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EFTs for new physics



The quest for “new physics”
• The SM is remarkably successful,  but can’t be the whole story           
⇒  new degrees of freedom (Light & weakly coupled? Heavy? Both?)
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In this talk 
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Heavy new physics and EFT

• At energy scales E << MBSM,  new physics shows up in local operators

Familiar example: 
W q2 << MW2

 GF ~ g2/Mw2 

gg

• Each UV model generates its own pattern of operators: experiments      
at E<< MBSM can discover and tell apart new physics scenarios



Why use EFTs for new physics

• General framework encompassing classes of models           

• Efficient and rigorous tool to analyze experiments at 
different scales (from collider to table-top)

• The steps below UV matching apply to all models

• Very useful diagnosing tool in this “pre-discovery” phase :)

• Inform model building (success story is SM itself**)

EFT and UV models approaches are not mutually exclusive



**EFT for β-decays and the 
making of the SM

Fermi, 1934
Lee and Yang,  1956

Feynman  & Gell-
Mann, 1958

Marshak & Sudarshan Glashow,  
Salam,  

Weinbergp
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Parity conserving: 
VV,  AA,  SS,  TT ...

Parity violating:   VA, SP, ... 
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Current-current,       
parity conserving

p
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?

It’s  (V-A)*(V-A) !!

Embed in non-abelian  
chiral gauge theory,            

predict neutral currents

“V-A was the key” 
S. Weinberg



• Symmetries and their realization: 

• B, L, CP,  flavor typically not enforced

• SM gauge group:

• Elementary Higgs: h ∈ EW doublet with EW GB (long. W± and Z) 

• Composite Higgs: h is GB associated with strong dynamics 

BSM EFT framework

• Assume existence of   
new particles with       
MBSM >> GF-1/2  ~ v

• Degrees of freedom:      
SM fields (+ possibly νR)

E

MW,Z

 Dynamics involving
particles with MBSM >> MW,Z

 Effective theory at the 
electroweak scale

MBSM

Buchalla et al, 1307.5017, and refs therein



• EFT expansion in E/MBSM, MW/MBSM 

• Here focus on linear-realization:

E

MW,Z

 Dynamics involving
particles with MBSM >> MW,Z

 Effective theory at the 
electroweak scale

MBSM

[ Λ ↔  MBSM ]

• Assume existence of   
new particles with       
MBSM >> GF-1/2  ~ v

• Degrees of freedom:      
SM fields (+ possibly νR)

BSM EFT framework



Quick overview of Leff

• Dim 5:  one L-violating operator → Majorana mass for neutrinos
Weinberg 1979

Key questions in neutrino physics revolve around this operator 



No fermions

Two fermions

Four fermions

• Dim 6:  many operators, affect many processes 

V-fL-fR:  dipole V-fL,R-fL,R:  vector 

H-V-V

H-fL-fR

Buchmuller-Wyler 1986,  ....  
Grzadkowski-Iskrzynksi-
Misiak-Rosiek, 2010
Manohar-Trott, 2013

Weinberg 1979
Wilczek-Zee1979

• 59 operators (2499 including family indices)

Quick overview of Leff



• Several examples at this meeting

• Lepton Flavor Violation  (E. Passemar)

• EDMs  (M.J. Ramsey-Musolf,  A. Walker-Loud,  J. de Vries)

• Weak decays (J. M. Camalich and M. Gonzalez-Alonso)

• ΔB=1,2  (E. Shintani, M. Buchcoff)

• ...

Quick overview of Leff



In this talk focus on CPV Higgs couplings to quarks and gluons

H-qL-qR-g:  dipole H-g-g H-qL-qR:  scalar

Quick overview of Leff



Non-standard 
CP-violating

 Higgs couplings
Based on 

Y.T. Chien,  VC,  W. Dekens,  J. de Vries,  E. Mereghetti
1510.xxxx



Non-standard Higgs couplings?
• Higgs discovery: milestone for fundamental interactions

• So far,  Higgs properties are compatible with the Standard Model: 
signal strengths μ≡σobs/σSM compatible with μ=1

• Couplings to W, Z, γ,g  and t, b, 
τ known at 20-30% level

• But couplings to light flavors 
much less constrained

• Still room for deviations: is this 
the SM Higgs?  Key question at 
LHC Run 2 & important target 
for low energy experiments



CPV Higgs couplings 

• Subsets of CPV interactions studied in the literature

• Wish to study CPV couplings systematically,  through  

        (1)  LHC:  Higgs production (μ≡σobs/σSM)
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CPV Higgs couplings 

• Subsets of CPV interactions studied in the literature

• Wish to study CPV couplings systematically,  through  

        (1)  LHC:  Higgs production (μ≡σobs/σSM)     

(2)  Low-energy: EDMs (expect strong constraints)

• Start at scale MBSM with CPV Higgs couplings to quarks and gluons



MBSM 
(~TeV)

E

ΛHad 
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Nuclear/
atomic scale
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 LHC processes:
pp → h,  tt,  tth 
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RG Evolution

• High-scale operators contribute 
to EDMs through mixing into 
light quark (C)EDMs and dW 

• Extend operator basis to take 
this into account (dq, dW)

• Low-scale couplings involve linear 
combinations of high scale ones

• Assume Peccei-Quinn is at work

μ = 1 GeV 

μ = 1 TeV,  in the quark mass basis 



• Evolution equations & mixing structure 



• Evolution equations & mixing structure 

• CEDM insertions:



• Evolution equations & mixing structure 

• Weinberg insertions:



• Evolution equations & mixing structure 

• θ’  insertions:



Threshold effects
• At μ= mt, mh, mW,Z   integrate out t, h, W, Z:        

⇒

• At μ= mt,b,c:     

⇒



Matrix Elements: status

See Talks by J. de Vries, 
T. Bhattacharya,  G. Schierholz,   A. Walker-Loud 

• A lot (but not everything) can be learned from chiral symmetry 
considerations

• Need dynamical calculation:  QCD sum rules, ... , Lattice QCD 

• Lattice QCD should play an increasingly important role: 

• θ-term: long-known challenge                                                 

• BSM operators: recently got on the “radar” 



Matrix Elements: status

• Nucleon EDMs from BSM operators:

Bhattacharya et al
1506.04196, 1506.06411

Lattice QCD:  10% for u,d,  bound for s



Matrix Elements: status

• Nucleon EDMs from BSM operators:

Bhattacharya et al
1506.04196, 1506.06411

Lattice QCD:  10% for u,d,  bound for s

QCD Sum Rules (50%) QCD Sum Rules + NDA  (~100%)

Pospelov-Ritz 
hep-ph/0504231
and refs therein

For LQCD prospects, see T. Bhattacharya’s talk



• πNN couplings

• Diamagnetic atoms 

QCD Sum Rules:
Pospelov-Ritz 

hep-ph/0504231
and refs therein

• Deuteron

Dimitriev and Sen’kov 2003

Basiou et al.
1411.5804

de Vries et al, 
1109.3604

Engel et al 
1303.2371



• πNN couplings

• Diamagnetic atoms 

QCD Sum Rules:
Pospelov-Ritz 

hep-ph/0504231
and refs therein

• Deuteron

Dimitriev and Sen’kov 2003

Basiou et al.
1411.5804

de Vries et al, 
1109.3604

Engel et al 
1303.2371

Take home message:  in most cases O(1) uncertainties, 
in some cases not even the sign is known



Matrix Elements: strategy

• To study impact these uncertainties,  we obtain bounds on non-
standard couplings with different treatments of theoretical input

1. Central:  use central value matrix elements

2. RFit (“Range-Fit”): vary matrix elements in their allowed 
theoretical ranges; minimize chi-squared (= pick weakest bound)



Matrix Elements: strategy

• To study impact these uncertainties,  we obtain bounds on non-
standard couplings with different treatments of theoretical input

1. Central:  use central value matrix elements

2. RFit (“Range-Fit”): vary matrix elements in their allowed 
theoretical ranges; minimize chi-squared (= pick weakest bound)

Concrete (albeit challenging) target for Lattice QCD 
and nuclear structure calculations

25% 50%

3. RFit+: RFit with improved uncertainties in matrix elements



Representative case: θ′

LHC:  Higgs production via gluon fusion          
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Representative case: θ′

LHC:  Higgs production via gluon fusion          
Low Energy footprints:                     

quark chromo-EDM + all mixings       

hg

q qq

g

h

g

g

• General features (that apply to all operators): 

1. RFit: 199Hg bounds disappears, n bound much weaker ⇒    

EDM and LHC bounds much closer

2. RFit+:  bounds comparable to “central” (no cancellations).               
Exploit the full constraining power of experiments

Cur
re

nt
 

ex
pe

rim
en

ts

Bounds on couplings at the scale  μ= MBSM = 1TeV



Representative case: θ′

• Impact of improved theory, improved experiments, and both

LHC Run 1                    0.27  
LHC Run 2                    0.20

(e cm)



Representative case: θ′

• Impact of improved theory, improved experiments, and both

LHC Run 1                    0.27  
LHC Run 2                    0.20

• Improved EDM matrix elements 
can have bigger impact than 
additional measurements

• Improved EDM matrix elements: 
enough to beat  LHC Run 1 & 2

• LHC Run 2 sensitivity not great: 
ratio σθ′/σSM ~ constant with √s



Signatures of other operators

Strongest bound by dn and de

• dq for q≠t:  
~

LHC:  Higgs (+ jet) production Low Energy:  quark (C)EDM,  Weinberg

• LHC constraints from pp     h at the level of vdq~4-20%                   

• EDM (dn) bounds stronger by 4-6 orders of magnitude! 

~→



LHC:  Higgs production

Strongest bound by dn and de

• Top pseudoscalar Yukawa and CEDM 

Low Energy:  quark (C)EDM, Weinberg,  and de                      LHC:  pp → h (via ggF),  tt,  tth 
__

• Pseudoscalar Yukawas q≠t 
Low Energy:  quark (C)EDM, Weinberg,  and de                      



Summary table 1

  

• Complementarity of EDMs and LHC:

• Currently,  best bounds on Higgs couplings come from 
combination of EDMs and LHC

• For Y’b,t ThO (electron) provides strongest EDM constraint



Summary table 1

• Pseudoscalar Yukawas in units of SM Yukawa mq/v:

• Bounds correspond to effective scales varying from 1 to 200 TeV

Λ (TeV)



Examples of complementarity 

Central RFit

• Two-coupling analysis:  Y’b - Y’s

LHC  (or improved theory) removes 
unconstrained direction



Examples of complementarity 
• Two-coupling analysis:  Y’b - Y’t  

LHC (or improved theory) removes 
unconstrained direction

RFitCentral



Summary table 2
• Improved theory, improved experiments, and both



Summary table 2

• Impact of improved experiments:  

• Constraints from EDMs scale linearly with EDM sensitivity

• LHC Run 2 unimpressive sensitivity: σBSM/σSM does not grow 
with √s  (except for dt)~

• Improved theory, improved experiments, and both



Summary table 2

• Impact of improved EDM matrix elements: 

• Can strengthen bounds more than new EDM measurements

• Put current EDM bounds beyond reach of LHC Run 2 cross-
section sensitivity

• Improved theory, improved experiments, and both



Conclusions
• EFT is very useful tool to study high-scale BSM physics

• Worked example: bounds on CPV Higgs-quark and Higgs-gluon 
couplings,  through EDMs and Higgs production at the LHC

• Uncertainty in matrix elements strongly affects EDM constraints.     
Quantified improvements needed to exploit EDM searches

25% 50%

• Current best bounds come from combination of LHC and EDMs

• Future:  EDMs will have major impact on pinning down Higgs couplings 

Challenging goal for 
Lattice QCD and 
Nuclear Structure



Outlook

• Study collider observables with linear sensitivity to CPV couplings

• Extend analysis to Higgs operators that involve EW gauge bosons

• Linear vs non-linear EFT realization: testable differences? 

Anticipating discoveries at LHC Run 2 and next generation 
EDMs, prepare for their interpretation:   



Backup slides



Dependence on θ-term

• Nucleon EDMs

• Pion-nucleon CP-odd couplings

Guo et al.,  1502.02295

Akan et al., 1406.2882
Fit to Shintani et al, POS (Lat 2013) 298

RECENT PROGRESS

Mereghetti, van Kolck  1505.06272 with input from  
A. Walker-Loud, ‘14;   Borsanyi et al, ‘14.

• Recent progress in Lattice QCD calculations



Top CPV couplings

Zoom in


