NEUTRON-ANTINEUTRON TRANSITIONS:

CONTROLLED CONNECTIONS TO NEW PHYSICS FROM FIRST-PRINCIPLES

Michael I. Buchoff Lawrence Livermore National Laboratory

In collaboration with Sergey Syritsyn, Michael Wagman, Chris Schroeder, and Joe Wasem

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-677388

NEUTRON-ANTINEUTRON TRANSITIONS:

CONTROLLED CONNECTIONS TO NEW PHYSICS FROM FIRST-PRINCIPLES

Michael I. Buchoff Lawrence Livermore National Laboratory

In collaboration with Sergey Syritsyn, Michael Wagman, Chris Schroeder, and Joe Wasem

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-677388

What we know

I) There exists a baryon-antibaryon asymmetry

2) The Standard Model alone cannot reproduce

- Too little CP violation
- Too little baryon number (B) violation

3) Can be encoded in low-energy "hints"

- Neutron EDM (CP violation)
- Proton decay (B violation)
- Neutron-antineutron transition (B violation)

Neutron

Antineutron

"Hints" can strongly constrain how the Universe evolved

Neutron-antineutron schematic

Neutron-antineutron schematic

Can learn about new physics by measuring transition rate

* Can be altered significantly by details of new physics

Enter neutron-antineutron transitions!

In 1937, Majorana conjectured neutrons and antineutrons could be states of the same particle

"... this method ... allows not only to cast the electron-positron theory into a symmetric form, but also to construct an essentially new theory for particles not endowed with an electric charge (neutrons and the hypothetical neutrinos)."

Enter neutron-antineutron transitions!

In 1937, Majorana conjectured neutrons and antineutrons could be states of the same particle

"... this method ... allows not only to cast the electron-positron theory into a symmetric form, but also to construct an essentially new theory for particles not endowed with an electric charge (neutrons and the hypothetical neutrinos)."

N-NBar: $|\Delta B| = 2$ $|\Delta L| = 0$ |B - L| = 2

Sensitive to different possible B-violating processes **PROTON DECAY**

- Insensitive to process where $|\Delta B| > 1$

- Insensitive to processes independent of L $|\Delta L|=0$

Basic idea

+ New physics leads to neutron-antineutron mixing δm (From new physics) $au_n = rac{1}{\lambda} pprox 14.7 ext{ min}$

For no external interactions:

$$H = \begin{pmatrix} \langle n | & \langle \bar{n} | \end{pmatrix} \begin{pmatrix} m_n - i\lambda/2 & \delta m \\ \delta m & m_n - i\lambda/2 \end{pmatrix} \begin{pmatrix} |n\rangle \\ |\bar{n}\rangle \end{pmatrix}$$

Transition Probability

$$P_{n \to \bar{n}}(t) = \sin^2 \left(\delta m \ t\right) e^{-\lambda t}$$
$$\tau_{n\bar{n}} = \frac{1}{\delta m}$$

Model Estimates

Examples		$ au_{nar{n}}$			
TeV-scale seesaw mechanism for neutrino masses in $SU(2)_L \times SU(2)_R \times SU(4)_c$ SO(10) seesaw mechanism with adequate baryogenesis		300 - 3000 years		Babu, Bhupal D Mohapat (2009)	ev, ra
		30 - 30,000 years		Babu, Mohapatra (2012)	
Certain extra	a-dimensional particles	> 3 yea	ars	Nussinov, Shrock (2002)	Ng, Winslow (2010)
500 - 1000 TeV Scalar extensions to SM without proton decay		10 - 1000 years		Arnold, Fornal, Wise (2012)	
Others:	R-parity Violation hep-ph/0406039	MFV SUSY Csaki, Grossman, Heidenreich arXiv:1111.1239	Low Scale Gra Dvali, Gabada PLB 1999	avity adze	

+ Estimates for confirming/ruling out large classes of models

 $\tau_{n\bar{n}} > 300 - 3000$ years

Model Estimates

Examples	•	$ au_{nar{n}}$			
TeV-scale seesaw mechanism for neutrino masses in $SU(2)_L \times SU(2)_R \times SU(4)_c$		300 - 3000 years		Babu, Bhupal Dev, Mohapatra (2009)	
SO(10) seesaw mechanism with adequate baryogenesis		30 - 30,000 years		Babu, Mohapatra (2012)	
Certain extra	-dimensional particles	> 3 yea	rs r	Nussinov, Shrock (2002)	Ng, Winslow (2010)
500 - 1000 TeV Scalar extensions to SM without proton decay		10 - 1000 years		Arnold, Fornal, Wise (2012)	
Others:	R-parity Violation hep-ph/0406039	MFV SUSY Csaki, Grossman, Heidenreich arXiv:1111.1239	Low Scale Grav Dvali, Gabadad PLB 1999	ity ze	

Uncontrolled NDA estimates for QCD matrix element

Estimates for confirming/ruling out large classes of models

 $\tau_{n\bar{n}} > 300 - 3000$ years

Experimental Basics

1. Neutron-antineutron annihilation in nuclei

A human contains roughly 2×10^{28} neutronsStraight-forward question:Why?Why have we not annihilated yet? $\tau_{n\bar{n}} \ll \tau_{nuclei}$

1. Neutron-antineutron annihilation in nuclei

A human contains roughly 2×10^{28} neutronsStraight-forward question:Why?Why have we not annihilated yet? $\tau_{n\bar{n}} \ll \tau_{nuclei}$

Precise answer is a difficult nuclear structure question

Can show from QM: $au_{\text{nuclei}} \sim au_{n\bar{n}}^2$

1. Neutron-antineutron annihilation in nuclei

A human contains roughly 2×10^{28} neutronsStraight-forward question:Why?Why have we not annihilated yet? $\tau_{n\bar{n}} \ll \tau_{nuclei}$

Precise answer is a difficult nuclear structure question

Can show from QM: $au_{\text{nuclei}} \sim au_{n\bar{n}}^2$

Crude estimate: Primary dimensionful scale binding energy E_B $\tau_{\text{nuclei}} = R \tau_{n\bar{n}}^2 \longrightarrow [R] = \frac{1}{\text{time}} = \text{Energy} \longrightarrow R \approx E_B \approx 8 \text{ MeV} \approx \frac{4 \times 10^{29}}{1 \text{ year}}$

1. Neutron-antineutron annihilation in nuclei

H₂O Super-K bounds (2011)

 $\tau_{n\bar{n}} > 11$ years

 $R = \frac{1.6 \times 10^{30}}{\text{year}}$ Friedman,
Gal
2008

 $\begin{array}{l} \text{SNO Laboratory} \\ 1,100 \text{ tons of heavy water} \\ \hline \\ \text{Focus on deuterium} \longrightarrow D_2 O \longleftarrow & \text{Not on oxygen} \\ \hline \\ \tau_{n\bar{n}} > 5.7 \text{ years} & (\text{Preliminary}) \end{array}$

$$R = \frac{(3.7 - 9.3) \times 10^{19}}{\text{year}}$$

1. Neutron-antineutron annihilation in nuclei

 $H_2 O$

Super-K bounds (2011)

 $\tau_{n\bar{n}} > 11$ years

 $R = \frac{1.6 \times 10^{30}}{\text{year}}$ Friedman,
Gal
2008

SNO Laboratory 1,100 tons of heavy water $1,100 \text{ tons of heav$

2. Free, Cold neutron annihilation with target

ILL/Grenoble (1993)

- Free, Cold neutron annihilation with target
 Designed to:
 - 1. Maximize number of neutrons
 - 2. Minimize energy of neutrons
 - 3. Maximize time of flight
 - 4. Minimize External Magnetic Field

Minimize external potential

ILL bound (1993) $\tau_{n\bar{n}} > 2.7$ years Most controlled measurement

- 2. Free, Cold neutron annihilation with target Designed to:
 - 1. Maximize number of neutrons
 - 2. Minimize energy of neutrons
 - 3. Maximize time of flight

Lots of recent discussion: Gardner, Jafari (2014) Babu, Mohapatra (2015) Berezhiani, Vainshtein (2015)

See Susan and Arkady's talks last week

4. Minimize External Magnetic Field

Minimize external potential

ILL bound (1993) $\tau_{n\bar{n}} > 2.7$ years Most controlled measurement

Experimental Prospects

Project X meeting summary (arXiv:1306.5009)
 NNBarX:

First Stage: $\tau_{n\bar{n}} > 80$ years (2-3 years)

(Fermilab)

Second Stage: $\tau_{n\bar{n}} > 8000$ years

Discussions ongoing for other new highflux, low energy neutron experiment... (see Yuri's talk last week)

What can we say without supercomputer? **Answer: Dimensional estimate not reliable** Strong Dynamics Scale: rho meson mass $\Lambda_{QCD} \sim m_{\rho}$ Strong Physics How much can we trust? Within factor of 2, at best Baryon & Meson Masses $\sim m_{\rho}$

Proton Decay Matrix Element $\sim m_{\rho}^2$

Neutron-Antineutron Matrix Element ~ m_{ρ}^{6}

Within factor of 4, at best

Within factor of 64, at best

What can we say without supercomputer? Answer: Dimensional estimate not reliable

Strong Dynamics Scale: rho meson mass

 $\Lambda_{QCD} \sim m_{\rho}$

Strong Physics

Baryon & Meson Masses $\sim m_{\rho}$

Proton Decay Matrix Element $\sim m_{\rho}^2$

Neutron-Antineutron Matrix Element ~ m_{ρ}^{6}

How much can we trust?

Within factor of 2, at best

Within factor of 4, at best

Cannot guarantee better without

Within factor of 64, at best

first-principles calculation

Six-quark Operators

Rao, Shrock (1982)

Three pairs of quarks: 2 u's 4 d's

I. Flavor: $u^T C u$ or $u^T C d$ or $d^T C d$

Six-quark Operators

Rao, Shrock (1982)

Three pairs of quarks: 2 u's 4 d's

Spin: $q_L^T C q_L$

or $q_R^T C q_R$

Six-quark Operators Rao, Shrock (1982) Three pairs of quarks: 2 u's 4 d's or $\boldsymbol{u}^T \boldsymbol{C} \boldsymbol{d}$ or $\boldsymbol{d}^T \boldsymbol{C} \boldsymbol{d}$ **2.** Spin: $q_L^T C q_L$ or $q_R^T C q_R$ **3.** Color: $q^{iT}Cq^j$ $\bar{3}_c \oplus 6_c$ $1_c \subset 6_c \otimes 6_c \otimes 6_c$ $T_{\{ij\}\{kl\}\{mn\}} = \epsilon_{mik}\epsilon_{njl} + \epsilon_{nik}\epsilon_{mjl} + \epsilon_{mjk}\epsilon_{nil} + \epsilon_{mil}\epsilon_{njk}$

 $T_{[ij][kl]\{mn\}} = \epsilon_{mij}\epsilon_{nkl} + \epsilon_{nij}\epsilon_{mkl}$

 $1_c \subset \bar{3}_c \otimes \bar{3}_c \otimes 6_c$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = (\mathbf{u}_i^T C \mathbf{u}_j)_{\chi_1} (\mathbf{d}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{[ij][kl]\{mn\}}$$

of operators:

24

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = (\mathbf{u}_i^T C \mathbf{u}_j)_{\chi_1} (\mathbf{d}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{[ij][kl]\{mn\}}$$

of operators:

$$|8|$$
$$\mathcal{O}_{\chi_1 LR}^1 = \mathcal{O}_{\chi_1 RL}^1$$
$$\mathcal{O}_{LR\chi_3}^{2,3} = \mathcal{O}_{RL\chi_3}^{2,3}$$

X

 $\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = (\mathbf{u}_i^T C \mathbf{u}_j)_{\chi_1} (\mathbf{d}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (\boldsymbol{u}_i^T C \boldsymbol{d}_j)_{\chi_1} (\boldsymbol{u}_k^T C \boldsymbol{d}_l)_{\chi_2} (\boldsymbol{d}_m^T C \boldsymbol{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (\boldsymbol{u}_i^T C \boldsymbol{d}_j)_{\chi_1} (\boldsymbol{u}_k^T C \boldsymbol{d}_l)_{\chi_2} (\boldsymbol{d}_m^T C \boldsymbol{d}_n)_{\chi_3} T_{[ij][kl]\{mn\}}$$

of operators:

X

$$\mathcal{O}_{\chi_1 LR}^1 = \mathcal{O}_{\chi_1 RL}^1$$
$$\mathcal{O}_{LR\chi_3}^{2,3} = \mathcal{O}_{RL\chi_3}^{2,3}$$

|4

 $\mathcal{O}_{\sigma\sigma\rho}^2 - \mathcal{O}_{\sigma\sigma\rho}^1 = 3\mathcal{O}_{\sigma\sigma\rho}^3$

Caswell, Milutinovic, Sejanovic (1983)

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = (\mathbf{u}_i^T C \mathbf{u}_j)_{\chi_1} (\mathbf{d}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{[ij][kl]\{mn\}}$$

of operators:

7

Transition flips parity

 $L \leftrightarrow R$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^1 = (\mathbf{u}_i^T C \mathbf{u}_j)_{\chi_1} (\mathbf{d}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^2 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{\{ij\}\{kl\}\{mn\}}$$

$$\mathcal{O}_{\chi_1\chi_2\chi_3}^3 = (\mathbf{u}_i^T C \mathbf{d}_j)_{\chi_1} (\mathbf{u}_k^T C \mathbf{d}_l)_{\chi_2} (\mathbf{d}_m^T C \mathbf{d}_n)_{\chi_3} T_{[ij][kl]\{mn\}}$$

of operators:

Transition flips parity

 $L \leftrightarrow R$

4 $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$

Operator Symmetries MIB, M.Wagman (2015) Special thanks to B.Tiburzi

Chiral properties important for renormalization and EFT calculations

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} \qquad \qquad \mathcal{D}_{\chi} \equiv (\psi C P_{\chi} i \tau^2 \psi) \qquad \qquad \mathcal{D}_{\chi}^A \equiv (\psi C P_{\chi} i \tau^2 \tau^A \psi)$$

1 1

$Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AAS}$

Chiral Basis	Fixed-Flavor Basis	Chiral Tensor Structure	Chiral Irrep
Q_1	${\cal O}^3_{RRR}$	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_2	\mathcal{O}^3_{LRR}	${\cal D}_L {\cal D}_R {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_3	\mathcal{O}^3_{LLR}	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_4	$4/5 \mathcal{O}_{RRR}^2 + 1/5 \mathcal{O}_{RRR}^1$	$\mathcal{D}_R^{33+}T^{SSS}$	$(1_L, 7_R)$
Q_5	\mathcal{O}^1_{RLL}	$\mathcal{D}_R^- \mathcal{D}_L^{++} T^{SSS}$	$(5_L,3_R)$
Q_6	\mathcal{O}^2_{RLL}	${\cal D}^3_R {\cal D}^{3+}_L T^{SSS}$	$(5_L,3_R)$
Q_7	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	${\cal D}^+_R {\cal D}^{33}_L T^{SSS}$	$(5_L,3_R)$
\widetilde{Q}_1	$1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1$	${\cal D}_R {\cal D}_R {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$
\widetilde{Q}_3	$1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1$	${\cal D}_L {\cal D}_L {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$

Operator Symmetries MIB, M.Wagman (2015) Special thanks to B.Tiburzi

Chiral properties important for renormalization and EFT calculations

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} \qquad \qquad \mathcal{D}_{\chi} \equiv (\psi C P_{\chi} i \tau^2 \psi) \qquad \qquad \mathcal{D}_{\chi}^A \equiv (\psi C P_{\chi} i \tau^2 \tau^A \psi)$$

$$\mathcal{D}_{\chi}^{AB} \equiv \mathcal{D}_{\chi}^{\{A}\mathcal{D}_{\chi}^{B\}} - \frac{1}{3}\delta^{AB}\mathcal{D}_{\chi}^{C}\mathcal{D}_{\chi}^{C}$$

Example:

$Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AAS}$

Chiral Basis	Fixed-Flavor Basis	Chiral Tensor Structure	Chiral Irrep	
Q_1	${\cal O}^3_{RRR}$	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$	
Q_2	${\cal O}^3_{LRR}$	${\cal D}_L {\cal D}_R {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$	
Q_3	${\cal O}^3_{LLR}$	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$	
Q_4	$4/5 \mathcal{O}_{RRR}^2 + 1/5 \mathcal{O}_{RRR}^1$	${\cal D}_R^{33+}T^{SSS}$	$(1_L, 7_R)$	
Q_5	${\cal O}^1_{RLL}$	${\cal D}_R^- {\cal D}_L^{++} T^{SSS}$	$(5_L,3_R)$	
Q_6	\mathcal{O}^2_{RLL}	${\cal D}^3_R {\cal D}^{3+}_L T^{SSS}$	$(5_L,3_R)$	
Q_7	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	${\cal D}^+_R {\cal D}^{33}_L T^{SSS}$	$(5_L,3_R)$	
\widetilde{Q}_1	$1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1$	${\cal D}_R {\cal D}_R {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$	
\widetilde{Q}_3	$1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1$	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{SSS}$	$(1_L,3_R)$	

Operator Symmetries Special thanks to B. Tiburzi MIB, M.Wagman (2015)

Chiral properties important for renormalization and EFT calculations

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} \qquad \mathcal{D}_{\chi} \equiv (\psi C P_{\chi} i \tau^{2} \psi) \qquad \mathcal{D}_{\chi}^{A} \equiv (\psi C P_{\chi} i \tau^{2} \tau^{A} \psi)$$

$$\text{Isospin-2} \qquad \mathcal{D}_{\chi}^{AB} \equiv \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{B\}} - \frac{1}{3} \delta^{AB} \mathcal{D}_{\chi}^{C} \mathcal{D}_{\chi}^{C}$$

$$\mathcal{D}_{\chi}^{ABC} \equiv \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{B} \mathcal{D}_{\chi}^{C\}} - \frac{1}{5} \left[\delta^{AB} \mathcal{D}_{\chi}^{\{C\}} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} + \delta^{AC} \mathcal{D}_{\chi}^{\{B\}} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} + \delta^{BC} \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} \right]$$

Example:

Isospin-3

$Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AA} \psi$

Chiral Basis	Fixed-Flavor Basis	Chiral Tensor Structure	Chiral Irrep
Q_1	${\cal O}^3_{RRR}$	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_2	\mathcal{O}^3_{LRR}	${\cal D}_L {\cal D}_R {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_3	\mathcal{O}^3_{LLR}	$\mathcal{D}_L \mathcal{D}_L \mathcal{D}_R^+ T^{AAS}$	$(1_L,3_R)$
Q_4	$4/5 \mathcal{O}_{RRR}^2 + 1/5 \mathcal{O}_{RRR}^1$	${\cal D}_R^{33+}T^{SSS}$	$(1_L, 7_R)$
Q_5	\mathcal{O}^1_{RLL}	$\mathcal{D}_R^- \mathcal{D}_L^{++} T^{SSS}$	$(5_L,3_R)$
Q_6	\mathcal{O}^2_{RLL}	${\cal D}^3_R {\cal D}^{3+}_L T^{SSS}$	$(5_L,3_R)$
Q_7	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	${\cal D}^+_R {\cal D}^{33}_L T^{SSS}$	$(5_L,3_R)$
\widetilde{Q}_1	$1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1$	$\mathcal{D}_R \mathcal{D}_R \mathcal{D}_R^+ T^{SSS}$	$(1_L,3_R)$
\widetilde{Q}_3	$1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1$	${\cal D}_L {\cal D}_L {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$
Operator Symmetries MIB, M.Wagman (2015) Special thanks to B. Tiburzi

Chiral properties important for renormalization and EFT calculations

$$\psi = \begin{pmatrix} u \\ d \end{pmatrix} \qquad \mathcal{D}_{\chi} \equiv (\psi C P_{\chi} i \tau^{2} \psi) \qquad \mathcal{D}_{\chi}^{A} \equiv (\psi C P_{\chi} i \tau^{2} \tau^{A} \psi)$$

$$\mathcal{D}_{\chi}^{AB} \equiv \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{B\}} - \frac{1}{3} \delta^{AB} \mathcal{D}_{\chi}^{C} \mathcal{D}_{\chi}^{C}$$

$$\mathcal{D}_{\chi}^{ABC} \equiv \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{B} \mathcal{D}_{\chi}^{C\}} - \frac{1}{5} \left[\delta^{AB} \mathcal{D}_{\chi}^{C} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} + \delta^{AC} \mathcal{D}_{\chi}^{\{B} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} + \delta^{BC} \mathcal{D}_{\chi}^{\{A} \mathcal{D}_{\chi}^{D} \mathcal{D}_{\chi}^{D\}} \right]$$

Example:

Isospir

Isospir

 $Q_1 = (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \psi) (\psi C P_R i \tau^2 \tau^+ \psi) T^{AAS}$

		Chiral Basis	Fixed-Flavor Basis	Chiral Tensor Structure	Chiral Irrep
		Q_1	${\cal O}^3_{RRR}$	${\cal D}_R {\cal D}_R {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$
		Q_2	${\cal O}^3_{LRR}$	${\cal D}_L {\cal D}_R {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$
		Q_3	${\cal O}^3_{LLR}$	${\cal D}_L {\cal D}_L {\cal D}_R^+ T^{AAS}$	$(1_L,3_R)$
Isospin-3 —		Q_4	$4/5 \mathcal{O}_{RRR}^2 + 1/5 \mathcal{O}_{RRR}^1$	${\cal D}_R^{33+}T^{SSS}$	$(1_L, 7_R)$
		Q_5	${\cal O}^1_{RLL}$	${\cal D}^R {\cal D}^{++}_L T^{SSS}$	$(5_L,3_R)$
Not SM _		Q_6	\mathcal{O}^2_{RLL}	${\cal D}^3_R {\cal D}^{3+}_L T^{SSS}$	$({f 5}_L,{f 3}_R)$
gauge inv.		Q_7	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	${\cal D}^+_R {\cal D}^{33}_L T^{SSS}$	$(5_L,3_R)$
Redundant		\widetilde{Q}_1	$1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1$	${\cal D}_R {\cal D}_R {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$
in D=4		\widetilde{Q}_3	$1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1$	${\cal D}_L {\cal D}_L {\cal D}_R^+ T^{SSS}$	$(1_L,3_R)$

And so our quest began... GOAL: To calculate neturon-antineutron matrix elements crucial for connecting theory & experiment MIB, C. Schroeder, S. Syritsyn, J. Wasem, M. Wagman Initial Lattice QCD calculation: 390 MeV Pion Mass: (Note: Physical value ~139 MeV) 0.125 fm Lattice Spacing: 2.5 fm Lattice Extent: (Number of sites: $20^3 \times 256$) Pion Mass x Lattice Extent: 4.875 (Note: Typically > 4)

57,500

(Note: 1150 cfg, sep by 5 tu)

Anisotropic Clover-Wilson lattices with anisotropy factor of 3.5

Measurements:

(Note: Discretization information)

Correlation Functions via path integral: $C_{\mathcal{O}} = \langle \mathcal{O} \rangle = Z^{-1} \int d[U] d[\overline{\psi}] d[\psi] \mathcal{O} e^{i(S_F(\overline{\psi}, \psi, U) + S_G(U))}$ $= Z^{-1} \int d[U] \mathcal{O} \det(D_F(U)) e^{iS_G(U)}$

Approximate continuum with discrete lattice:

$$C_{\mathcal{O}} = \langle \mathcal{O} \rangle = Z^{-1} \int d[U] \mathcal{O} \det(D_{F,lat}(U)) e^{iS_{G,lat}(U)}$$

Stochastically estimate integral via importance sampling Euclidean: $C_{\mathcal{O}} = \langle \mathcal{O} \rangle = Z^{-1} \sum_{U} \mathcal{O} \det(D_{F,lat}(U)) e^{-S_{G,lat}(U)}$

a {

Correlation Functions via path integral:

$$C_{\mathcal{O}} = \langle \mathcal{O} \rangle = \int d[U] \ \mathcal{O} \ \det(D_{lat}(U))e^{-S_{G}(U)}$$
Parity + $C_{N}^{(+)}(t) = \langle N^{(+)}(t)\overline{N}^{(+)}(0) \rangle \xrightarrow{t \to \infty} (Z_{N})^{2}e^{-m_{n}t}$
Parity - $C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\bar{N}})^{2}e^{-m_{n}t}$
Spin - $C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\bar{N}})^{2}e^{-m_{n}t}$

Correlation Functions via path integral:

$$C_{\mathcal{O}} = \langle \mathcal{O} \rangle = \int d[U] \ \mathcal{O} \ \det(D_{lat}(U))e^{-S_{G}(U)}$$
Parity + $C_{N}^{(+)}(t) = \langle N^{(+)}(t)\overline{N}^{(+)}(0) \rangle \xrightarrow{t \to \infty} (Z_{N})^{2}e^{-m_{n}t}$
Parity - $C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\bar{N}})^{2}e^{-m_{n}t}$
Spin - $C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\bar{N}})^{2}e^{-m_{n}t}$

 $C_{N\mathcal{O}\bar{N}}(-t_1,t_2) = \langle N^{(+)}(t_2)\mathcal{O}(0)N^{(-)}(-t_1)\rangle \xrightarrow{t_1,t_2 \to \infty} (Z_{\bar{N}}Z_N)\langle n|\mathcal{O}|\bar{n}\rangle e^{-m_n(t_1+t_2)}$

Parity +	Parity
Spin +	Spin

Correlation Functions via path integral:

$$C_{\mathcal{O}} = \langle \mathcal{O} \rangle = \int d[U] \ \mathcal{O} \ \det(D_{lat}(U))e^{-S_{G}(U)}$$

$$\stackrel{\text{Parity}+}{\text{Spin}+} C_{N}^{(+)}(t) = \langle N^{(+)}(t)\overline{N}^{(+)}(0) \rangle \xrightarrow{t \to \infty} (Z_{N})^{2}e^{-m_{n}t}$$

$$\stackrel{\text{Parity}-}{\text{Spin}-} C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\overline{N}})^{2}e^{-m_{n}t}$$

$$C_{N} \propto \bar{\nu}(-t_{1}, t_{2}) = \langle N^{(+)}(t_{2})\mathcal{O}(0)N^{(-)}(-t_{1}) \rangle \xrightarrow{t_{1}, t_{2} \to \infty} (Z_{\overline{N}}Z_{N})\langle n|\mathcal{O}|\bar{n}\rangle e^{-m_{n}(t_{1}+t_{2})}$$

 $C_{N\mathcal{O}\bar{N}}(-t_1, t_2) = \langle N^{(+)}(t_2)\mathcal{O}(0)N^{(-)}(-t_1) \rangle \xrightarrow{t_1, t_2 \to \infty} (Z_{\bar{N}}Z_N) \langle n|\mathcal{O}|\bar{n} \rangle e^{-1}$ Parity + Parity - Spin - Spi

Correlation Functions via path integral:

$$C_{\mathcal{O}} = \langle \mathcal{O} \rangle = \int d[U] \ \mathcal{O} \ \det(D_{lat}(U))e^{-S_{G}(U)}$$
Parity + $C_{N}^{(+)}(t) = \langle N^{(+)}(t)\overline{N}^{(+)}(0) \rangle \xrightarrow{t \to \infty} (Z_{N})^{2}e^{-m_{n}t}$
Parity - $C_{N}^{(-)}(-t) = \langle \overline{N}^{(-)}(-t)N^{(-)}(0) \rangle \xrightarrow{t \to \infty} (Z_{\overline{N}})^{2}e^{-m_{n}t}$
Parity - $C_{N}^{(-)}(-t) = \langle N^{(+)}(t_{2})\mathcal{O}(0)N^{(-)}(-t_{1}) \rangle \xrightarrow{t_{1},t_{2}\to\infty} (Z_{\overline{N}}Z_{N})\langle n|\mathcal{O}|\overline{n} \rangle e^{-m_{n}(t_{1}+t_{2})}$
Parity + Parity - Spin - Parity - Spin - $Parity$ - $Parity$ - Spin - $Parity$ - $Parity$ - Spin - $Parity$ - $Parity$

$$\mathcal{R} = \frac{C_{N\mathcal{O}\bar{N}}(-t_1, t_2)}{C_{\bar{N}}^{(-)}(-t_1)C_{N}^{(+)}(t_2)} \to \frac{\langle \bar{n}|\mathcal{O}|n\rangle}{Z_N Z_{\bar{N}}} + \mathcal{O}(e^{-E_{\Delta}t_1}) + \mathcal{O}(e^{-E_{\Delta}t_2})$$

 $E_{\Delta} \approx m_{n^*} - m_n$

Propagator Contractions:

$$\overline{q}_{i'}^{\alpha'}(y) \ q_i^{\alpha}(x) = S_{i'i}^{\alpha'\alpha}(y,x) \qquad S^{\dagger} = \gamma_5 S \gamma_5$$

Propagator Contractions:

$$\overline{q}_{i'}^{\alpha'}(y) \ q_i^{\alpha}(x) = S_{i'i}^{\alpha'\alpha}(y,x) \qquad S^{\dagger} = \gamma_5 S \gamma_5$$

Antineutron

Neutron

Antineutron

Neutron

Eff. Mass = $\ln \frac{C_N(t+1)}{C_N(t)} \xrightarrow{t \to \infty} m_n$

Eff. Mass =
$$\ln \frac{C_N(t+1)}{C_N(t)} \xrightarrow{t \to \infty} m_n$$

N-NBar Matrix Element

 $t_1 = 5$ $t_1 = 10$ $t_1 = 15$ $t_1 = 20$ $t_1 = 25$

 $a_s^6 \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\bar{N}}} = -884 \pm 35^{+43}_{-10}$

 $\chi^2/dof = 1.20$

$$a_s^6 \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\bar{N}}} = -881 \pm 34^{+23}_{-56}$$

 $\chi^2/dof = 1.25$

A multitude of fits

 $a_s^6 \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\bar{n}}} = -863 \pm 54^{+9}_{-11}$

 $\chi^2/dof = 0.40$

A multitude of fits

 $a_s^6 \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\bar{n}}} = -863 \pm 54^{+9}_{-11}$

 $\chi^2/dof = 0.40$

A multitude of fits

Antineutron

Neutron

 $\mathcal{R} \stackrel{t_1, t_2 \to \infty}{\longrightarrow} \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\overline{N}}}$

 $a_s^6 \frac{\langle \bar{n} | \mathcal{O} | n \rangle}{Z_N Z_{\bar{N}}} = -863 \pm 54^{+9}_{-11}$

 $\chi^2 / dof = 0.40$

Different fits agree

Preliminary (Bare) Results

Back to the big question...

Namely, what is the overall scale? Reminder: $\langle \bar{n} | \mathcal{O} | n \rangle \sim \Lambda_{\text{QCD}}^6$

Unfortunately, requires much additional work to extract reliably Analytically - Two loop QCD renormalization & one loop matching Numerically - Full non-perturbative renormalization

$$\mathcal{O}^{\overline{MS}}(\mu) = U^{\overline{MS}}(\mu, p_0) \frac{Z^{\overline{MS}}(p_0)}{Z_{\text{cont}}^{MOM}(p_0)} Z_{\text{latt}}^{MOM}(p_0) \mathcal{O}_{\text{latt}}^{\text{bare}}$$

$$\Lambda_{QCD} < p_0 < \frac{1}{a}$$

Corrections: $\mathcal{O}(ap_0)$, $\mathcal{O}(g(p_0)^2)$

$$U_{I}(\mu, p_{0}) = \begin{cases} U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, m_{b})U_{I}^{N_{f}=4}(m_{b}, p_{0}) & \text{for} \quad m_{c} < p_{0} < m_{b} \\ U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, p_{0}) & \text{for} \quad m_{b} < p_{0} < m_{t} \end{cases}$$

 $U_{I}(\mu, p_{0}) = \begin{cases} U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, m_{b})U_{I}^{N_{f}=4}(m_{b}, p_{0}) & \text{for} \quad m_{c} < p_{0} < m_{b} \\ U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, p_{0}) & \text{for} \quad m_{b} < p_{0} < m_{t} \end{cases}$

$$U_{I}^{N_{f}}(\mu_{1},\mu_{2}) = \left(\frac{\alpha_{s}(\mu_{2})}{\alpha_{s}(\mu_{1})}\right)^{-\frac{\gamma_{I}^{(0)}}{\beta_{I}}/2\beta_{0}} \left[1 - \delta_{\mu_{2},p_{0}}r_{I}^{(0)}\frac{\alpha_{s}(p_{0})}{4\pi} + \left(\frac{\beta_{1}\gamma_{I}^{(0)}}{2\beta_{0}^{2}} - \frac{\gamma_{I}^{(1)}}{2\beta_{0}}\right)\frac{\alpha_{s}(\mu_{2}) - \alpha_{s}(\mu_{1})}{4\pi} + O(\alpha_{s}^{2})\right]$$

One loop divergent W. Caswell, J. Milutinovic, G. Senjanovic (1983) One loop finite Two loop divergent MIB, M. Wagman (2015)

 $U_{I}(\mu, p_{0}) = \begin{cases} U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, m_{b})U_{I}^{N_{f}=4}(m_{b}, p_{0}) & \text{for} \quad m_{c} < p_{0} < m_{b} \\ U_{I}^{N_{f}=6}(\mu, m_{t})U_{I}^{N_{f}=5}(m_{t}, p_{0}) & \text{for} \quad m_{b} < p_{0} < m_{t} \end{cases}$

$$U_{I}^{N_{f}}(\mu_{1},\mu_{2}) = \left(\frac{\alpha_{s}(\mu_{2})}{\alpha_{s}(\mu_{1})}\right)^{-\frac{\gamma_{I}^{(0)}}{\beta_{I}}/2\beta_{0}} \left[1 - \delta_{\mu_{2},p_{0}}r_{I}^{(0)}\frac{\alpha_{s}(p_{0})}{4\pi} + \left(\frac{\beta_{1}\gamma_{I}^{(0)}}{2\beta_{0}^{2}} - \frac{\gamma_{I}^{(1)}}{2\beta_{0}}\right)\frac{\alpha_{s}(\mu_{2}) - \alpha_{s}(\mu_{1})}{4\pi} + O(\alpha_{s}^{2})\right]$$

One loop divergent W. Caswell, J. Milutinovic, G. Senjanovic (1983) One loop finite Two loop divergent MIB, M. Wagman (2015)

$$\begin{split} \left[\Lambda_{I}\right]_{ijklmn}^{\alpha\beta\gamma\delta\eta\zeta}(p) &= \frac{1}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(p) \bar{u}_{j}^{\beta}(p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(-p) \bar{d}_{m}^{\eta}(-p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp} \\ &+ \frac{3}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(p) \bar{u}_{j}^{\beta}(-p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(p) \bar{d}_{m}^{\eta}(-p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp} \\ &+ \frac{1}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(-p) \bar{u}_{j}^{\beta}(-p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(p) \bar{d}_{m}^{\eta}(p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp}, \end{split}$$

$$\begin{array}{c} \text{Perturbative Renormalization} \\ \text{BSM} \\ \text{Lattice} \\ \mathcal{H}^{n\bar{n}} \\ (\mathcal{P}_{1})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{92160} \left(-T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{R})^{\alpha\beta}(CP_{R})^{\gamma\delta}(CP_{R})^{\eta\zeta} + 2T^{AAS}_{[ij][kl]\{mn\}}(CP_{R})^{\alpha\delta}(CP_{R})^{\gamma\beta}(CP_{R})^{\eta\zeta} \right), \\ (\mathcal{P}_{2})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{18432} \left(-T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{L})^{\alpha\delta}(CP_{R})^{\gamma\beta}(CP_{R})^{\eta\zeta} + 2T^{AAS}_{[ij][kl]\{mn\}}(CP_{L})^{\alpha\delta}(CP_{R})^{\gamma\zeta}(CP_{R})^{\eta\beta} \right), \\ (\mathcal{P}_{3})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{36864} \left(-T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{L})^{\alpha\beta}(CP_{L})^{\gamma\delta}(CP_{R})^{\eta\zeta} + 2T^{AAS}_{[ij][kl]\{mn\}}(CP_{L})^{\alpha\delta}(CP_{L})^{\gamma\beta}(CP_{R})^{\eta\zeta} \right), \\ (\mathcal{P}_{4})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{221184} \left(T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{R})^{\alpha\beta}(CP_{R})^{\gamma\delta}(CP_{R})^{\eta\zeta} + 3T^{AAS}_{[ij][kl]\{mn\}}(CP_{R})^{\alpha\delta}(CP_{R})^{\gamma\beta}(CP_{R})^{\eta\zeta} \right), \\ (\mathcal{P}_{5})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{221184} \left(T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{R})^{\alpha\beta}(CP_{L})^{\gamma\delta}(CP_{L})^{\gamma\zeta} \right), \\ (\mathcal{P}_{6})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{55296} \left(T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{R})^{\alpha\beta}(CP_{L})^{\gamma\beta}(CP_{L})^{\eta\zeta} + 6T^{AAS}_{[ij][kl]\{mn\}}(CP_{R})^{\alpha\delta}(CP_{L})^{\gamma\zeta}(CP_{L})^{\eta\beta} \right), \\ (\mathcal{P}_{7})^{\alpha\beta\gamma\delta\eta\zeta}_{ijklmn} = -\frac{1}{73728} \left(T^{SSS}_{\{ij\}\{kl\}\{mn\}}(CP_{L})^{\alpha\beta}(CP_{L})^{\gamma\delta}(CP_{R})^{\eta\zeta} + 2T^{AAS}_{[ij][kl]\{mn\}}(CP_{L})^{\alpha\delta}(CP_{L})^{\gamma\beta}(CP_{R})^{\eta\zeta} \right), \end{array}$$

$$\begin{split} \left[\Lambda_{I}\right]_{ijklmn}^{\alpha\beta\gamma\delta\eta\zeta}(p) &= \frac{1}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(p) \bar{u}_{j}^{\beta}(p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(-p) \bar{d}_{m}^{\eta}(-p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp} \\ &+ \frac{3}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(p) \bar{u}_{j}^{\beta}(-p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(p) \bar{d}_{m}^{\eta}(-p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp} \\ &+ \frac{1}{5} \langle Q_{I}(0) \, \bar{u}_{i}^{\alpha}(-p) \bar{u}_{j}^{\beta}(-p) \bar{d}_{k}^{\gamma}(p) \bar{d}_{l}^{\delta}(p) \bar{d}_{m}^{\eta}(p) \bar{d}_{n}^{\zeta}(-p) \rangle \Big|_{amp}, \end{split}$$

Perturbative Renormalization

MIB, M. Wagman (2015) (See Mike's talk last week)

3 diagram classes, 15 diagrams

Two Loop:

One Loop:

43 diagram classes, 320 diagrams

First Calculation of three diquarks

Evanescent operators real complication!!

Fierz identities no longer hold

Two-loop anomalous dimension not unique! (depends on generalization of Fierz to D dimensions)

Effectively, treat all operators independently:

Perturbative Renormalization

MIB, M. Wagman (2015)

Chiral Basis	Flavor Basis	$\gamma_I^{(0)}$	$\gamma_I^{(1)}$	$r_I^{(0)}$
Q_1	${\cal O}^3_{RRR},~{\cal O}^3_{LLL}$	4	$335/3 - 34N_f/9$	$101/30 + 8/15 \ln 2$
Q_2	$\mathcal{O}^3_{LRR},~\mathcal{O}^3_{RLR},~\mathcal{O}^3_{RLL},~\mathcal{O}^3_{LRL}$	-4	$91/3 - 26N_f/9$	$-31/6 + 88/15 \ln 2$
Q_3	$\mathcal{O}^3_{LLR}, \mathcal{O}^3_{RRL}$	0	$64 - 10N_f/3$	$-9/10 + 16/5 \ln 2$
Q_4	$\left(4/5 \mathcal{O}_{RRR}^2 + 1/5 \mathcal{O}_{RRR}^1\right),$	24	$229 - 46 N_f/3$	$177/10 - 64/5 \ln 2$
	$\left(4/5 \ \mathcal{O}_{LLL}^2 + 1/5 \ \mathcal{O}_{LLL}^1\right)$		J 7	, ,
Q_5	$\mathcal{O}^1_{RLL},~\mathcal{O}^1_{LRR},~\mathcal{O}^2_{RLL},$			
	$\mathcal{O}^2_{LRL},~\mathcal{O}^2_{LRR},~\mathcal{O}^2_{RLR},$		$238 - 14N_f$	$49/10 - 24/5 \ln 2$
	$(2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1),$	12		
	$(2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LRL}^1),$	12		
	$(2/3 \mathcal{O}_{RRL}^2 + 1/3 \mathcal{O}_{RRL}^1),$			
	$(2/3 \mathcal{O}_{RRL}^2 + 1/3 \mathcal{O}_{RLR}^1)$			
\widetilde{Q}_1	$(1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1),$	1	$797/3 - 118N_f/9$	$-109/30 + 8/15 \ln 2$
	$(1/3 \mathcal{O}_{LLL}^2 - 1/3 \mathcal{O}_{LLL}^1)$	4		
\widetilde{Q}_3	$(1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1),$	0	$218 - 38N_f/3$	$-79/10 + 16/5 \ln 2$
	$(1/3 \mathcal{O}_{RRL}^2 - 1/3 \mathcal{O}_{RRL}^1)$	0		

$$U_{I}^{N_{f}}(\mu_{1},\mu_{2}) = \left(\frac{\alpha_{s}(\mu_{2})}{\alpha_{s}(\mu_{1})}\right)^{-\gamma_{I}^{(0)}/2\beta_{0}} \left[1 - \delta_{\mu_{2},p_{0}}r_{I}^{(0)}\frac{\alpha_{s}(p_{0})}{4\pi} + \left(\frac{\beta_{1}\gamma_{I}^{(0)}}{2\beta_{0}^{2}} - \frac{\gamma_{I}^{(1)}}{2\beta_{0}}\right)\frac{\alpha_{s}(\mu_{2}) - \alpha_{s}(\mu_{1})}{4\pi} + O(\alpha_{s}^{2})\right]$$

Back to the big question...

Namely, what is the overall scale? Reminder: $\langle \bar{n} | \mathcal{O} | n \rangle \sim \Lambda_{\text{QCD}}^6$

Unfortunately, requires additional work to extract reliably Analytically - Two loop QCD renormalization, EFT calculations

One loop divergent

Projection Operators

One loop matching

Two loop running

Numerically - Full non-perturbative renormalization

I4 operators with delicate chiral-structure

Extremely difficult with anisotropic Wilson fermions

Last leg of the race...

GOAL:

To calculate neturon-antineutron matrix elements crucial for connecting theory & experiment

MIB, C. Schroeder, S. Syritsyn, J. Wasem, M. Wagman

Physical DWF Lattice QCD calculation:

Pion Mass:140 MeV(Note: Physical value ~139 MeV)Lattice Spacing:0.123 fmLattice Extent:5.5 fm(Number of sites: 483 × 96)Pion Mass x Lattice Extent:3.9(Note: Typically > 4)

Measurements: 2268 (Note: 81 28 AMA

(Note: 81 cfg, sep by 25 tu, 28 AMA meas per cfg)
Neutron Mass

Credit: Sergey Syritsyn

Neutron-Antineutron Matrix elements

Credit: Sergey Syritsyn

$$C_{PP}^{2\text{pt}} = Z_P \ e^{-m_n t}$$

$$C_{PS}^{2\text{pt}} = \sqrt{Z_P Z_S} \ e^{-m_n t}$$

$$C_{SS}^{3\text{pt}} = Z_S \ e^{-m_n (t_1 + t_2)} \langle \bar{n} | \mathcal{O} | n \rangle$$

$$C_{PP}^{3\text{pt}} = Z_P \ e^{-m_n (t_1 + t_2)} \langle \bar{n} | \mathcal{O} | n \rangle$$

Scaled $\times 10^6$, kinematic factors not divided out T=10: ~10% stat uncertainty, consistant with T=12

$$S_{i'i}^{\alpha'\alpha}(p) = \sum_{y} e^{ip \cdot y} \overline{q}_{i'}^{\alpha'}(x) q_{i}^{\alpha}(0)$$

MOM: $p_0^2 = p_1^2 = p_2^2 = p_3^2 = p_4^2 = p_5^2 = p_6^2$

$$S_{i'i}^{\alpha'\alpha}(p) = \sum_{y} e^{ip \cdot y} \overline{q}_{i'}^{\alpha'}(x) q_{i}^{\alpha}(0)$$

MOM: $p_0^2 = p_1^2 = p_2^2 = p_3^2 = p_4^2 = p_5^2 = p_6^2$

$$S_{i'i}^{\alpha'\alpha}(p) = \sum_{y} e^{ip \cdot y} \overline{q}_{i'}^{\alpha'}(x) q_{i}^{\alpha}(0)$$

MOM: $p_0^2 = p_1^2 = p_2^2 = p_3^2 = p_4^2 = p_5^2 = p_6^2$

$${}^{a}\mathcal{P}^{\alpha\beta\cdots}_{ij\cdots}(Z_{q}^{-3})({}^{bc}Z^{MOM}_{\text{latt}}) \;{}^{c}\Lambda^{\alpha\beta\cdots}_{ij\cdots} = \delta^{ab}$$

Non-perturbative Renormalization Credit: Sergey Syritsyn

Trick: Symmetrize over $[+p)\bar{u}(\begin{cases} \frac{1}{5}\langle \mathcal{O}^{6q}\,\bar{u}(+p)\bar{u}(+p)\bar{d}(-p)\bar{d}(-p)\bar{d}(-p)\rangle \\ +\frac{3}{5}\langle \mathcal{O}^{6q}\,\bar{u}(+p)\bar{u}(-p)\bar{d}(+p)\bar{d}(+p)\bar{d}(-p)\rangle \\ +\frac{1}{5}\langle \mathcal{O}^{6q}\,\bar{u}(-p)\bar{u}(-p)\bar{d}(+p)\bar{d}(+p)\bar{d}(+p)\bar{d}(-p)\rangle \end{cases}$

Systematic error estimate:

Variance between 2 - 4 GeV Variance between 4 - 6 GeV

Non-perturbative Renormalization Credit: Sergey Syritsyn

Systematic error estimate:

Variance between 2 - 4 GeV Variance between 4 - 6 GeV

Results Credit: Sergey Syritsyn

Chiral	Fixed-Flavor (equiv. $L \leftrightarrow R$)	Lattice $(\mu = 2 \text{ GeV}) \times 10^{-5} \text{ GeV}$	Bag Model 1 $\times 10^{-5}$ GeV	Bag Model 2×10^{-5} GeV	$\frac{\text{LQCD}}{\text{Bag } 2}$
Q_1	${\cal O}^3_{RRR}$	-60.5(7.5)	-10.92	-8.88	6.8
Q_2	\mathcal{O}^3_{LRR}	88.8 (10.2)	12.72	10.88	8.1
Q_3	\mathcal{O}^3_{LLR}	-58.7(5.4)	-9.64	-8.12	7.2
Q_4	$4/5 \ \mathcal{O}_{RRR}^2 + 1/5 \ \mathcal{O}_{RRR}^1$	0			-
Q_5	\mathcal{O}_{RLL}^1	8.48 (1.04)	5.04	2.664	3.2
Q_6	\mathcal{O}^2_{RLL}	-2.12 (0.26)	1.256	-0.668	3.2
Q_7	$2/3 \mathcal{O}_{LLR}^2 + 1/3 \mathcal{O}_{LLR}^1$	1.41 (0.17)	-0.84	0.44	3.2
\widetilde{Q}_1	$1/3 \mathcal{O}_{RRR}^2 - 1/3 \mathcal{O}_{RRR}^1$	-60.5(7.5)	-10.92	-8.88	6.8
\widetilde{Q}_3	$1/3 \mathcal{O}_{LLR}^2 - 1/3 \mathcal{O}_{LLR}^1$	-58.7(5.4)	12.72	-8.12	8.1

Obey SM Gauge No Contribution Break SM Gauge Differ in Pert. running

Wait until paper before quoting! Final round of checks are currently underway!

Phenomenological Example $\frac{1}{\tau_{n\bar{n}}} = \delta m = \langle \bar{n} | \mathcal{H}_{eff}^{n\bar{n}} n | \rangle$ Interactions **Scalars** $g_1 X_1 Q_L Q_L$ Arnold, Fornal, and Wise (2012): $X_1 \in (\overline{6}, 1, -1/3)$ $g_2 X_2 d_R d_R$ (see Bartosz's talk last week) $X_2 \in (\bar{6}, 1, 2/3)$ $g_1'X_1u_Rd_R$ $\lambda X_1 X_1 X_2$ $\mathcal{H}_{eff}^{n\bar{n}} = -\frac{(g_1'^{11})^2 g_2^{11} \lambda}{4M_1^4 M_2^2} \mathcal{O}_{RRR}^2 = \frac{(g_1'^{11})^2 g_2^{11} \lambda}{16M_1^4 M_2^2} \left[Q_4 + \frac{3}{5} \tilde{Q}_1 \right]$ $\begin{array}{c} \downarrow X_2 \\ \downarrow \\ \downarrow \\ \end{array} \begin{array}{c} u \\ \downarrow \\ \end{array}$

$$\mathcal{H}_{eff}^{n\bar{n}} = -\frac{(g_1'^{11})^2 g_2^{11} \lambda}{4M_1^4 M_2^2} \mathcal{O}_{RRR}^2 = \frac{(g_1'^{11})^2 g_2^{11} \lambda}{16M_1^4 M_2^2} \left[Q_4 + \frac{3}{5} \tilde{Q}_1 \right]$$

Any two Levi-Civita can be written as linear combos of: T^{SSS} T^{AAS} T^{ASA} T^{SAA} T^{AAA}

Wait until paper before quoting! Final round of checks are currently underway!

Wait until paper before quoting! Final round of checks are currently underway!

Experiment

Theory

New Physics

Universe

Experiment

Theory

Universe

Would you believe...

Neutron

...That a neutron could switch to an antineutron at any time?

...That this process is predicted for various classes of new physics?

...That by observing this process (or bounding it), we could address questions about how the matter filled universe exists?

Antineutron

What is needed for baryon asymmetry?

Sakharov conditions for baryon creation:

- 1. Interactions that violate Baryon Number
- 2. Interactions that violate charge conj. and charge conj. x parity symmetries

3. Interactions outside thermal equilibrium

What is needed for baryon asymmetry?

Sakharov conditions for baryon creation:

- 1. Interactions that violate Baryon Number
- 2. Interactions that violate charge conj. and charge conj. x parity symmetries

3. Interactions outside thermal equilibrium

Start with a more familiar picture We know unbound neutrons decay (beta decay)

Neutron

Proton

Roughly 15 minute lifetime

Start with a more familiar picture We know unbound neutrons decay (beta decay)

Neutron

Proton

Roughly 15 minute lifetime

Start with a more familiar picture We know unbound neutrons decay (beta decay)

Background on proton decay

Latest bounds from water Cherenkov detectors

Super-K:

 $\tau > 8.3 \times 10^{33}$ years

50,000 tons of ultra-pure water

-Probes B-violation from new physics $|\Delta B| = 1$

 $M_{NP} \sim 10^{12} - 10^{13} \text{ TeV}$

-In particular, probes B-L conserving processes at these scales

Effective interaction (new physics at low energy)

$$\mathcal{L}_{B} \sim \frac{1}{M_{NP}^{2}} Q Q Q L$$

Back to the big question...

Namely, what is the overall scale? Reminder: $\langle \bar{n} | \mathcal{O} | n \rangle \sim \frac{1}{r_n^6}$

Unfortunately, requires additional work to extract reliably Analytically - Two loop QCD renormalization, EFT calculations Numerically - Full non-perturbative renormalization

Renormalization: Crude Estimate

$$\mathcal{O}^{\overline{MS}}(\mu) = U^{\overline{MS}}(\mu, p_0) \frac{Z^{MS}(p_0)}{Z^{MOM}_{\text{cont}}(p_0)} Z^{MOM}_{\text{latt}}(p_0) \mathcal{O}^{\text{bare}}_{\text{latt}}$$

TREE LEVEL:
$$Z_{\text{latt}}^{MOM}(p_0) = 1 \qquad \frac{Z^{MS}(p_0)}{Z_{\text{cont}}^{MOM}(p_0)} = 1 \qquad U^{\overline{MS}}(\mu, p_0) = \left[\frac{\alpha_s(\mu)}{\alpha_s(p_0)}\right]^{10/2}$$

100

TADPOLE-IMPROVED TREE LEVEL:

$$Z_{\text{latt}}^{MOM}(p_0) = Z_q^{-3} = u_0^3$$

Lepage, Mackenzie
(1992)
$$u_0 = \left[\frac{1}{3} \operatorname{Tr} U_{\operatorname{Plaq}}\right]^{1/4}$$

Closer to physical Expansion:

~ 19R

Preliminary Results

Preliminary Results

Final Results

	$Z(\text{lat} \to \overline{MS})$	$\mathcal{O}^{\overline{MS}(2 { m GeV})}$	Bag "A"	$\frac{\text{LQCD}}{\text{Bag "A"}}$	Bag "B"	$\frac{\text{LQCD}}{\text{Bag "B"}}$
$[(RRR)_{3}]$	0.62(12)	0	0	_	0	_
$[(RRR)_1]$	0.454(33)	45.4(5.6)	8.190	5.5	6.660	6.8
$[R_1(LL)_0]$	0.435(26)	44.0(4.1)	7.230	6.1	6.090	7.2
$[(RR)_{1}L_{0}]$	0.396(31)	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$[(RR)_2 L_1]^{(1)}$	0.537(52)	-2.12(26)	1.260	-1.7	-0.666	3.2
$[(RR)_2 L_1]^{(2)}$	0.537(52)	0.531(64)	-0.314	-1.7	0.167	3.2
$[(RR)_2 L_1]^{(3)}$	0.537(52)	-1.06(13)	0.630	-1.7	-0.330	3.2

Experimental Progress

1. Neutron-antineutron annihilation in nuclei

 $H_2 O$

Super-K bounds (2011)

 $\tau_{n\bar{n}} > 11$ years

 $R = \frac{1.6 \times 10^{30}}{\text{year}}$ Friedman, Gal

2008

SNO Laboratory 1,100 tons of heavy water Focus on deuterium $\longrightarrow D_2 O$ \longleftarrow Not on oxygen

 $au_{nar{n}} > 5.7~{
m years}$ (Preliminary)

 $R = (3.8 - 6.3) \times 10^{29} \text{ year}^{-1}$ L. Kondratyuk (1996) $R = (8.5 - 8.7) \times 10^{29} \text{ year}^{-1}$ C. Dover, A. Gal, J. Richard (1982) $R = 9.27 \times 10^{29} \text{ year}^{-1}$ V. Kopeliovich and I. Potashnikova (2011)

Bingwei Long (Ph. D Thesis, 2008): $R = (3.75 \pm 0.64 \pm 0.38) \times 10^{29} \text{ year}^{-1}$
Nuclear Suppression

1. Neutron-antineutron annihilation in nuclei

Straight-forward question: Why have we not annihilated yet? $H = \begin{pmatrix} E_n & \delta m \\ \delta m & E_{\bar{n}} \end{pmatrix} = \begin{pmatrix} m_n + V_{nR} & \delta m \\ \delta m & m_n + V_{\bar{n}R} - iV_{\bar{n}I} \end{pmatrix}$ $V \sim \mathcal{O}(100 \text{ MeV})$

Nuclear Suppression

1. Neutron-antineutron annihilation in nuclei

Straight-forward question: Why have we not annihilated yet? $H = \begin{pmatrix} E_n & \delta m \\ \delta m & E_{\bar{n}} \end{pmatrix} = \begin{pmatrix} m_n + V_{nR} & \delta m \\ \delta m & m_n + V_{\bar{n}R} - iV_{\bar{n}I} \end{pmatrix}$ $V \sim \mathcal{O}(100 \text{ MeV})$ $P_{n \to \bar{n}}(t) \sim \sin^2[t/\tau_{Nucl}] \qquad \tau_{Nucl} \approx \frac{(V_{nR} - V_{\bar{n}R})^2 + V_{\bar{n}I}^2}{2|V_{\bar{n}I}|(\delta m)^2}$

 $\tau_{Nucl} \approx R \ \tau_{\overline{n}n}^2$

Nuclear Suppression

1. Neutron-antineutron annihilation in nuclei

Straight-forward question: Why have we not annihilated yet? $H = \begin{pmatrix} E_n & \delta m \\ \delta m & E_{\bar{n}} \end{pmatrix} = \begin{pmatrix} m_n + V_{nR} & \delta m \\ \delta m & m_n + V_{\bar{n}R} - iV_{\bar{n}I} \end{pmatrix}$ $V \sim \mathcal{O}(100 \text{ MeV})$ $P_{n \to \bar{n}}(t) \sim \sin^2[t/\tau_{Nucl}] \qquad \tau_{Nucl} \approx \frac{(V_{nR} - V_{\bar{n}R})^2 + V_{\bar{n}I}^2}{2|V_{\bar{n}I}|(\delta m)^2}$ $\tau_{Nucl} \approx R \tau_{\overline{n}n}^2$ What is this?

2. Free, Cold neutron annihilation with target

+ Hamiltonian: $H = \begin{pmatrix} m_n - \vec{\mu} \cdot \vec{B} - i\lambda/2 & \delta m \\ \delta m & m_n + \vec{\mu} \cdot \vec{B} - i\lambda/2 \end{pmatrix}$

2. Free, Cold neutron annihilation with target

- + Hamiltonian: $H = \begin{pmatrix} m_n \vec{\mu} \cdot \vec{B} i\lambda/2 & \delta m \\ \delta m & m_n + \vec{\mu} \cdot \vec{B} i\lambda/2 \end{pmatrix}$
- + Diagonalizing: $|n_1\rangle = \cos \theta |n\rangle + \sin \theta |\bar{n}\rangle$ $|n_2\rangle = -\sin \theta |n\rangle + \cos \theta |\bar{n}\rangle$ $\tan(2\theta) = -\frac{\delta m}{\vec{\mu} \cdot \vec{B}}$

$$m_{1,2} = m_n \pm \sqrt{(\vec{\mu} \cdot \vec{B})^2 + (\delta m)^2} - i\lambda/2$$

2. Free, Cold neutron annihilation with target

- + Hamiltonian: $H = \begin{pmatrix} m_n \vec{\mu} \cdot \vec{B} i\lambda/2 & \delta m \\ \delta m & m_n + \vec{\mu} \cdot \vec{B} i\lambda/2 \end{pmatrix}$
- + Diagonalizing: $|n_1\rangle = \cos \theta |n\rangle + \sin \theta |\bar{n}\rangle$ $|n_2\rangle = -\sin \theta |n\rangle + \cos \theta |\bar{n}\rangle$ $\tan(2\theta) = -\frac{\delta m}{\vec{\mu} \cdot \vec{B}}$

$$m_{1,2} = m_n \pm \sqrt{(\vec{\mu} \cdot \vec{B})^2 + (\delta m)^2} - i\lambda/2$$

+ Transition prob. : $P_{n \to \bar{n}}(t) = \sin^2(2\theta) \sin^2[(m_1 - m_2)t/2]e^{-\lambda t}$

2. Free, Cold neutron annihilation with target

+ Hamiltonian:
$$H = \begin{pmatrix} m_n - \vec{\mu} \cdot \vec{B} - i\lambda/2 & \delta m \\ \delta m & m_n + \vec{\mu} \cdot \vec{B} - i\lambda/2 \end{pmatrix}$$

+ Diagonalizing: $|n_1\rangle = \cos \theta |n\rangle + \sin \theta |\bar{n}\rangle$ $|n_2\rangle = -\sin \theta |n\rangle + \cos \theta |\bar{n}\rangle$ $\tan(2\theta) = -\frac{\delta m}{\vec{\mu} \cdot \vec{B}}$

$$m_{1,2} = m_n \pm \sqrt{(\vec{\mu} \cdot \vec{B})^2 + (\delta m)^2 - i\lambda/2}$$

+ Transition prob. : $P_{n \to \overline{n}}(t) = \sin^2(2\theta) \sin^2[(m_1 - m_2)t/2]e^{-\lambda t}$

+ When: $|\delta m| t \ll |\vec{\mu} \cdot \vec{B}| t \ll \lambda t \ll 1$ $t \sim 0.1 \text{ sec}$ $P_{n \to \bar{n}}(t) \approx (2\theta)^2 \left(\frac{(m_1 - m_2)t}{2}\right)^2 \approx \left(\frac{\delta m}{\vec{\mu} \cdot \vec{B}}\right)^2 (\vec{\mu} \cdot \vec{B} \ t)^2 = (\delta m \ t)^2$

Preliminary Taste

		Rao, Shrock (1982)	
	Lattice (bare)	MIT Bag (1)	MIT Bag (2)
$\frac{\langle \bar{n} \mathcal{O}_{LRR}^3 n \rangle}{\langle \bar{n} \mathcal{O}_{LRR}^3 n \rangle}$	1	1	1
$\frac{\langle \bar{n} \mathcal{O}_{LLR}^3 n \rangle}{\langle \bar{n} \mathcal{O}_{LRR}^3 n \rangle}$	$-0.576 \pm 0.012^{+0.014}_{-0.026}$	-0.758	-0.746
$\frac{\langle \bar{n} \mathcal{O}_{RRL}^1 n \rangle}{\langle \bar{n} \mathcal{O}_{LRR}^3 n \rangle}$	$0.222 \pm 0.009^{+0.001}_{-0.015}$	-0.858	0.245
$\frac{\langle \bar{n} \mathcal{O}_{RRR}^2 n \rangle}{\langle \bar{n} \mathcal{O}_{LRR}^3 n \rangle}$	$-0.302\pm0.008^{+0.009}_{-0.008}$	-0.516	-0.489

MIT Bag Model - Substitute QCD with quarks in sphere