Reappraisal of the variation in the fine structure constant α implied by Oklo data

Edward Davis

Department of Physics, Kuwait University

Project with Leila Hamdan: published as PhysRevC.92.014319 [arXiv: 1503.06011]

Davis (Kuwait University) Oklo bound on change in α INT-15-3 1/15

4 0 8

 QQ

Outline

[What is Oklo? Why is Oklo of interest?](#page-2-0)

[How to extract bound on](#page-4-0) $\Delta \alpha \equiv \alpha_{\rm Oklo} - \alpha_{\rm now}$ from Oklo?

- [Damour-Dyson \(DD\) method](#page-4-0)
- [Corrections to the DD method](#page-9-0)

4 0 8

 Ω

What?

• Natural nuclear fission reactor in Gabon (equatorial West Africa), discovered in 1972 (by CEA, France)

• Operated 1.8 to 2 Gyr ago (redshift $z \approx 0.14$) like a pulsed light water reactor (Meshik et al., PRL.93.182302)

Why?

- Geochemical data \longrightarrow thermal neutron capture cross-sections σ about 2 Gyr ago
- Any change in σ from present-day values
	- \longrightarrow change Δ_r in resonance energy E_r
	- \longrightarrow change in α over last 2 $*$ 10⁹ yr (Shlyakhter, Nature.264.340)

つひひ

 $n + {}^{149}\text{Sm} \rightarrow {}^{150}\text{Sm}^*$ (capture of most interest: $E_r = 97.3 \text{ meV}$)

- Small change in $E_r \longrightarrow$ large change in n capture ($\propto \phi \cdot \sigma$) \longrightarrow would be seen in Sm Oklo data
- Δ_r from Oklo data consistent with $0 \rightarrow \text{very small}$ bounds on Δ_r

4 0 8

More in review IntJModPhysE 23 1430007

つへへ

Extraction of $\Delta \alpha$ from Δr

Standard method based on Damour & Dyson, NuclPhysB.480.37 (1996)

Wilczek's review of *Birds and Frogs* in Physics Today, August (2015)

"Dyson's paper, with Thibault Damour, placing empirical limits on the possible time variation of the fine-structure and other fundamental 'constants' is a gem within Birds and Frogs."

Langacker et al. in PhysLettB.528.121 (2002)

A re-analysis of the Oklo reactor, aimed at obtaining more accurately the constraints that it imposes on the space of coupling constants, would therefore be welcome. It is possible that this reanalysis would put strong constraints on the variation of Λ_{QCD}/v *, as well as on* α *, and these would be interesting to know.*

イロト イ母ト イヨト イヨト

 Ω

$\Delta \alpha$ from Δ _r for ¹⁵⁰Sm

Two basic ingredients (from Damour & Dyson, NuclPhysB.480.37)

• Neglect of dependence on quark parameters (Justify in PhysRevC.92.014319)

$$
|\Delta_r| \ge |k| \frac{|\Delta\alpha|}{\alpha_{\text{now}}}
$$
 where $k \equiv \alpha \frac{dE_r}{d\alpha}$

Lower bound on $|k|$ enough to set upper bound on $|\Delta\alpha|$

 \bullet Exact upper bound on *k* (negative \rightarrow lower bound on $|k|$)

$$
k\leq \int V_r(\rho_{150^*}-\rho_{149})d^3r
$$

Need, in principle, charge densities ρ_{150^*} , ρ_{149} to evaluate

 \bullet V_r = electrostatic potential of excited compound nucleus ¹⁵⁰Sm

 Ω

イロト イ母 トイラト イラト

More on relation between Δ_r & $\Delta\alpha$

Background in FewBodySyst.56.431

$$
|\Delta_r| = \left| k \frac{\Delta \alpha}{\alpha_{\text{now}}} + k_q \frac{\Delta X}{X_{\text{now}}} \right| \ge |\gamma R - |k| \frac{|\Delta \alpha|}{\alpha_{\text{now}}}
$$

where

$$
\gamma = \left| \frac{k_q}{k} \right| \gtrsim 4
$$
 QCD input

$$
R = \left| \frac{\Delta X}{X_{\text{now}}} \right/ \frac{\Delta \alpha}{\alpha_{\text{now}}}
$$
BSM input

First Damour-Dyson inequality holds if *R >* 0*.*5. (Weak constraint.)

 $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

Uncontrolled approximations in DD bound *k DD* on *k*

Estimate *Vr* assuming charge is sphere of uniform charge density

• Also replace $\langle r^2 \rangle$ for compound nucleus by $\langle r^2 \rangle$ for ground state

$$
k \leq k^{DD} \equiv -\frac{(Z \, e)^2}{2R^3} \left(\langle r^2 \rangle_{150} - \langle r^2 \rangle_{149} \right)
$$

 QQ

Value of k^{DD} for ¹⁵⁰Sm (a numerical correction!)

- *R* is equivalent rms radius of charge distribution: $R = \sqrt{\frac{5}{3} \langle r^2 \rangle_{\rm{Expt}}}$
- Damour & Dyson use $R = 8.11$ fm $(\rightarrow k^{DD} = -1.1 \pm 0.1$ MeV) Much **too big**!
- With *measured* rms radius of ground state $(\rightarrow R = 6.50 \pm 0.20 \,\text{MeV})$, find for ¹⁵⁰Sm

$$
k^{DD} \equiv -\frac{(Z e)^2}{2R^3}(\langle r^2\rangle_{150} - \langle r^2\rangle_{149}) = -2.51 \pm 0.20 \,\text{MeV}
$$

 QQQ

イロン イ母ン イヨン イヨン 一番

3 physics corrections

- Can identify excitation & external electrostatic potential corrections
- Also use more realistic charge densities \rightarrow deformation correction

Quadrupole deformation $\beta \approx 0.2$

Surface diffuseness a ≃ 0.50 fm

N[e](#page-4-0)edto estim[a](#page-11-0)te β and *a* for ¹⁵⁰Sm^{*} [\(in](#page-8-0)[cr](#page-10-0)e[as](#page-9-0)e [b](#page-8-0)[y](#page-9-0) a [f](#page-3-0)e[w](#page-10-0) [pe](#page-0-0)[rce](#page-15-0)nt)

Davis (Kuwait University) Change in All [Oklo bound on change in](#page-0-0) α INT-15-3 10 / 15

Results for our 3 corrections & the net correction

- **Use 4 different models of nuclear densities**
- Plot results for reasonable range of $\Delta\beta \equiv \beta_* \beta_{\rm as}$ (0 $< \Delta\beta < 0.05\beta_{\rm as}$)

Mean and **scatter** of estimates of net correction $\rightarrow k^{corr} = 0.33 \pm 0.16$ MeV

イロト イ母ト イヨト イヨト

 Ω

Lower bound on *|k|*

$$
k \leq k_B \equiv k^{DD} + k^{corr} < 0 \quad \longrightarrow \quad |k| \geq -k_B = 2.18 \pm 0.26 \,\text{MeV}
$$

○ Upper bound on $|∆α|$

Use
$$
\frac{|\Delta \alpha|}{\alpha_{\text{now}}} \le \frac{|\Delta_r|}{|k|} \le \frac{|\Delta_r|}{-k_B}
$$
 & gaussian character of $\zeta \equiv \frac{\Delta_r}{-k_B}$

 \mathbf{p} - → 三 . p

4 0 8 \prec

 \bullet 95% C.L. bound on $|\Delta\alpha|$

$$
\frac{|\Delta\alpha|}{\alpha_{\text{now}}} \leq 1.1 \times 10^{-8}
$$

 $2Q$

Comparison with other results for change in α

• Atomic clock bounds on instantaneous rate of change $\dot{\alpha}_{\text{now}}$

• Assuming linear variation, our $\Delta \alpha$ bound implies (at 68% C.L.)

$$
\frac{\dot{\alpha}_{\sf now}}{\alpha_{\sf now}} < 0.32 \times 10^{-17} \, \text{yr}^{-1}
$$

• Bounds on $\Delta \alpha$ over longer time intervals

4 D F

 Ω

Example: runaway dilaton model (of string cosmology)

Relation between $\Delta\alpha(z)$ & current "speed" Φ_0' of dilaton

Limit on $|\Phi_0'|$ from Oklo 95% C.L. bound on $\Delta \alpha$ at $z \simeq 0.14$

$$
\frac{\Delta\alpha}{\alpha} \simeq -\frac{\alpha_{\text{had}}}{40} \Phi_0' \ln(1+z) \qquad \frac{|\alpha_{\text{had}}|=10^{-4}}{z \simeq 0.14} \qquad |\Phi_0'| \lesssim 0.03
$$

◂**◻▸ ◂╓▸**

(4) 国 国

• Undetectable difference in $\Delta \alpha(z)$ for ACDM & dilaton models ($z < 5$)

 QQ

Conclusions

• Revised Damour-Dyson estimate works for orders of magnitude

• New bound on
$$
\Delta \alpha
$$
 at 95% C.L.: $\frac{|\Delta \alpha|}{\alpha_{\text{now}}} < 1.1 \times 10^{-8}$

• For $z < 5$, $\alpha(z)$ does not distinguish dilaton model from ACDM

◆ ロ ▶ → 何

化重 网络重 网

 $2Q$

Conclusions

• Revised Damour-Dyson estimate works for orders of magnitude

• New bound on
$$
\Delta \alpha
$$
 at 95% C.L.: $\frac{|\Delta \alpha|}{\alpha_{\text{now}}} < 1.1 \times 10^{-8}$

• For $z < 5$, $\alpha(z)$ does not distinguish dilaton model from ACDM

Thank you for listening!

(□) (f)

化重 网络重 网

 QQQ

Interpretation of Oklo: unified treatment

[IntJModPhysE.23.1430007]

$$
\triangleright \Delta E_r \equiv E_r(\text{Oklo}) - E_r(\text{now}) = k_q \frac{\Delta X_q}{X_q} + k_\alpha \frac{\Delta \alpha}{\alpha} \qquad \left(X_q = \frac{m_q}{\Lambda_{QCD}}\right)
$$

- \blacktriangleright *k_q* independent of mass number *A*!
	- \triangleright Conjecture based on study of p-shell nuclei/schematic CN model [PhysRevC.79.034302/PhysRevD.67.063513]
	- \blacktriangleright k_a susceptible to nuclear matter analysis
- \triangleright Order of magnitude estimate for k_a ?

 $k_q \simeq +10$ MeV $|$ (Walecka model)

$$
\boxed{k_q \simeq -40 \,\text{MeV}}
$$
 (Chiral model)

4 D > 4 P + 4 B + 4 B + B + 9 Q O

$$
(k_{\alpha} \simeq -1 \,\mathrm{MeV} \,\mathrm{[NucIPhysB.480.37]})
$$

Interpretation of Oklo: Walecka model estimate of *k^q* [PhysRevC.79.034302]

► Shift
$$
\delta E_r
$$
 (due to δX_q) $\xrightarrow{\text{C}\text{N}}$ Depth U_0 of nuclear mean-field
\n
$$
\frac{\delta E_r}{U_0} \approx -\underbrace{\left(\frac{\delta m_N}{m_N} + 2\frac{\delta r_0}{r_0} + \frac{\delta U_0}{U_0}\right)}_{\text{Independent of } A}
$$
 (R = r₀A^{1/3})

 \triangleright Walecka model estimate of U_0 -term implies (Ignore δr_0)

$$
\frac{\delta E_r}{U_0} \approx 7.50 \frac{\delta m_S}{m_S} - 5.50 \frac{\delta m_V}{m_V} - \frac{\delta m_N}{m_N} \equiv \left(7.50 K_S^q - 5.50 K_V^q - K_N^q\right) \frac{\delta X_q}{X_q}
$$

- ▶ Uncertain microscopic interpretation of *scalar* S and *vector* V bosons \longrightarrow No first principles calculation of K_S^q , K_V^q
- In PhysRevC.79.34302, S ^{*g*}, K_V^q chosen such that $k_q \sim +10 \,\mathrm{MeV}$

KORKAR KERKER EL VOLO

Interpretation of Oklo within many-body chiral EFT model

Plausible paradigm relating U_0 **to QCD?** "München" model

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

NuclPhysA.750.259 NuclPhysA.770.1

Interpretation of Oklo within many-body chiral EFT model

▶ Plausible paradigm relating U₀ to QCD? "München" model

 \triangleright Calculation of U for symmetric nuclear matter

Long range interactions

In-medium χ PT to 3 loops

(1 & 2 π exchange, 1 & 2 virtual Δ excitation)

$\Delta(1232)$ degree of freedom

Appropriate $(\Delta - N \text{ mass} \simeq k_{\text{Fermi}})$ Ensures model phenomenologically satisfactory

Short range interactions

2 contact-terms Strengths fitted directly to nuclear matter properties

Sensitivity to quark mass: approximations & results $\mathsf{Long} \ \& \ \mathsf{intermediate} \ \mathsf{range} \ \mathsf{interaction} \ \mathsf{terms} \ \rightarrow \ \tilde{\mathsf{U}}_0 = \sum_i \mathsf{U}_{0i}$ *i*

$$
\frac{\tilde{U}_0}{m_N} = \underbrace{\frac{\pi}{4} \left(\frac{M_{\pi} g_A}{2 \pi F_{\pi}} \right)^4} _{\text{Twice iterated } 1 \pi\text{-exchange (2 medium insertions)}}
$$
\n
$$
(u = \frac{k_F}{M_{\pi}})
$$

In terms of hadronic parameters *P* (i.e. M_{π} , F_{π} , g_A , m_N & Δ)

$$
\frac{\delta \tilde{U}_0}{U_0} = \frac{1}{U_0} \frac{\delta \tilde{U}_0}{\delta m_q} \delta m_q = \left[\sum_{P,i} \frac{U_{0i}}{U_0} \underbrace{\left(\frac{P}{U_{0i}} \frac{\delta U_{0i}}{\delta P}\right)}_{=K_{U_{0i}}^p} \underbrace{\left(\frac{m_q}{P} \frac{\delta P}{\delta m_q}\right)}_{=K_{\beta}^q} \right] \frac{\delta m_q}{m_q}
$$

▶ Discard all but $P = m_{\pi}$ term: $K_{M_{\pi}}^{q} \approx \frac{1}{2} \gg$ other K_P^{q} 's

Berengut et al. (2013)

$$
\blacktriangleright \text{ Result: } \frac{\delta \tilde{U}_0}{U_0} = -0.28 \frac{\delta m_q}{m_q} =
$$

$$
\implies k_q \sim 10 \,\mathrm{MeV} \, (\mathrm{l})
$$

Same as PhysRevC.79.034302 but with *controlled* approximations

KORK STRAIN A BAR SHOP

Sensitivity to quark mass: approximations & results 2-body contact interaction (of strength *B*3)

- Source of largest term in $U_0!$
- \triangleright Contributes to part of U_0 linear in density ρ

$$
\frac{3\pi}{2m_N}\underbrace{\left[\frac{2\pi}{m_N}B_3 + \frac{15}{16}\pi^2\left(\frac{g_A}{2\pi F_\pi}\right)^4 m_N^2 M_\pi\right]}_{\frac{\rho \to 0}{\sum_{\text{low-k}}^2(0,0) + V_{\text{low-k}}^{(35)}(0,0)}} \rho
$$

 $[V_{\text{low}-k}$: Bogner, Kuo, Schwenk (2003)]

 \triangleright Working assumption: m_q -dependence of $V_{\text{low-}k}$ negligible

$$
K_{B_3}^q = 0.52K_{M_\pi}^q \implies \frac{\delta U_{0B_3}}{U_0} = +1.1 \frac{\delta m_q}{m_q} \implies k_q \simeq -40 \text{ MeV}
$$

Less controlled but still plausible? (More details: DOI 10.1007/s00601-014-0909-0)

KORKAR KERKER EL VOLO