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Motivation

e Higgs discovery at the LHC confirms the Standard Model as an excellent low-energy
approximation to the electroweak interactions. Higgs couplings currently SM-like to

O(10%).

e One still needs to ascertain the nature of the Higgs particle and have a framework for new
physics (hopefully appearing at the TeV scale). Both issues actually related.

e Assuming the existence of a mass gap, the most general model-independent way of
parametrizing effects through EFT at the EW scale. Preferably, the framework should be
general enough to test the Higgs hypothesis.

e Experimental side: LHC (Run Il) will probe Higgs couplings through multi-Higgs
production processes. However, prospects not as optimistic as initially believed.

e Does flavor physics have a saying in all this?



EF Ts at the EW scale: the standard case

Examples:

The Higgs is in a weak doublet.

Expansion in canonical dimensions:

The theory is renormalizable and new physics is decoupled.
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EFTs at the EW scale: the generic case

e Higgs not necessarily a doublet: h as singlet, EW Goldstones inside U.
e The theory is nonrenormalizable and new operators required to absorb divergences.

e Expansion in loops, or analogously in chiral dimensions

1

[au]x =1, [QD]X — [h]x =0, [XW]X =1, [wL,R]X — 9’

e Leading order Lagrangian:
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EFT for generic EWSB

MAIN ASSUMPTIONS:

e Strongly-coupled dynamics at the scale f < Ay, triggering EWSB
. Natural strong cutoff of the theory: (dynamically generated)
Ag ~4nf ~ (5—10) TeV. Weak cutoffs Ay, can exist but higher up.

e Minimal EWSB pattern: SU(2); x SU(2)g — SU(2)y with SU(2), x U(1)y gauged.
Most general with the minimal particle content (3 Goldstone bosons to account for the
longitudinal modes of the W and Z). Collected in a nonlinear realization inside

U(x) — gLU(x)gE.
e Soft custodial symmetry breaking: T-parameter contribution at NLO.
e Gauge bosons weakly coupled to the strong sector.

e Light scalar h as a SM singlet (pGB of a more general symmetry group)
. It can always be tuned to the SM Higgs but comprises more general scenarios.



Scales of the problem

e Multiscale problem: v, f, A = 4xf. Dynamics is described with the dimensionless
parameters

s ) f? 1

o f2 A2 16%2

e Strong sector can be decoupled, e.g. vacuum misalignment mechanism [Georgi et a'84]. SM
recovered as a limiting case.
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EFT for generic EWSB

MULTISCALE EXPANSION:

#2 22 22
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e Strongly-coupled regime: f ~ v << Ay,. Loop expansion with L0 # Lsus.
e Strong-dominated dynamics: v < f << Ay,. Hybrid expansion in (¢, £).

e Weak-dominated dynamics: Ay, < f. Effectively a dimensional expansion.

e Pure Standard Model: f, Ay — oo.

At present, experimental bound at £ ~ 107! vs £ ~ 1072. Strong-dominated dynamics is the
setting to explore given the current precision.
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Playing with the & knob

Transition between nondecoupling (composite) and decoupling (fundamental) interactions.

AN=Anf
AN=Adrnf
f
v=f v
02
e The transition can be gauged with the decoupling parameter £ = F:
1 pv 1 pv ; £ 1 1%
Liv-2) = =5 (WuwW") = 7B B +zzj:szpfj + 5 0uhd"h
v -
+ 7 ADLUDMUY) fu(h,€) = 0| fu(h, QU P +hee.| =V (h,)

o ¢ | Strongly-coupled regime
o [ < ¢ < 1: Strong-dominated dynamics (hybrid expansion in (¢,&)).



Some reflections on power-counting

e Decoupling EFTs: dimensional counting (1/A? expansion).

e Non-decoupling EFTs: loop counting (f?/A? ~ 1/(167*) expansion). £ is only a
decoupling parameter.

e |In some simplified cases strongly-coupled EFTs can be cast as a dimensional expansion,
e.g. pure ChPT (expansion in derivatives).

e When weakly and strongly-coupled sectors mix (as is the case here), the picture gets
complicated. Basic requirements of a power-counting: Homogeneity of the LO Lagrangian.
NLO renormalizes the nondecoupling divergences.
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Nonlinear EFT at NLO

Operator building at every order: assemble building blocks (U, v, X and derivatives) in
accordance with the power-counting formula.

e NLO: 6 classes, which correspond to corrections to the vertices

R

with an arbitrary number of Higgs insertions.

e Of relevance in processes that are subleading (loop-suppressed) in the SM, e.g., h — 77,
h— gg, h — Z~.



Loop vs dimensional expansion
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Loop vs dimensional expansion
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e ;o amounts to a resummation of the £ expansion.



Loop vs dimensional expansion

Jq &7
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o is recovered from Lo when & — 0.



Loop vs dimensional expansion

e Beyond LO in the double expansion: L;o(£?) is in general more important than Lyr0(&).

2 g 2 f2 2 2
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Example: SO(5)/S0(4) model
e G=50(5) xU(1)x broken to H; = SO(4) x U(1)x
e Isomorphism: H; ~ SU(2)r x SU(2)g x U(1)x D Gsum

e 4 real pGB h* transforming under the fundamental of SO(4):

(R = exp(V2it WA/ )%y, To = ( 014 )
e Equivalently, bidoublet of SU(2) (H, H¢). Defining

h
U,

H=hs s =hU,  X=(i6, 1) = ha=(

one can express X (h, U):

UM,
Z(h,U): ( < 9 >smh/f)
cosh/f



Example: SO(5)/S0(4) model
e (Bosonic) leading order term:
/ 2( D, St DIy = —a hoh + JZ (D, U D U Sin2%

—a hoth + — 7 (D UtD*U) fir(h)

. o (1)

v=fsin<%> —> £ =sin 7

(ii) In this particular model
A oh J1—-€ . 2h 1 h
fu(h,&) = cos — + sin — + — sin® —
B I
>2

oo

e Upon breaking, h = (h) + h
(i) v dynamically generated. Matching to the gauge boson masses

(iii) Linear and quadratic interactions:

1+2F<

< | S
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Small & limit

e In explicit models, & can be tracked down explicitly. In the EFT, the (resummed) &
expansion hidden inside coefficients.
1

1 - 1
5 (W, WHY — ZB,,,B* + i Z fiDf; + iaﬂhﬁ“h

ﬁ(XZQ) - = 4

J
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+ 2 ADUDT fulh) = o[ fu (MU P+ he] = V(D)

with

fU(h):1+Za§f (g)” f¢(h):Y¢+Zyéj> (g)ﬂ V(h) =) af (%y

Jj=>2

e Knowing that the ¢ expansion acts like a dimensional expansion, the operator basis for
O(£) terms has to be the same as the ordinary d = 6 operator basis. The power-counting
is however still a loop expansion.

e |n practice, catalog the list of d = 6 operators and rewrite them in the nonlinear basis using

()

e Higher orders in the £ expansion can be systematically incorporated.




EFT fitting strategy at the LHC

Run-2 prospects:

Ap/p[%](300 fb~1) Ay ww  ZZ TT bb LfL Z

ATLAS 14 (9) 13(8) 12 (6) 22(16) — 39 (38) 147 (145)

CMS 12(6) 11(6) 11(7) 14(8) 14 (11) 42 (40) 62 (62)
Ak /k[%](300 fb~1) 7y WWwW 727 gg TT bb tt (L Z~
ATLAS 13(8) 8(7) 8(7) 11(9) 18(13) w,  22(20) 23(21) 79 (78)
CMS 7(5) 6(4) 6(4) 8(6) 8(6) 13(10) 15(14) 23 (23) 41 (41)

Precision goal between 5 — 10%.



EFT fitting strategies at the LHC

STRATEGY 1: Assume

e The Standard Model is the leading-order description at low energies.
e The theory is renormalizable and so new physics is decoupled.

e The Higgs is a fundamental scalar in a SU(2) doublet.

Then deviations come from the 1/A? suppressed d = 6 operators.

STRATEGY 2: Assume

e Basically nothing about the Higgs.

Experiment is allowing right now deviations in the SM couplings around 10 — 20%. The
biggest effects are still described by the nonlinear EFT at LO. Fit to experimental data with
only 6 parameters:

1 h gs 1/ @2 Vh
L=2cy (m%vwﬂww 542#) i > ey fIh+ g1 25 GG+ e Fu P

f=t.b,T

Jumping to Strategy 1 is premature...
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EWSB meets flavor

e Usual EFTs for flavor physics only incorporate symmetries present at threshold A = mg:

e Matching to the EW EFT(s) will exploit the full SM symmetry. Tree-level matching easily
done by integrating heavy (EW) degrees of freedom.

4

D’ N N’

e Main message: this is relevant for Higgs physics. No Higgs final states but imprint of
EWSB!



Physics of semileptonic decays

e Consider the EFT for D — D’/¢ decays at hadronic scales A < Myy:

oot — AGF A ¢’ i Do
V2 (i 2
where
Oél) - (SO‘M PR(L)b>Fuu;
0y = (7, Primb) 1"l Oio = (57 PLimb) 1775l
O() (SPR L)b) ll OEDI) — (EPR(L)Z)) l_’y5l
Or = (50,,b) lo™1; Ors = (50,,b) lo" sl

e Do the matching to the linear and nonlinear EFTs run down from the EW scale (integrate
out EW fields).



Dipole operators

e Relevant operators from the nonlinear EFT:

Ox12 =g qo"UPyrB,,; Ox34 = gqo""UPyr(7sW,,)
03(1,2 = glfPiUTUWQBm/; O/X3,4 — ngiUTUWQ<7A'3WW>

In the unitary gauge, 1-to-1 correspondence with linear operators.

e Matching relation:

82 2
g A2 {Cgf)? +Cg/<)4}

5CY) =

e \ery insensitive to Higgs (and thus Higgs nature). To be expected: dipole operators are
not counterterms, i.e. they are effectively decoupled from the dynamics triggering EWSB.



Vectorial sector

e Relevant operators fall into two categories: those entering nonlocal diagrams

Ovi = =" q(73L,); Ova = =" 73q(73L,)

Ovs = —uy"u(i3L,); Ovy = —dy*d{73L,,)
and local ones:

Oy = ¢v"q Iyl OLrz = Y77 q Iy, 771

OLrs = qV" ' 13q l_%l; OLps = qa"q l_%ﬁsl

Orrs = gV T3q l_%ﬁ?)l; Orrs = qy" 73l l_%ﬁsq

OLrr = TEY. l_%q

Ogrp1 = Uy"uey,e; Oprpra = dy"d ev,e



Vectorial sector

5Cy = ;ff X—z :OLR +Cur + 4gvﬁ—220m: ;

0Cho = ;7;; X—z :CLR —Cprr — 49A/?>_220VL: :

Cy = ;7;; X—z :CRR + Crr + 4QV§CVR: 7
1o = ;7;; X—z :CRR — CRrL — 49AA_220VR:

with coefficients
Crr =crin+cCrre — Crrs — Crra + Crrs + e — ;. CrrR = CRR2
CLR = CLR1 — CLR5; CRL = CL,R3 — CLRT, CVL = Cy1 — Cy2, CVR = Cy4

e Notation: unhatted operators have linear counterparts in unitary gauge; unhatted ones are
genuinely nonlinear.

e Rather insensitive to the Higgs nature. Genuine nonlinear operators (hatted) present but
do not change the qualitative picture.



Scalar and tensor sector

e Three categories of operators:

Orrs = Y"1 ev,d; Orrs = §y" 73l eVud
ODgq1 = eijq_iul_je; Dgy = eijq_iaw,ul_jawje
@53 = qUP,rlUP_n; @54 = cjau,,UP+rl_0“”UP_n
@y1 = gUP_rlUP_n; @yg = qo,, UP_ rlo" UP_n
Oys = lUP_niP Uy Oy = UP_r7P, U

e The first category can be Fierzed to a scalar-scalar structure.
e The second category does not contribute to D — D’¢¢ (but it does to U — U'¢/).

e The third category has peculiar hypercharge structure, which is exclusive of the nonlinear
case (at NLO).



Scalar and tensor sector

Matching relations:

A% 0? A A% 2 A
Cs = n. A2 cs + Cvi]; Cp = I A2 |—cs + v
A2 0? A% 0?
A / A . ! / N
Cs = 2. A2 Cs + Gyl ; Cp = 2\, A2 [Cs — v
A2 0v? . 47 v? .
Cr = €2 Mo p [CYQ i CYQ] ; Crs = €2\ p [CYQ B CYQ]

with

Cg) = Z(é(ﬁ% — Cgim)

e Strong correlations in the linear case
Cs = —Chp; Cy = Chp; Cr=Crs =0
Not a consequence of SU(2) x U(1)y symmetry, but rather from Higgs nature.

e The nonlinear case erases the correlations in the scalar sector and brings NLO contributions

to the tensor operators. Rather clean signatures of linear vs nonlinear, experimentally
testable at B factories.



Conclusions

e EFTs are the right tool to extract unbiased information from experimental data. Important
to pick the most generic one allowed by current status of experiments.

e At present, strong dynamics still allowed. The most conservative fitting procedure is to
consider Lo # Lgy. Very few parameters, ideal for the LHC (discovery machine).
Justification and systematic extension of the so-called x-formalism.

e Flavor physics may have a saying in determining the nature of the Higgs boson, especially
if multi-Higgs processes turn out to be not so decisive at the LHC, as recently hinted at.
One can still learn about the Higgs without the Higgs, especially in down-quark neutral
semileptonic processes.



