\nu} (1 - \gamma_{5}) v(p_{\bar{\nu}}) f_{\pi} p_{\pi,\nu}$$

$$= f_{K} f_{\pi} \frac{2q^{2}}{q^{2} - m_{\ell}^{2}} \bar{u}(p_{\nu}) p_{K} (1 - \gamma_{5}) v(p_{\bar{\nu}})$$

with $q = p_K - p_\nu = p_\pi + p_{\overline{\nu}}$

• In the above table, model results are given by $Z_A^{-2} f_K f_\pi rac{2q^2}{q^2 - m_\ell^2}$

Type 2 diagram

- ∢ ≣ →

æ

Type 2 diagram

Preliminary results

• Type 1 diagram

F_{BL}^{ℓ}	lattice	model
е	$3.244(90) imes 10^{-2}$	$3.352(12) imes 10^{-2}$
μ	$3.506(77) imes 10^{-2}$	$3.511(13) imes 10^{-2}$
au	$-2.871(70) imes 10^{-3}$	$-2.836(10) \times 10^{-3}$

Type 2 diagram

$$\begin{array}{c|c} F_{BL}^{\ell} & \text{lattice} \\ e & -2.164(31) \times 10^{-1} \\ \mu & -2.164(31) \times 10^{-1} \\ \tau & -9.03(14) \times 10^{-2} \end{array}$$

• It seem that type 2 contribution is much larger than type 1, but

type 2 diagram contains large lattice cutoff effects due to SD divergence

Xu Feng (Columbia U.)

イロト 不得下 イヨト イヨト 二日

Short-distance matching and correction

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 23 / 27

Remaining challenge

• Charm quark appears in the GIM mechanism

- we need the physical charm quark mass
- $am_c \ll 1$ & $m_\pi L \ge 4 \Rightarrow$ large lattice $(L/a)^4$
- Physical amplitude is given by

 $\langle \pi \nu \bar{\nu} | \mathcal{B}_{WW}(0) + \mathcal{B}_{Z}(0) | \mathcal{K}^{+} \rangle + \langle \pi \nu \bar{\nu} | \mathcal{C}_{W} O^{(6)}(0) | \mathcal{K}^{+} \rangle$

need to provide C_W with controlled error

 $C_W = C^{cont}(\mu) - C^{lat}(\mu)$

- we now work in LO PT for $C^{cont}(\mu)$, no QCD correction
- how large the QCD correction to $C^{cont}(\mu)$?

Xu Feng (Columbia U.)

QCD correction to Ccont

- No one has calculated QCD correction to C^{cont} at $p_i \neq 0$
- At $p_i = 0$, α_s correction to C^{cont} has been calculated [Buchalla, Buras, NPB, 1994]
- at renormalization scale $\bar{\mu} = m_c$, we have

$$C^{cont} \propto X_0(x) + \frac{\alpha_s}{4\pi} X_1(x), \quad x = \frac{m_c^2}{M_W^2}$$

= $-\frac{3}{4} x \ln x - \frac{1}{4} x + \frac{\alpha_s}{4\pi} \left(-2x \ln^2 x - 7x \ln x - \frac{23 + 2\pi^2}{3} x \right)$
= $(16.32 - 0.66 - 13.05 + 5.54 - 1.37) \times 10^{-4}$
= 6.78×10^{-4}

- More than 50% correction from α_s correction
- This is because $\ln x \sim -8.2$ is large, it compensates $\alpha_s/(4\pi)$

Xu Feng (Columbia U.)

Solution: step scaling

- Solution 1: add QCD correction to the PT calculation of $C^{cont}(\mu)$
- Solution 2: use large external momenta and matching scale μ
 - ▶ from scale $\mu = m_c$ to 15 GeV, $\alpha_s(\mu)$ descreases to 25%, $\ln \frac{\mu^2}{M_W^2}$ decrease to 33%. $\frac{\alpha_s}{4\pi} \ln \frac{\mu^2}{M_W^2}$ no more significant
 - NPR step scaling use superfine lattice spacing a₁, calculate C_W at high energy scale μ_{high}

$$C_W(a_1) = C^{cont}(\mu_{high}) - C^{lat}(a_1, \mu_{high})$$

at lower energy scale $\mu_{\mathit{low}},$ we shall have

$$C_W(a_1) = C^{cont}(\mu_{low}) - C^{lat}(a_1, \mu_{low})$$

thus $C^{cont}(\mu_{low})$ is known

• then work at a larger lattice spacing a_2

$$C_W(a_2) = C^{cont}(\mu_{low}) - C^{lat}(a_2, \mu_{low})$$

• step scaling used in B_K , from 3 GeV to 9 GeV [Frison, Boyle, Garron]

- Calculation of the non-local matrix element is highly non-trivial
- Our exploratory study sheds light on the feasibility of lattice calculation of $K^+ \to \pi^+ \nu \bar{\nu}$
- We are starting the calculation at $m_{\pi} = 170$ MeV. In the future, physical charm quark will be included. Matching at higher energy scale is also necessary.
- NA62 will confront SM soon \Rightarrow It's in a timely fashion for lattice QCD to make impact on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

イロト イポト イヨト イヨト

Back up slides

Xu Feng (Columbia U.) Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 28 / 27

(人間) システン イラン

Remove exp growing contamination

$$\begin{split} &\langle \pi^{+}\nu\bar{\nu}|O_{u\ell}^{\Delta S=0}(0)|\bar{\ell}\nu\rangle \frac{1}{2E_{\bar{\ell}}} \frac{1}{2E_{\nu}} \langle \bar{\ell}\nu|O_{u\ell}^{\Delta S=1}(t)|K^{+}\rangle \\ &= \langle \pi^{+}|\bar{u}\gamma_{\mu}(1-\gamma_{5})d(0)|0\rangle \langle 0|\bar{s}\gamma_{\nu}(1-\gamma_{5})u(0)|K^{+}\rangle \\ &\times \bar{u}(p_{\nu})\gamma_{\nu}(1-\gamma_{5}) \frac{-ip_{\bar{\ell}}+m_{\bar{\ell}}}{2E_{\bar{\ell}}}\gamma_{\mu}(1-\gamma_{5})v(p_{\bar{\nu}}) \cdot e^{(E_{\bar{\ell}}+E_{\nu}-E_{K})t} \\ &= -2f_{K}f_{\pi}\bar{u}(p_{\nu})p_{K} \frac{-ip_{\bar{\ell}}}{2E_{\bar{\ell}}}p_{\pi}(1-\gamma_{5})v(p_{\bar{\nu}}) \cdot e^{(E_{\bar{\ell}}+E_{\nu}-E_{K})t} \\ &\equiv c_{t<0} \cdot e^{(E_{\bar{\ell}}+E_{\nu}-E_{K})t} \end{split}$$

Xu Feng (Columbia U.)

Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 29 / 27

Finite volume correction

Xu Feng (Columbia U.)

(日) (同) (三) (三)

Perturbation calculation

31 / 27

Preliminary results for Z-exchange diagrams

Xu Feng (Columbia U.) Long-distance contributions to the rare kaon Workshop@INT, 09/28/2015 32 / 27

A B F A B F

Summary of Z-exchange diagrams

Four classes: Type 1 (Q_1) , Type 1 (Q_2) , Type 2 (Q_1) , Type 2 (Q_2)

• Connected diagrams, J^Z_μ can be inserted into all the possible quark line

• Disconnected diagrams (usually excluded in lattice calculation since they are noisy and difficult to calculate)

Integrated matrix element

Disc. diag. is relatively noisy, but its contribution is small. Adding the disc. part does not affect the conn. part significantly

Xu Feng (Columbia U.)