Intersections of BSM phenomenology and QCD for New Physics Searches INT, Oct I 2015

EFTs for new physics (non-standard CPV Higgs couplings)

Vincenzo Cirigliano Los Alamos National Laboratory

Outline

- EFTs for new physics
 - General considerations
- Worked example: non-standard CPV Higgs couplings
 - Framework: RGE, matrix elements
 - Direct (LHC) and indirect (EDMs) constraints
- Conclusions

EFTs for new physics

The quest for "new physics"

The SM is remarkably successful, but can't be the whole story
 ⇒ new degrees of freedom (Light & weakly coupled? Heavy? Both?)

The quest for "new physics"

- The SM is remarkably successful, but can't be the whole story
 ⇒ new degrees of freedom (Light & weakly coupled? Heavy? Both?)
- Two laboratory strategies

• Both frontiers needed to reconstruct \mathcal{L}_{BSM}

The quest for "new physics"

- The SM is remarkably successful, but can't be the whole story
 ⇒ new degrees of freedom (Light & weakly coupled? Heavy? Both?)
- Two laboratory strategies

• Both frontiers needed to reconstruct \mathcal{L}_{BSM}

Heavy new physics and EFT

• At energy scales $E \le M_{BSM}$, new physics shows up in local operators

 Each UV model generates its own pattern of operators: experiments at E<< M_{BSM} can discover and tell apart new physics scenarios

Why use EFTs for new physics

- General framework encompassing classes of models
- Efficient and rigorous tool to analyze experiments at different scales (from collider to table-top)
- The steps below UV matching apply to all models
- Very useful diagnosing tool in this "pre-discovery" phase :)
- Inform model building (success story is SM itself**)

EFT and UV models approaches are not mutually exclusive

**EFT for β -decays and the making of the SM

Fermi, 1934

Current-current, parity conserving

Lee and Yang, 1956

Parity conserving: VV, AA, SS, TT ... Parity violating: VA, SP, ...

Feynman & Gell-Mann, 1958 Marshak & Sudarshan

It's (V-A)*(V-A) !!

"V-A was the key'

S.Weinberg

Glashow, Salam, Weinberg

Sheldon Lee Glashow

Steven Weinberg

Abdus Salam

Embed in non-abelian chiral gauge theory, predict neutral currents

BSM EFT framework

- Assume existence of new particles with M_{BSM} >> G_F^{-1/2} ~ v
- Degrees of freedom:
 SM fields (+ possibly V_R)

- Symmetries and their realization:
 - B, L, CP, flavor typically not enforced
 - SM gauge group:
 - Elementary Higgs: $h \in EW$ doublet with EW GB (long. W[±] and Z)
 - Composite Higgs: h is GB associated with strong dynamics

Buchalla et al, 1307.5017, and refs therein

BSM EFT framework

- Assume existence of new particles with $M_{BSM} >> G_F^{-1/2} \sim v$
- Degrees of freedom:
 SM fields (+ possibly V_R)

- Here focus on linear-realization: $\varphi = \frac{1}{\sqrt{2}} e^{-i(\phi_a/v)T_a} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$
- EFT expansion in E/M_{BSM}, M_W/M_{BSM}

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots \quad [\Lambda \leftrightarrow \mathsf{M}_{\text{BSM}}]$$

Quick overview of
$$\mathcal{L}_{eff}$$

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

● Dim 5: one L-violating operator → Majorana mass for neutrinos

Weinberg 1979

Key questions in neutrino physics revolve around this operator

Quick overview of \mathcal{L}_{eff}

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Dim 6: *many* operators, affect many processes
- 59 operators (2499 including family indices)

No fermions

, row

Weinberg 1979 Wilczek-Zee1979 Buchmuller-Wyler 1986, Grzadkowski-Iskrzynksi-Misiak-Rosiek, 2010 Manohar-Trott, 2013

Two fermions

V-f_{L,R}-f_{L,R}: vector

V-f_L-f_R: dipole

H-f_L-f_R

Quick overview of \mathcal{L}_{eff}

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Several examples at this meeting
- Lepton Flavor Violation (E. Passemar)
- EDMs (M.J. Ramsey-Musolf, A. Walker-Loud, J. de Vries)
- Weak decays (J. M. Camalich and M. Gonzalez-Alonso)
- $\Delta B=1,2$ (E. Shintani, M. Buchcoff)

Quick overview of \mathcal{L}_{eff}

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

In this talk focus on CPV Higgs couplings to quarks and gluons

Non-standard CP-violating Higgs couplings

Based on Y.T. Chien, VC, W. Dekens, J. de Vries, E. Mereghetti 1510.xxxx

Non-standard Higgs couplings?

- Higgs discovery: milestone for fundamental interactions
- So far, Higgs properties are compatible with the Standard Model: signal strengths $\mu = \sigma_{obs} / \sigma_{SM}$ compatible with $\mu = I$

- Couplings to W, Z, γ,g and t, b,
 T known at 20-30% level
- But couplings to light flavors much less constrained
- Still room for deviations: is this the SM Higgs? Key question at LHC Run 2 & important target for low energy experiments

CPV Higgs couplings

- Subsets of CPV interactions studied in the literature
- Wish to study CPV couplings systematically, through

(1) LHC: Higgs production ($\mu = \sigma_{obs} / \sigma_{SM}$)

CPV Higgs couplings

- Subsets of CPV interactions studied in the literature
- Wish to study CPV couplings systematically, through

(1) LHC: Higgs production ($\mu = \sigma_{obs} / \sigma_{SM}$)

(2) Low-energy: EDMs (expect strong constraints)

	d_{e}	d_n	$d_{p,D}$	$d_{ m Hg}$	d_{Xe}	$d_{ m Ra}$	
current limit	$8.7 \cdot 10^{-29}$	$2.9\cdot 10^{-26}$	х	$2.6\cdot 10^{-29}$	$5.5\cdot10^{-27}$	$4.2\cdot 10^{-22}$	(e cm)
expected limit	$5.0 \cdot 10^{-30}$	$1.0\cdot 10^{-28}$	$1.0\cdot 10^{-29}$	$1.0\cdot 10^{-29}$	$5.0\cdot10^{-29}$	$1.0\cdot 10^{-27}$	

CPV Higgs couplings

- Subsets of CPV interactions studied in the literature
- Wish to study CPV couplings systematically, through

(1) LHC: Higgs production ($\mu = \sigma_{obs} / \sigma_{SM}$)

(2) Low-energy: EDMs (expect strong constraints)

• Start at scale M_{BSM} with CPV Higgs couplings to quarks and gluons

$$\mathcal{L}_{6} = -\frac{\theta' \frac{\alpha_{s}}{16\pi} G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} (\varphi^{\dagger}\varphi) + \sqrt{2} \varphi^{\dagger} \varphi (\bar{q}_{L} Y'_{u} u_{R} \tilde{\varphi} + \bar{q}_{L} Y'_{d} d_{R} \varphi)}{-\frac{g_{s}}{\sqrt{2}} \bar{q}_{L} \sigma \cdot G \tilde{\Gamma}_{u} u_{R} \frac{\tilde{\varphi}}{v} - \frac{g_{s}}{\sqrt{2}} \bar{q}_{L} \sigma \cdot G \tilde{\Gamma}_{d} d_{R} \frac{\varphi}{v} + \text{h.c.}}$$

RG Evolution

 μ = I TeV, in the quark mass basis

 $\mu = I \text{ GeV}$

$$\mathcal{L}_{6}^{CPV} = -v\theta' \frac{\alpha_s}{8\pi} h G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + v^2 \operatorname{Im} Y'_{q} \bar{q} i \gamma_5 q h - \frac{i}{2} \tilde{d}_{q} g_s \bar{q} \sigma \cdot G \gamma_5 q \left(1 + \frac{h}{v}\right) + O(h^2)$$

 $egin{aligned} \widehat{\mathcal{L}}_6^{CPV} &
ightarrow & -m_* \, ar{ heta} \, \sum_{q=u,d,s} \, ar{q} i \gamma_5 q \ & - rac{i}{2} \, \sum_{f=e,u,d,s} \, d_f \, e Q_f \, ar{f} \sigma \cdot F \gamma_5 f \ & - rac{i}{2} \, \sum_{q=u,d,s} \, ar{d}_q \, g_s \, ar{q} \sigma \cdot G \gamma_5 q \ & + d_W rac{g_s}{\epsilon} f_{abc} arepsilon^{\mu
ulphaeta} G^a_{lphaeta} G^b_{\mu
ho} G^{c\,
ho}_
end{aligned} \end{aligned}$

- High-scale operators contribute to EDMs through mixing into light quark (C)EDMs and d_W
- Extend operator basis to take this into account (d_q, d_W)
- Low-scale couplings involve linear combinations of high scale ones
- Assume Peccei-Quinn is at work

• Evolution equations & mixing structure

$$\mu \frac{d}{d\mu} \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0 \\ 0 & 16C_F - 4N_C & 2N & 0 & -1/4\pi^2 \\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0 \\ 0 & -30C_F(\frac{m_q}{v})^3 & 0 & -6C_F & 12C_F\frac{\alpha_s}{4\pi}\frac{m_q}{v} \\ 0 & -8\frac{4\pi}{\alpha_s}(\frac{m_q}{v})^2 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix}$$

• Evolution equations & mixing structure

$$\mu \frac{d}{d\mu} \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 & 0 \\ 0 & 16C_F - 4N_C & 2N & 0 & -1/4\pi^2 \\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 & 0 \\ 0 & -30C_F \left(\frac{m_q}{v}\right)^3 & 0 & -6C_F & 12C_F \frac{\alpha_s}{4\pi} \frac{m_q}{v} \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix}$$

• CEDM insertions:

• Evolution equations & mixing structure

$$\mu \frac{d}{d\mu} \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F \\ 0 & 16C_F - 4N_C \\ 0 & 0 \\ 0 & 0 \\ 0 & -30C_F(\frac{m_q}{v})^3 \\ 0 & -8\frac{4\pi}{\alpha_s}(\frac{m_q}{v})^2 \\ 0 & 0 \end{pmatrix}^2 \begin{pmatrix} 0 & 0 \\ 2N \\ N_C + 2n_f + \beta_0 \\ 0 \\ 0 & 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ -6C_F & 12C_F\frac{\alpha_s}{4\pi}\frac{m_q}{v} \\ 0 & 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im}\,Y'_q \\ \theta' \end{pmatrix}$$

• Weinberg insertions:

 $ilde{d}_q/m_q$

• Evolution equations & mixing structure

$$\mu \frac{d}{d\mu} \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im} Y'_q \\ \theta' \end{pmatrix} = \frac{\alpha_s}{4\pi} \begin{pmatrix} 8C_F & -8C_F & 0 & 0 \\ 0 & 16C_F - 4N_C & 2N & 0 \\ 0 & 0 & N_C + 2n_f + \beta_0 & 0 \\ 0 & -30C_F (\frac{m_q}{v})^3 & 0 & -6C_F \\ 0 & -8\frac{4\pi}{\alpha_s} (\frac{m_q}{v})^2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} d_q/m_q \\ \tilde{d}_q/m_q \\ d_W \\ \mathrm{Im} Y'_q \\ \theta' \end{pmatrix}$$

• θ ' insertions:

 $\operatorname{Im} Y'_q$

 \tilde{d}_q/m_q

Threshold effects

• At $\mu = m_t$, m_h , $m_{W,Z}$ integrate out t, h, W, Z:

$$\tilde{d}_q/m_q \implies d_W$$

Matrix Elements: status

- A lot (but not everything) can be learned from chiral symmetry considerations
- Need dynamical calculation: QCD sum rules, ..., Lattice QCD
- Lattice QCD should play an increasingly important role:
 - θ-term: long-known challenge
 - BSM operators: recently got on the "radar"

See Talks by J. de Vries, T. Bhattacharya, G. Schierholz, A. Walker-Loud

Matrix Elements: status

• Nucleon EDMs from BSM operators: $d_{n,p} \left[d_{u,d,s}; \tilde{d}_{u,d,s}; d_{W} \right]$

	$d_u(1{ m GeV})$	$d_d(1{ m GeV})$	$d_s(1{ m GeV})$
d_n	-0.22 ± 0.03	0.74 ± 0.07	0.0077 ± 0.01
d_p	0.74 ± 0.07	-0.22 ± 0.03	0.0077 ± 0.01

Bhattacharya et al 1506.04196, 1506.06411

Lattice QCD: 10% for u,d, bound for s

Matrix Elements: status

• Nucleon EDMs from BSM operators: $d_{n,p} \left[d_{u,d,s}; \tilde{d}_{u,d,s}; d_W \right]$

	$d_u(1{ m GeV})$	$d_d(1{ m GeV})$	$d_s(1{ m GeV})$	
d_n	-0.22 ± 0.03	0.74 ± 0.07	0.0077 ± 0.01	Bha 1 506.0
d_p	0.74 ± 0.07	-0.22 ± 0.03	0.0077 ± 0.01	

Bhattacharya et al 1506.04196, 1506.06411

Lattice QCD: 10% for u,d, bound for s

	$e ilde{d}_u(1{ m GeV})$	$e ilde{d}_d(1{ m GeV})$	$e ilde{d}_s(1{ m GeV})$	$ed_W(1{ m GeV})$	
d_n	-0.55 ± 0.28	-1.1 ± 0.55	xxx	$\pm (50 \pm 40)$ MeV	hep-ph/0504231
d_p	1.30 ± 0.65	0.60 ± 0.30	xxx	$\mp (50 \pm 40)$ MeV	and refs therein

QCD Sum Rules (50%)

QCD Sum Rules + NDA (~100%)

For LQCD prospects, see T. Bhattacharya's talk

πNN couplings

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1}$$
, $\bar{g}_1 = (20^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}^{-1}$

QCD Sum Rules: Pospelov-Ritz hep-ph/0504231 and refs therein

• Deuteron

$$d_D = (0.94 \pm 0.01)(d_n + d_p) + [(0.18 \pm 0.02) \bar{g}_1] e \,\mathrm{fm} ,$$

Basiou et al. 1411.5804 de Vries et al, 1109.3604

• Diamagnetic atoms

 $d_A = \mathcal{A}_A S_A$ $S_A = (a_0 \bar{g}_0 + a_1 \bar{g}_1) e \operatorname{fm}^3 + (\alpha_n d_n + \alpha_p d_p) \operatorname{fm}^2$ $\alpha_n = 1.9 \pm 0.1 \qquad \alpha_p = 0.20 \pm 0.06 \qquad \text{Dimitriev and Sen'kov 2003}$

	Atomic screening	Best values of $a_{0,1}$		Estimated ranges of $a_{0,1}$		
	${\cal A}({ m fm}^{-2})$	a_0 a_1		<i>a</i> 0	a_1	
$^{129}\mathrm{Xe}$	$(0.33 \pm 0.05) \cdot 10^{-4}$	-0.10	-0.076	$\{-0.063, -0.63\}$	$\{-0.038, -0.63\}$	
$^{199}\mathrm{Hg}$	$-(2.8\pm0.6)\cdot10^{-4}$	0.13	± 0.25	$\{0.063, 0.63\}$	$\{-0.38, 1.14\}$	
225 Ra	$-(7.7\pm0.8)\cdot10^{-4}$	-19	76	$\{-12.6, -76\}$	$\{51, 303\}$	

Engel et al 1303.2371

πNN couplings

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1} , \qquad \bar{g}_1 = (20^{+40}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}^{-1}$$
QCD Sum Rules:
Pospelov-Ritz
hep-ph/0504231

• Deuteron

 $lpha_n = 1.9 \pm 0.1$ $lpha_p = 0.20 \pm 0.06$ Dimitriev and Sen'kov 2003

	Atomic screening	Best values of $a_{0,1}$ a_0 a_1		Estimated ranges of $a_{0,1}$		
	${\cal A}({ m fm}^{-2})$			<i>a</i> 0	a_1	
$^{129}\mathrm{Xe}$	$(0.33\pm0.05)\cdot10^{-4}$	-0.10	-0.076	$\{-0.063, -0.63\}$	$\{-0.038, -0.63\}$	
$^{199}\mathrm{Hg}$	$-(2.8\pm0.6)\cdot10^{-4}$	0.13	± 0.25	$\{0.063, 0.63\}$	$\{-0.38, 1.14\}$	
225 Ra	$-(7.7\pm0.8)\cdot10^{-4}$	-19	76	$\{-12.6, -76\}$	$\{51, 303\}$	

Engel et al 1303.2371

and refs therein

Matrix Elements: strategy

- To study impact these uncertainties, we obtain bounds on nonstandard couplings with different treatments of theoretical input
 - I. Central: use central value matrix elements
 - 2. RFit ("Range-Fit"): vary matrix elements in their allowed theoretical ranges; minimize chi-squared (= pick weakest bound)

Matrix Elements: strategy

- To study impact these uncertainties, we obtain bounds on nonstandard couplings with different treatments of theoretical input
 - I. Central: use central value matrix elements
 - 2. RFit ("Range-Fit"): vary matrix elements in their allowed theoretical ranges; minimize chi-squared (= pick weakest bound)
 - 3. RFit+: RFit with improved uncertainties in matrix elements

$$\begin{array}{c|c} d_{n,p}[\tilde{d}_{u,d}] & d_{n,p}[d_s] & d_{n,p}[d_W] & \bar{g}_{0,1}[\tilde{d}_{u,d}] & S_{\mathrm{Hg}}[\bar{g}_{0,1}] \\ \\ \mathbf{25\%} & \mathbf{50\%} \end{array}$$

Concrete (albeit challenging) target for Lattice QCD and nuclear structure calculations

$$\mathcal{L}_{6}^{CPV} \supset -v\theta' \frac{\alpha_s}{8\pi} h G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

LHC: Higgs production via gluon fusion

$$\mu_{ggF} = \frac{\sigma_{ggF}^{SM} + \sigma_{ggF}^{\theta'}}{\sigma_{ggF}^{SM}} = 1 + (2.28 \pm 0.01) (v^2 \theta')^2$$

Cross-section known to N2LO: 10% error largely cancels in the ratio

$$\mathcal{L}_{6}^{CPV} \supset -v\theta' \frac{\alpha_{s}}{8\pi} h G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu}$$

LHC: Higgs production via gluon fusion

$$\mu_{ggF} = \frac{\sigma_{ggF}^{SM} + \sigma_{ggF}^{\theta'}}{\sigma_{ggF}^{SM}} = 1 + (2.28 \pm 0.01) (v^2 \theta')^2$$

Cross-section known to N2LO: 10% error largely cancels in the ratio

Low Energy: quark (C)EDM + Weinberg

$$\mathcal{L}_{6}^{CPV} \supset -v\theta' \frac{\alpha_{s}}{8\pi} h G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu}$$

LHC: Higgs production via gluon fusion

Low Energy: quark (C)EDM + Weinberg

	$v^2 \theta'$	d_n	d_{Hg}	$d_n, d_{Hg} $	LHC (CMS)
rentants	Central	0.06	0.04	0.04	0.27
Currine.	RFit	0.23	Х	0.23	0.27
etx	RFit+			0.05	0.27

Bounds on couplings at the scale $\mu = M_{BSM} = ITeV$

$$\mathcal{L}_{6}^{CPV} \supset -v\theta' \frac{\alpha_s}{8\pi} h G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

- General features (that apply to all operators):
 - I. RFit: ¹⁹⁹Hg bounds disappears, n bound much weaker \Rightarrow EDM and LHC bounds much closer
 - 2. RFit+: bounds comparable to "central" (no cancellations). Exploit the full constraining power of experiments

	$v^2 \theta'$	d_n	d_{Hg}	$d_n, d_{Hg} $	LHC (CMS)
rent nts	Central	0.06	0.04	0.04	0.27
Currerime	RFit	0.23	Х	0.23	0.27
et×	$\mathbf{RFit}+$			0.05	0.27

Bounds on couplings at the scale $\mu = M_{BSM} = ITeV$

$$\mathcal{L}_{6}^{CPV} \supset -v\theta' \frac{\alpha_{s}}{8\pi} h G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Impact of improved theory, improved experiments, and both

	$v^2 \theta'$
Current	0.23
Current+Th.	0.052
$d_n + d_{ m ThO}$	$8.0 \cdot 10^{-4}$
$d_n + d_{\rm ThO} + {\rm Th}.$	$3.3 \cdot 10^{-4}$
$d_{ m Xe} + d_{ m Ra}$	0.14
$d_{\rm Xe} + d_{\rm Ra} + { m Th}.$	0.011
$d_p + d_D$	$3.1 \cdot 10^{-5}$
$d_p + d_D + \text{Th.}$	$2.2 \cdot 10^{-5}$
LHC Run I	0.27

0.20

LHC Run 2

	Current	Projected
d_e	$8.7\cdot 10^{-29}$	$5.0\cdot10^{-30}$
d_n	$2.9\cdot 10^{-26}$	$1.0\cdot 10^{-28}$
$d_{p,D}$	x	$1.0\cdot 10^{-29}$
$d_{ m Hg}$	$2.6\cdot 10^{-29}$	$1.0\cdot 10^{-29}$
$d_{ m Xe}$	$5.5\cdot 10^{-27}$	$5.0\cdot 10^{-29}$
$d_{ m Ra}$	$4.2\cdot 10^{-22}$	$1.0\cdot 10^{-27}$

(e cm)

$$\mathcal{L}_6^{CPV} \supset -v\theta' \frac{\alpha_s}{8\pi} h G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Impact of improved theory, improved experiments, and both

	$v^2 \theta'$
Current	0.23
Current+Th.	0.052
$d_n + d_{ m ThO}$	$8.0\cdot 10^{-4}$
$d_n + d_{\rm ThO} + { m Th}.$	$3.3 \cdot 10^{-4}$
$d_{ m Xe} + d_{ m Ra}$	0.14
$d_{\rm Xe} + d_{\rm Ra} + { m Th}.$	0.011
$d_p + d_D$	$3.1 \cdot 10^{-5}$
$d_p + d_D + \text{Th.}$	$2.2 \cdot 10^{-5}$
LHC Run I	0.27
LHC Run 2	0.20

- Improved EDM matrix elements can have bigger impact than additional measurements
- Improved EDM matrix elements: enough to beat LHC Run I & 2
- LHC Run 2 sensitivity not great: ratio $\sigma_{\theta'}/\sigma_{SM} \sim \text{constant with } \sqrt{s}$

Signatures of other operators

• \tilde{d}_q for $q \neq t$:

- LHC constraints from pp \rightarrow h at the level of vd_q ~4-20%
- EDM (d_n) bounds stronger by 4-6 orders of magnitude!

Pseudoscalar Yukawas q≠t

LHC: Higgs production

Low Energy: quark (C)EDM, Weinberg, and d_e

Top pseudoscalar Yukawa and CEDM

Low Energy: quark (C)EDM, Weinberg, and de

Summary table I

	_							
	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \operatorname{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 {\rm Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Current EDMs	$2.8 \cdot 10^{-6}$	$1.5 \cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8 \cdot 10^{-3}$	0.041	0.23	$4.1 \cdot 10^{-2}$
LHC Run 1	$0.6 \cdot 10^{-2}$	$0.7 \cdot 10^{-2}$	$2.0 \cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$15 \cdot 10^{-2}$	$3.8 \cdot 10^{-2}$	0.27	$5.2 \cdot 10^{-2}$

- Complementarity of EDMs and LHC:
 - Currently, best bounds on Higgs couplings come from combination of EDMs and LHC
 - For Y'_{b,t} ThO (electron) provides strongest EDM constraint

Summary table I

	_							
	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \mathrm{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 {\rm Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Current EDMs	$2.8 \cdot 10^{-6}$	$1.5 \cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8 \cdot 10^{-3}$	0.041	0.23	$4.1 \cdot 10^{-2}$
LHC Run 1	$0.6 \cdot 10^{-2}$	$0.7 \cdot 10^{-2}$	$2.0\cdot 10^{-2}$	$1.5 \cdot 10^{-2}$	$15 \cdot 10^{-2}$	$3.8 \cdot 10^{-2}$	0.27	$5.2 \cdot 10^{-2}$

• Bounds correspond to effective scales varying from 1 to 200 TeV

	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \operatorname{Im} Y'_s$	$v^2 \mathrm{Im} Y_t'$	$v^2 \operatorname{Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Λ (TeV)	145	200	3.1	2	2.8	1.2	0.5	1.2

• Pseudoscalar Yukawas in units of SM Yukawa m_q/v :

$\mathcal{L} =$	$\underline{m_{q}}$	$\tilde{\kappa}_{a}$	$\bar{q}i\gamma_5 q$	h
	v	4	1 /01	

$ ilde{\kappa}_u$	$ ilde{\kappa}_d$	$ ilde{\kappa}_s$	$ ilde{\kappa}_c$	$ ilde{\kappa}_b$	$ ilde{\kappa}_t$
0.45	0.11	58	2.3	3.6	0.01

Examples of complementarity

Two-coupling analysis: Y'_b - Y'_s

LHC (or improved theory) removes unconstrained direction

Examples of complementarity

Two-coupling analysis: Y'_b - Y'_t

LHC (or improved theory) removes unconstrained direction

Summary table 2

• Improved theory, improved experiments, and both

	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \operatorname{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 \operatorname{Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Current EDMs	$2.8 \cdot 10^{-6}$	$1.5\cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8\cdot10^{-3}$	0.041	0.23	$4.1 \cdot 10^{-2}$
Current+Th.	$1.9\cdot 10^{-6}$	$9.7\cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot 10^{-4}$	$7.8\cdot10^{-3}$	0.011	0.052	$1.5\cdot 10^{-3}$
$d_n + d_{ m ThO}$	$9.5 \cdot 10^{-9}$	$5.1 \cdot 10^{-9}$	$2.3\cdot10^{-5}$	0.024	$2.4\cdot 10^{-4}$	$2.4 \cdot 10^{-3}$	$8.0 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$
$d_n + d_{\text{ThO}} + \text{Th.}$	$7.0 \cdot 10^{-9}$	$3.6\cdot10^{-9}$	$8.4\cdot 10^{-6}$	$3.5\cdot10^{-6}$	$1.7\cdot 10^{-4}$	$8.9\cdot10^{-5}$	$3.3\cdot10^{-4}$	$9.5\cdot10^{-6}$
$d_{\rm Xe} + d_{\rm Ra}$	$1.3\cdot 10^{-6}$	$3.4\cdot10^{-7}$	$6.3\cdot10^{-3}$	0.41	$7.8\cdot10^{-3}$	0.040	0.14	$2.3\cdot10^{-2}$
$d_{Xe} + d_{Ra} + Th.$	$1.6 \cdot 10^{-7}$	$9.4\cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot10^{-4}$	$6.1\cdot 10^{-3}$	$8.1 \cdot 10^{-3}$	0.011	$1.5\cdot10^{-3}$
$d_p + d_D$	$1.9 \cdot 10^{-10}$	$2.1 \cdot 10^{-10}$	$2.2\cdot 10^{-6}$	0.13	$2.3\cdot 10^{-5}$	0.014	$3.1 \cdot 10^{-5}$	$7.7 \cdot 10^{-6}$
$d_p + d_D + \text{Th.}$	$1.5 \cdot 10^{-10}$	$1.8 \cdot 10^{-10}$	$8.4\cdot 10^{-7}$	$1.7\cdot 10^{-7}$	$1.8\cdot 10^{-5}$	$8.2\cdot 10^{-6}$	$2.2\cdot 10^{-5}$	$9.0\cdot10^{-7}$
LHC Run 1	$0.6 \cdot 10^{-2}$	$0.7\cdot 10^{-2}$	$2.0\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$15\cdot 10^{-2}$	$3.8\cdot10^{-2}$	0.27	$5.2 \cdot 10^{-2}$
LHC Run 2	$0.7\cdot10^{-2}$	$0.8\cdot10^{-2}$	$2.0\cdot 10^{-2}$	$1.6\cdot 10^{-2}$	$12\cdot 10^{-2}$	$3.6\cdot10^{-2}$	0.21	$4.0\cdot10^{-2}$

Summary table 2

• Improved theory, improved experiments, and both

	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \operatorname{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 \operatorname{Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Current EDMs	$2.8 \cdot 10^{-6}$	$1.5\cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8 \cdot 10^{-3}$	0.041	0.23	$4.1 \cdot 10^{-2}$
Current+Th.	$1.9\cdot 10^{-6}$	$9.7\cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot 10^{-4}$	$7.8\cdot10^{-3}$	0.011	0.052	$1.5\cdot 10^{-3}$
$d_n + d_{ m ThO}$	$9.5 \cdot 10^{-9}$	$5.1 \cdot 10^{-9}$	$2.3\cdot10^{-5}$	0.024	$2.4\cdot 10^{-4}$	$2.4\cdot 10^{-3}$	$8.0 \cdot 10^{-4}$	$1.8\cdot10^{-4}$
$d_n + d_{\text{ThO}} + \text{Th.}$	$7.0 \cdot 10^{-9}$	$3.6\cdot10^{-9}$	$8.4\cdot10^{-6}$	$3.5\cdot10^{-6}$	$1.7\cdot 10^{-4}$	$8.9\cdot10^{-5}$	$3.3\cdot10^{-4}$	$9.5\cdot10^{-6}$
$d_{ m Xe} + d_{ m Ra}$	$1.3\cdot 10^{-6}$	$3.4\cdot10^{-7}$	$6.3 \cdot 10^{-3}$	0.41	$7.8\cdot10^{-3}$	0.040	0.14	$2.3\cdot10^{-2}$
$d_{\rm Xe} + d_{\rm Ra} + {\rm Th}.$	$1.6 \cdot 10^{-7}$	$9.4 \cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot 10^{-4}$	$6.1\cdot 10^{-3}$	$8.1 \cdot 10^{-3}$	0.011	$1.5\cdot 10^{-3}$
$d_p + d_D$	$1.9 \cdot 10^{-10}$	$2.1 \cdot 10^{-10}$	$2.2\cdot 10^{-6}$	0.13	$2.3\cdot10^{-5}$	0.014	$3.1 \cdot 10^{-5}$	$7.7 \cdot 10^{-6}$
$d_p + d_D + \text{Th.}$	$1.5 \cdot 10^{-10}$	$1.8 \cdot 10^{-10}$	$8.4 \cdot 10^{-7}$	$1.7 \cdot 10^{-7}$	$1.8 \cdot 10^{-5}$	$8.2\cdot 10^{-6}$	$2.2 \cdot 10^{-5}$	$9.0 \cdot 10^{-7}$
LHC Run 1	$0.6 \cdot 10^{-2}$	$0.7\cdot 10^{-2}$	$2.0\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$15\cdot 10^{-2}$	$3.8\cdot10^{-2}$	0.27	$5.2\cdot10^{-2}$
LHC Run 2	$0.7\cdot 10^{-2}$	$0.8\cdot 10^{-2}$	$2.0\cdot 10^{-2}$	$1.6\cdot 10^{-2}$	$12\cdot 10^{-2}$	$3.6\cdot10^{-2}$	0.21	$4.0\cdot10^{-2}$

- Impact of improved experiments:
 - Constraints from EDMs scale linearly with EDM sensitivity
 - LHC Run 2 unimpressive sensitivity: σ_{BSM}/σ_{SM} does not grow with \sqrt{s} (except for $\tilde{d_t}$)

Summary table 2

• Improved theory, improved experiments, and both

	$v^2 \operatorname{Im} Y'_u$	$v^2 \operatorname{Im} Y'_d$	$v^2 \operatorname{Im} Y_c'$	$v^2 \operatorname{Im} Y'_s$	$v^2 \operatorname{Im} Y'_t$	$v^2 \operatorname{Im} Y_b'$	$v^2 \theta'$	$v^2 \tilde{d}_t / m_t$
Current EDMs	$2.8\cdot 10^{-6}$	$1.5\cdot 10^{-6}$	$6.3 \cdot 10^{-3}$	0.42	$7.8\cdot10^{-3}$	0.041	0.23	$4.1\cdot10^{-2}$
Current+Th.	$1.9\cdot 10^{-6}$	$9.7\cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot 10^{-4}$	$7.8\cdot 10^{-3}$	0.011	0.052	$1.5\cdot 10^{-3}$
$d_n + d_{ m ThO}$	$9.5 \cdot 10^{-9}$	$5.1 \cdot 10^{-9}$	$2.3\cdot10^{-5}$	0.024	$2.4\cdot 10^{-4}$	$2.4\cdot 10^{-3}$	$8.0 \cdot 10^{-4}$	$1.8 \cdot 10^{-4}$
$d_n + d_{\text{ThO}} + \text{Th.}$	$7.0 \cdot 10^{-9}$	$3.6 \cdot 10^{-9}$	$8.4\cdot10^{-6}$	$3.5\cdot10^{-6}$	$1.7\cdot 10^{-4}$	$8.9\cdot10^{-5}$	$3.3\cdot10^{-4}$	$9.5\cdot10^{-6}$
$d_{\mathrm{Xe}} + d_{\mathrm{Ra}}$	$1.3\cdot 10^{-6}$	$3.4\cdot10^{-7}$	$6.3\cdot10^{-3}$	0.41	$7.8\cdot10^{-3}$	0.040	0.14	$2.3\cdot10^{-2}$
$d_{\rm Xe} + d_{\rm Ra} + { m Th}.$	$1.6 \cdot 10^{-7}$	$9.4 \cdot 10^{-7}$	$2.2\cdot 10^{-3}$	$8.7\cdot10^{-4}$	$6.1\cdot 10^{-3}$	$8.1 \cdot 10^{-3}$	0.011	$1.5\cdot 10^{-3}$
$d_p + d_D$	$1.9 \cdot 10^{-10}$	$2.1 \cdot 10^{-10}$	$2.2\cdot 10^{-6}$	0.13	$2.3\cdot10^{-5}$	0.014	$3.1\cdot10^{-5}$	$7.7 \cdot 10^{-6}$
$d_p + d_D + \text{Th.}$	$1.5\cdot 10^{-10}$	$1.8\cdot10^{-10}$	$8.4\cdot 10^{-7}$	$1.7\cdot 10^{-7}$	$1.8\cdot 10^{-5}$	$8.2\cdot 10^{-6}$	$2.2\cdot 10^{-5}$	$9.0\cdot 10^{-7}$
LHC Run 1	$0.6 \cdot 10^{-2}$	$0.7\cdot10^{-2}$	$2.0\cdot 10^{-2}$	$1.5\cdot 10^{-2}$	$15\cdot 10^{-2}$	$3.8\cdot10^{-2}$	0.27	$5.2\cdot 10^{-2}$
LHC Run 2	$0.7\cdot10^{-2}$	$0.8\cdot10^{-2}$	$2.0\cdot10^{-2}$	$1.6\cdot 10^{-2}$	$12 \cdot 10^{-2}$	$3.6\cdot10^{-2}$	0.21	$4.0 \cdot 10^{-2}$

- Impact of improved EDM matrix elements:
 - Can strengthen bounds more than new EDM measurements
 - Put current EDM bounds beyond reach of LHC Run 2 crosssection sensitivity

Conclusions

- EFT is very useful tool to study high-scale BSM physics
- Worked example: bounds on CPV Higgs-quark and Higgs-gluon couplings, through EDMs and Higgs production at the LHC
- Uncertainty in matrix elements strongly affects EDM constraints.
 Quantified improvements needed to exploit EDM searches

$$\begin{array}{c} d_{n,p}[\tilde{d}_{u,d}] \\ d_{n,p}[d_s] \\ d_{n,p}[d_w] \\ \hline{g}_{0,1}[\tilde{d}_{u,d}] \\ \hline{g}_{0,1}[\tilde{d}_{u,d}] \\ S_{\mathrm{Hg}}[\bar{g}_{0,1}] \\ Nuclear \ Structure \end{array}$$

- Current best bounds come from combination of LHC and EDMs
- Future: EDMs will have major impact on pinning down Higgs couplings

Outlook

Anticipating discoveries at LHC Run 2 and next generation EDMs, prepare for their interpretation:

- Study collider observables with linear sensitivity to CPV couplings
- Extend analysis to Higgs operators that involve EW gauge bosons
- Linear vs non-linear EFT realization: testable differences?

Backup slides

Dependence on θ -term

- Recent progress in Lattice QCD calculations
 - Nucleon EDMs

$$d_{n,p}\left[\bar{\theta}; d_{u,d,s}; \tilde{d}_{u,d,s}; c_w; c_{4q}\right]$$

• Pion-nucleon CP-odd couplings

$$\bar{g}_{0,1}$$
 $[\bar{\theta}; \tilde{d}_{u,d,s}; c_w; c_{4q}]$

RECENT PROGRESS

$$\frac{d_n}{\bar{\theta}} = -3.8(2)_{\text{stat}}(9)_{\text{fit}} \ 10^{-3} e \text{ fm}$$
Guo et al., 1502.02295

$$\frac{d_n}{\bar{\theta}} = -2.7(1.2) \ 10^{-3} \ e \text{ fm}$$
Akan et al., 1406.2882
Fit to Shintani et al, POS (Lat 2013) 298

$$\frac{\bar{g}_0}{F_\pi} = (15 \pm 2) \cdot 10^{-3} \sin \bar{\theta}$$

Mereghetti, van Kolck 1505.06272 with input from A.Walker-Loud, '14; Borsanyi et al, '14.

Top CPV couplings

