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Motivation

• Higgs discovery at the LHC confirms the Standard Model as an excellent low-energy
approximation to the electroweak interactions. Higgs couplings currently SM-like to
O(10%).

• One still needs to ascertain the nature of the Higgs particle and have a framework for new
physics (hopefully appearing at the TeV scale). Both issues actually related.

• Assuming the existence of a mass gap, the most general model-independent way of
parametrizing effects through EFT at the EW scale. Preferably, the framework should be
general enough to test the Higgs hypothesis.

• Experimental side: LHC (Run II) will probe Higgs couplings through multi-Higgs
production processes. However, prospects not as optimistic as initially believed.

[Barr et al’14;Azatov et al’15]

• Does flavor physics have a saying in all this?



EFTs at the EW scale: the standard case

• The Higgs is in a weak doublet.

• The theory is renormalizable and new physics is decoupled.

• Expansion in canonical dimensions:

L = LSM +
1

Λ2
Ld=6

• Examples: [Buchmueller et al’86;Grzadkowski et al’10]



EFTs at the EW scale: the generic case

• Higgs not necessarily a doublet: h as singlet, EW Goldstones inside U .

• The theory is nonrenormalizable and new operators required to absorb divergences.

• Expansion in loops, or analogously in chiral dimensions [Buchalla, OC, Krause’14]

[∂µ]χ = 1, [ϕ]χ = [h]χ = 0, [Xµν ]χ = 1, [ψL,R]χ =
1

2
, [g]χ = [y]χ = 1

• Leading order Lagrangian: [Contino et al.’10; Buchalla, O.C., Krause’13]

L(χ=2) = −
1

2
⟨WµνW

µν⟩ −
1

4
BµνB

µν + i
∑

j

f̄j D̸fj +
1

2
∂µh∂

µh

+
v2

4
⟨DµUDµU †⟩fU(h)− v

[

ψ̄fψ(h)UP±ψ + h.c.
]

− V (h)

with

fU(h) = 1 +
∑

j

aUj

(

h

v

)j

; fψ(h) = Yψ +
∑

j

Y (j)
ψ

(

h

v

)j

; V (h) =
∑

j≥2

aVj

(

h

v

)j



EFT for generic EWSB

Main assumptions:

• Strongly-coupled dynamics at the scale f < ΛW triggering EWSB [Longhitano’80,81;

Appelquist et al’80,93]. Natural strong cutoff of the theory: (dynamically generated)
ΛS ∼ 4πf ∼ (5− 10) TeV. Weak cutoffs ΛW can exist but higher up.

• Minimal EWSB pattern: SU(2)L × SU(2)R → SU(2)V with SU(2)L × U(1)Y gauged.
Most general with the minimal particle content (3 Goldstone bosons to account for the
longitudinal modes of the W and Z). Collected in a nonlinear realization inside
U(x) → gLU(x)g†R.

• Soft custodial symmetry breaking: T -parameter contribution at NLO.

• Gauge bosons weakly coupled to the strong sector.

• Light scalar h as a SM singlet (pGB of a more general symmetry group) [Ferruglio’93; Contino

et al.’10]. It can always be tuned to the SM Higgs but comprises more general scenarios.



Scales of the problem

Strong

g yf

Xµν Ψ

?

?

?

v v

f

• Multiscale problem: v, f , Λ = 4πf . Dynamics is described with the dimensionless
parameters

ξ =
v2

f2
ℓ =

f2

Λ2
∼

1

16π2

• Strong sector can be decoupled, e.g. vacuum misalignment mechanism [Georgi et al’84]. SM
recovered as a limiting case.



EFT for generic EWSB

Multiscale expansion:

ℓ =
f2

Λ2
; ξ =

v2

f2
; d =

v2

Λ2
W

• Strongly-coupled regime: f ∼ v << ΛW . Loop expansion with LLO ̸= LSM .

• Strong-dominated dynamics: v < f << ΛW . Hybrid expansion in (ℓ, ξ).

• Weak-dominated dynamics: ΛW < f . Effectively a dimensional expansion.

• Pure Standard Model: f,ΛW → ∞.

At present, experimental bound at ξ ∼ 10−1 vs ℓ ∼ 10−2. Strong-dominated dynamics is the
setting to explore given the current precision.
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Playing with the ξ knob

• Transition between nondecoupling (composite) and decoupling (fundamental) interactions.

v = f

Λ = 4πf

Λ = 4πf

f

v

• The transition can be gauged with the decoupling parameter ξ =
v2

f2
:

L(χ=2) = −
1

2
⟨WµνW

µν⟩ −
1

4
BµνB

µν + i
∑

j

f̄j D̸fj +
1

2
∂µh∂

µh

+
v2

4
⟨DµUDµU †⟩fU(h, ξ)− v

[

ψ̄fψ(h, ξ)UP±ψ + h.c.
]

− V (h, ξ)

• ξ → 1: Strongly-coupled regime

• ℓ < ξ < 1: Strong-dominated dynamics (hybrid expansion in (ℓ, ξ)).



Some reflections on power-counting

• Decoupling EFTs: dimensional counting (1/Λ2 expansion).

• Non-decoupling EFTs: loop counting (f2/Λ2 ∼ 1/(16π2) expansion). ξ is only a
decoupling parameter.

• In some simplified cases strongly-coupled EFTs can be cast as a dimensional expansion,
e.g. pure ChPT (expansion in derivatives).

• When weakly and strongly-coupled sectors mix (as is the case here), the picture gets
complicated. Basic requirements of a power-counting: Homogeneity of the LO Lagrangian.
NLO renormalizes the nondecoupling divergences.
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Nonlinear EFT at NLO

Operator building at every order: assemble building blocks (U,ψ, X and derivatives) in
accordance with the power-counting formula.

• NLO: 6 classes, which correspond to corrections to the vertices

with an arbitrary number of Higgs insertions.

• Of relevance in processes that are subleading (loop-suppressed) in the SM, e.g., h → γγ,
h → gg, h → Zγ.



Loop vs dimensional expansion
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• LLO amounts to a resummation of the ξ expansion.



Loop vs dimensional expansion
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• LSM is recovered from LLO when ξ → 0.



Loop vs dimensional expansion
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• Beyond LO in the double expansion: LLO(ξ2) is in general more important than LNLO(ξ).

ξ =
v2

f2
;

ξ

16π2
=

v2

f2

(

f2

Λ2

)

; ξ2 =
v2

f2

(

v2
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Example: SO(5)/SO(4) model

• G = SO(5)× U(1)X broken to H1 = SO(4)× U(1)X

• Isomorphism: H1 ∼ SU(2)L × SU(2)R × U(1)X ⊃ GSM

• 4 real pGB hA transforming under the fundamental of SO(4):

Σ(hA) = exp(
√
2itAhA/f)Σ0, Σ0 =

(

04
1

)

• Equivalently, bidoublet of SU(2) (H,Hc). Defining

H = hAλA ≡ hU, λ⃗ = (iσ⃗, 12) =⇒ hA =
h

2
⟨Uλ†A⟩

one can express Σ(h, U):

Σ(h, U) =

⎛

⎝

⟨Uλ†A⟩
2

sinh/f

cos h/f

⎞

⎠



Example: SO(5)/SO(4) model

• (Bosonic) leading order term:

f2

2
⟨DµΣ

†DµΣ⟩ =
1

2
∂µh∂

µh+
f2

4
⟨DµU

†DµU⟩ sin2 h

f

=
1

2
∂µĥ∂

µĥ+
v2

4
⟨DµU

†DµU⟩fU(ĥ)

• Upon breaking, h = ⟨h⟩+ ĥ:

(i) v dynamically generated. Matching to the gauge boson masses:

v = f sin
⟨h⟩
f

=⇒ ξ = sin2
⟨h⟩
f

(ii) In this particular model

fU(ĥ, ξ) = cos
2ĥ

f
+

√

1− ξ2

ξ
sin

2ĥ

f
+

1

ξ2
sin2 ĥ

f

(iii) Linear and quadratic interactions:

fU(ĥ, ξ) = 1 + 2
√

1− ξ

(

ĥ

v

)

+ (1− 2ξ)

(

ĥ

v

)2



Small ξ limit

• In explicit models, ξ can be tracked down explicitly. In the EFT, the (resummed) ξ
expansion hidden inside coefficients.

L(χ=2) = −
1

2
⟨WµνW

µν⟩ −
1

4
BµνB

µν + i
∑

j

f̄j D̸fj +
1

2
∂µh∂

µh

+
v2

4
⟨DµUDµU †⟩fU(h)− v

[

ψ̄fψ(h)UP±ψ + h.c.
]

− V (h)

with

fU(h) = 1 +
∑

j

aUj

(

h

v

)j

; fψ(h) = Yψ +
∑

j

Y (j)
ψ

(

h

v

)j

; V (h) =
∑

j≥2

aVj

(

h

v

)j

• Knowing that the ξ expansion acts like a dimensional expansion, the operator basis for
O(ξ) terms has to be the same as the ordinary d = 6 operator basis. The power-counting
is however still a loop expansion.

• In practice, catalog the list of d = 6 operators and rewrite them in the nonlinear basis using

φ =
v + h√

2
U

(

0
1

)

• Higher orders in the ξ expansion can be systematically incorporated.



EFT fitting strategy at the LHC

Run-2 prospects: [Numbers borrowed from H. Kroha at Aspen 2014]

∆µ/µ[%](300 fb−1) γγ WW ZZ ττ bb µµ Zγ

ATLAS 14 (9) 13 (8) 12 (6) 22 (16) — 39 (38) 147 (145)

CMS 12 (6) 11 (6) 11 (7) 14 (8) 14 (11) 42 (40) 62 (62)

∆κ/κ[%](300 fb−1) γγ WW ZZ gg ττ bb tt µµ Zγ

ATLAS 13 (8) 8 (7) 8 (7) 11 (9) 18 (13) κτ 22 (20) 23 (21) 79 (78)

CMS 7 (5) 6 (4) 6 (4) 8 (6) 8 (6) 13 (10) 15 (14) 23 (23) 41 (41)

Precision goal between 5− 10%.



EFT fitting strategies at the LHC

Strategy 1: Assume

• The Standard Model is the leading-order description at low energies.

• The theory is renormalizable and so new physics is decoupled.

• The Higgs is a fundamental scalar in a SU(2) doublet.

Then deviations come from the 1/Λ2 suppressed d = 6 operators.

Strategy 2: Assume [Buchalla,O.C.,Celis,Krause’15]

• Basically nothing about the Higgs.

Experiment is allowing right now deviations in the SM couplings around 10− 20%. The
biggest effects are still described by the nonlinear EFT at LO. Fit to experimental data with
only 6 parameters:

L = 2cV

(

m2
WWµW

µ +
1

2
ZµZ

µ

)

h

v
−
∑

f=t,b,τ

cfyf f̄fh+ cgg
g2s

16π2
GµνG

µν h

v
+ cγγ

e2

16π2
FµνF

µν h

v

Jumping to Strategy 1 is premature...





EWSB meets flavor

• Usual EFTs for flavor physics only incorporate symmetries present at threshold Λ = mQ:
SU(3)C and U(1)EM .

• Matching to the EW EFT(s) will exploit the full SM symmetry. Tree-level matching easily
done by integrating heavy (EW) degrees of freedom. [Alonso et al’14]

D

D′

ℓ

ℓ Z

D

D′

ℓ

ℓ

D

D′

ℓ

ℓ

−→

• Main message: this is relevant for Higgs physics. No Higgs final states but imprint of
EWSB! [O.C., Jung’15]



Physics of semileptonic decays

• Consider the EFT for D → D′ℓℓ decays at hadronic scales Λ ≪ MW :

Lb→sℓℓ
eff =

4GF√
2
λts

e2

(4π)2

12
∑

i

C(d)
i O(d)

i

where

O(′)
7 =

mb

e
(s̄σµνPR(L)b)Fµν ;

O(′)
9 = (s̄γµPL(R)b) l̄γ

µl; O(′)
10 = (s̄γµPL(R)b) l̄γ

µγ5l

O(′)
S = (s̄PR(L)b) l̄l; O(′)

P = (s̄PR(L)b) l̄γ5l

OT = (s̄σµνb) l̄σ
µν l; OT5 = (s̄σµνb) l̄σ

µνγ5l

• Do the matching to the linear and nonlinear EFTs run down from the EW scale (integrate
out EW fields).



Dipole operators

• Relevant operators from the nonlinear EFT:

OX1,2 = g′q̄σµνUP±rBµν ; OX3,4 = gq̄σµνUP±r⟨τ̂3Wµν⟩
O′

X1,2 = g′r̄P±U
†σµνqBµν ; O′

X3,4 = gr̄P±U
†σµνq⟨τ̂3Wµν⟩

In the unitary gauge, 1-to-1 correspondence with linear operators.

• Matching relation:

δC(′)
7 =

8π2

mbλts

v2

Λ2

[

c(′)X2 + c(′)X4

]

• Very insensitive to Higgs (and thus Higgs nature). To be expected: dipole operators are
not counterterms, i.e. they are effectively decoupled from the dynamics triggering EWSB.



Vectorial sector

• Relevant operators fall into two categories: those entering nonlocal diagrams

OV 1 = −q̄γµq⟨τ̂3Lµ⟩; OV 2 = −q̄γµτ̂3q⟨τ̂3Lµ⟩
OV 3 = −ūγµu⟨τ̂3Lµ⟩; OV 4 = −d̄γµd⟨τ̂3Lµ⟩

and local ones:

OLL1 = q̄γµq l̄γµl; OLL2 = q̄γµτ jq l̄γµτ
jl

ÔLL3 = q̄γµτ̂3q l̄γµl; ÔLL4 = q̄γµq l̄γµτ̂3l

ÔLL5 = q̄γµτ̂3q l̄γµτ̂3l; ÔLL6 = q̄γµτ̂3l l̄γµτ̂3q

ÔLL7 = q̄γµτ̂3l l̄γµq

ORR1 = ūγµuēγµe; ORR2 = d̄γµd ēγµe

D

D′

ℓ

ℓ Z

D

D′

ℓ

ℓ



Vectorial sector

δC9 =
4π2

e2λts

v2

Λ2

[

CLR + CLL + 4gV
Λ2

v2
CV L

]

;

δC10 =
4π2

e2λts

v2

Λ2

[

CLR − CLL − 4gA
Λ2

v2
CV L

]

;

C ′
9 =

4π2

e2λts

v2

Λ2

[

CRR + CRL + 4gV
Λ2

v2
CV R

]

;

C ′
10 =

4π2

e2λts

v2

Λ2

[

CRR − CRL − 4gA
Λ2

v2
CV R

]

with coefficients

CLL = cLL1 + cLL2 − ĉLL3 − ĉLL4 + ĉLL5 + ĉLL6 − ĉLL7; CRR = cRR2

CLR = cLR1 − ĉLR5; CRL = cLR3 − ĉLR7; CV L = cV 1 − cV 2; CV R = cV 4

• Notation: unhatted operators have linear counterparts in unitary gauge; unhatted ones are
genuinely nonlinear.

• Rather insensitive to the Higgs nature. Genuine nonlinear operators (hatted) present but
do not change the qualitative picture.



Scalar and tensor sector

• Three categories of operators:

OLR4 = q̄γµl ēγµd; ÔLR8 = q̄γµτ̂3l ēγµd

OS1 = ϵij q̄
iul̄je; OS2 = ϵij q̄

iσµνul̄
jσµνe

ÔS3 = q̄UP+rl̄UP−η; ÔS4 = q̄σµνUP+rl̄σ
µνUP−η

ÔY 1 = q̄UP−rl̄UP−η; ÔY 2 = q̄σµνUP−rl̄σ
µνUP−η

ÔY 3 = l̄UP−ηr̄P+U
†q; ÔY 4 = l̄UP−rr̄P+U

†l

• The first category can be Fierzed to a scalar-scalar structure.

• The second category does not contribute to D → D′ℓℓ (but it does to U → U ′ℓℓ).

• The third category has peculiar hypercharge structure, which is exclusive of the nonlinear
case (at NLO).



Scalar and tensor sector

Matching relations:

CS =
4π2

e2λts

v2

Λ2
[cS + ĉY 1] ; CP =

4π2

e2λts

v2

Λ2
[−cS + ĉY 1]

C ′
S =

4π2

e2λts

v2

Λ2
[c′S + ĉ′Y 1] ; C ′

P =
4π2

e2λts

v2

Λ2
[c′S − ĉ′Y 1]

CT =
4π2

e2λts

v2

Λ2
[ĉY 2 + ĉ′Y 2] ; CT5 =

4π2

e2λts

v2

Λ2
[ĉY 2 − ĉ′Y 2]

with

c(′)S = 2(ĉ(′)LR8 − c(′)LR4)

• Strong correlations in the linear case [Alonso et al’14]

CS = −CP ; C ′
S = C ′

P ; CT = CT5 = 0

Not a consequence of SU(2)× U(1)Y symmetry, but rather from Higgs nature.

• The nonlinear case erases the correlations in the scalar sector and brings NLO contributions
to the tensor operators. Rather clean signatures of linear vs nonlinear, experimentally
testable at B factories.



Conclusions

• EFTs are the right tool to extract unbiased information from experimental data. Important
to pick the most generic one allowed by current status of experiments.

• At present, strong dynamics still allowed. The most conservative fitting procedure is to
consider LLO ̸= LSM . Very few parameters, ideal for the LHC (discovery machine).
Justification and systematic extension of the so-called κ-formalism.

• Flavor physics may have a saying in determining the nature of the Higgs boson, especially
if multi-Higgs processes turn out to be not so decisive at the LHC, as recently hinted at.
One can still learn about the Higgs without the Higgs, especially in down-quark neutral
semileptonic processes.


