HVP contribution to the muon anomalous magnetic moment from lattice QC

Christine Davies University of Glasgow HPQCD collaboration

Seattle September 20

Work with: Bipasha Chakraborty, Gordon Donald, Rachel Dowdall, Jonna Koponen, Peter Lepage

Using the Darwin (9600 core) Sandybridge/infiniband cluster at Cambridge, part of STFC's DiRAC HPC facility

Muon anomalous magnetic moment

 $\bar{\bar{S}}$

 $a_{\mu} =$ 2 Measure using polarised muons circulating in E and B fields. At a momentum where $\beta \times E$ terms cancel, difference between precession and cyclotron frequencies: $\vec{\mu} = g$ 2*m S*

 $g-2$

$$
\omega_a = -\frac{e}{m} a_\mu B
$$

BNL result:

e

 $a_\mu^{expt} = 11659208.9(6.3) \times 10^{-10}$

E989 (FNAL) will reduce exptl uncty to 1.6, starting 2017

 $\vec{\mu}\times\vec{B}$

Standard Model theory expectations flavour

Contributions from QED, EW and QCD interactions. QED dominates. QCD contribs start at α_{OED}^2 and the rows, from top top top top to top top to both \mathcal{L}

 $a_\mu^{QED} = 11658471.885(4) \times 10^{-10}$

 $a_\mu^{EW} = 15.4(2) \times 10^{-10}$

 a_μ^{E821} $= 11659208.9(6.3) \times 10^{-10}$

Choortainty Gommatod by that from nacholite contributions Uncertainty dominated by that from hadronic contribns

Hadronic contributions

$$
a_{\mu}^{expt} - a_{\mu}^{QED} - a_{\mu}^{EW} = 721.7(6.3) \times 10^{-10}
$$

= $a_{\mu}^{HVP} + a_{\mu}^{HOHVP} + a_{\mu}^{HLBL} + a_{\mu}^{new physics}$

Focus on lowest order hadronic vacuum polarisation, so assume:

$$
a_{\mu}^{HLbL} = 10.5(2.6) \times 10^{-10}
$$

$$
a_{\mu}^{HOHVP} = -8.85(9) \times 10^{-10}
$$

MLO+NNLO
_{Kurz et al,}
_{1403.6400}

 $a_\mu^{HVP, no\ new\ physics} = 719.8(6.8)\times 10^{-10}$

π⁺π: new data from BESIII; arXiv:1507.08188v2

Full analysis inc. BES data still analysis inc. BES data still at Benasque, 2015 to be done

Lattice calculation of HVP Analytically continue to Euclidean q^2 .

$$
a_{\mu}^{HVP,i} = \frac{\alpha}{\pi} \int_0^{\infty} dq^2 f(q^2) (4\pi \alpha e_i^2) \hat{\Pi}_i(q^2)
$$

Blum, hep-lat/ 0212018

Calculation with quarks Calculation required is

$$
J_\mu\left(\begin{matrix} \frac{\partial}{\partial u_1} & \cdots & \frac{\partial}{\partial u_n} \\ \frac{\partial}{\partial u_2} & \cdots & \frac{\partial}{\partial u_n} \end{matrix}\right)_\nu
$$

$$
= (q^2 g_{\mu\nu} - q_\mu q_\nu) \Pi(q^2)
$$

Fourier transform and plot out as a function of q^2

E. Gregory, BMW, LAT15. Smeared clover action

correlation function of quark and antiquark propagators, created and destroyed by vector (photon) current

Simpler method

For spatial vector currents at zero spatial momentum

$$
\Pi^{jj}(q^2) = q^2 \Pi(q^2) = a^4 \sum_t e^{iqt} \sum_{\vec{x}} \langle j^j(\vec{x},t)j^j(0) \rangle
$$

Time-moments of lattice current-current correlators

$$
G_{2n} \equiv a^4 \sum_{t} \sum_{\vec{x}} t^{2n} Z_V^2 \langle j^j(\vec{x}, t) j^j(0) \rangle
$$

= $(-1)^n \left. \frac{\partial^{2n}}{\partial q^{2n}} q^2 \hat{\Pi}(q^2) \right|_{q^2=0}$
 $J \left(\oint_Q \right)$

 $\hat{\Pi}(q^2) = \sum$ ∞ *j*=1 $q^{2j}\Pi_j$ with $\Pi_j = (-1)^{j+1} \frac{G_{2j+2}}{(2j+2)^j}$ $(2j+2)!$ with

Allows us to reconstruct $\Pi(q^2)$ and integrate $\hat{\Pi}(q^2)$

Use Pade approximants (ratio of m/n polynomials) rather than Taylor expansion for better large q^2 behaviour.

Test Pade approximants in similar scenarios (1-loop quark vacuum polarisation, with noise added)

Improved precision allows higher order Pade - we use [2,2]

CHARM contribution

HPQCD 1004.4285, 1208.2855

Part of the set of calculations that gave $m_c, M(J/\psi) - M(\eta_c), \Gamma(J/\Psi \to e^+e^-), \Gamma(J/\psi \to \eta_c \gamma)$

Used HISQ valence quarks on MILC 2+1 asqtad configs. Z_v from contnm QCD pert. th.

Extrapolation to physical point allows us to compare directly to moments from e+e- expt. in charm region

$$
a_{\mu}^{HVP,c} = 14.4(4) \times 10^{-10}
$$

HPQCD 1403.1778

BOTTOM contribution

HPQCD 1110.6887, 1309.5797, 1408.5768

Part of the set of calculations that gave

 $m_b, M(\Upsilon) - M(\eta_b), M(\Upsilon') - M(\eta'_b), \Gamma(\Upsilon \to e^+e^-), \Gamma(\Upsilon' \to e^+e^-)$

STRANGE contribution polarization. Results are shown for 400 di↵erent simulations,

Check mass and decay constant of ϕ from these correlators against expt

LIGHT contribution $m_u = m_d$

HISQ valence quarks on MILC $2+1+1$ HISQ configs. Use Z_v from s calc. \mathcal{L}_{v} from s calc.

Multiple a (use w_0), m_1 (inc. phys.), volumes (at ml/ms=0.1). New ingredient since correlators much noisier. Use: $\sum_{i=1}^{n}$

$$
G(t) = \begin{cases} G_{\text{data}}(t) & \text{for } t \le t^* \longleftarrow \text{from Monte Carlo} \\ G_{\text{fit}}(t) & \text{for } t > t^* \longleftarrow \text{from multi-exponential fit} \end{cases}
$$

$$
t^* = 1.5 \text{fm} \frac{6}{4} m_{\rho} \text{ so } 70\% \text{ of result from G}_{\text{data}}
$$

- $\left\{ \begin{array}{ll} 0.014 & \text{if } 0.014 \leq \theta \leq 0.014 \leq \theta \leq$ understand ρ on lattice, inc. finite-volume from $\pi\pi$. • 80% of result comes from ρ meson pole, so need to
	- \cdot 10% from $\pi\pi$ sensitive to finite-volume and m $\epsilon_0 \pi\pi$ taste-issues for staggered quarks). • 10% from $\pi\pi$, sensitive to finite-volume and m_{π} (so π

One approach is to correct Taylor coefficients $\int\limits_j^{latt} (\pi\pi)) \Bigg[$ $\mathsf T$

 $\hat{\Pi}^{latt}_i$

Remove lattice $\pi\pi$ using effective theory of ρ, π, γ inc. staggered quark effects and finite vol. Jegerlehner +Szafron, 1101.2872

 \prod

 $\hat{\Pi}_{\dot{z}}^{latt}$

 $^{\mathit{latt}}_{j} \to (\Pi$

 $\hat{\Pi}^{latt}_i$

 $\frac{latt}{j}-\Pi$

Rescale using exptl elaborating on ETMC : 1308.4327. Reduces lattice systematics from light quark mass effects m_{ρ}

 $m_\rho^{2j,latt}$

2*j,expt*

m

 $\overline{\rho}$

Restore $\pi\pi$ from continuum effective theory

 $+ \Pi$

 $\hat{\prod}^{cont}_{i}$

 $\frac{cont}{j}(\pi\pi)$

 $\pi\pi$ contribution distorted at physical point using staggered quarks on these coarse lattices. Important to inc. other masses. But note: need 7fm lattice to reduce finite vol effects below 1% for contnm $\pi\pi$

Future: improve statistics at physical point, finer lattices

Focus has been on^t stochastic methods.⁺Using same source+ $\overline{\hat{\lambda}}$ for l and s helps $\longrightarrow \longrightarrow \longrightarrow$ current with charge $1/3$ (so e^2 factor is $1/5$ of connected) Guelpers, Mainz, LAT14 *Godiscus* (*x*⁰) = *ZV x*⁰ *x*⁰ *y su* et *lactul is* $\frac{1}{2}$
 $\frac{2}{3}$

HadSpec results e.g. Hadspec, 1309.2608

Use instead many (~ 150) source vectors (eigenvectors of gauge-covariant Laplacian) for both conn. and disc. correlators to obtain good signal.

PRELIMINARY

Fitting and normalising to connected light, gives HVP disc. contribn of $\sim -0.2\%$ anisotropic Hadspec+HPQCD,in prep.

clover action

Simple (but conservative) argument on size of disc. pieces l-l disc.pieces provide key difference between ω and ρ

$$
2D_{ll} = -\frac{f_{\rho}^2 m_{\rho}}{2} e^{-m_{\rho}t} + \frac{f_{\omega}^2 m_{\omega}}{2} e^{-m_{\omega}t}
$$

$$
\frac{\hat{\Pi}_{j,disc}}{\hat{\Pi}_{j,conn}} = \frac{1}{2} \left[\frac{m_{\rho}^{2j+2} f_{\omega}^2}{m_{\omega}^{2j+2} f_{\rho}^2} - 1 \right]
$$

We do not have accurate information on decay constants because of width of ρ , mixing of ω etc Taking $f_{\rho} = 0.21(1) \,\text{GeV}, f_{\omega} = 0.20(1) \,\text{GeV}$

Disc. contribin reduced by factor of 5 from electric charge

 \rightarrow HVP : disc-ll/conn-ll = -1.5(1.5) %

Adding contributions to (g-2)/2

CONCLUSIONS: Lattice - continuum comparison

A lot of progress but lattice uncty (all from u/d) still too big. Need to calc. QED, m_u/m_d effects (~1% and positive?) and disc. (negative). More calculations underway (Mainz, BMW, RBC/UKQCD …)

Backup Slides

Precision electroweak Higgs bounds

 sees HVP through α_{QED} but Hagiwara et a sensitivity to range of exptl data is different Hagiwara et al, 1105.3149

Gfitter,1107.0975

Keep an eye on the 'big' picture whilst doing this …..

few MeV uncertainties in many cases

Keep an eye on the 'big'picture whilst doing this …..

