Progress on computing the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD(+QED)

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (Columbia), Chulwoo Jung (BNL), Christoph Lehner (BNL)

QCD for New Physics at the Precision Frontier, INT, Seattle, Sept. 29, 2015

## Outline I

## 1 Introduction

• Nature - Standard Model

### 2 HLbL

- non-perturbative QED
- Perturbative QED in configuration space
- next steps

## 3 Summary/Outlook

## 4 References

回 と く ヨ と く ヨ と

3

#### The magnetic moment of the muon

Interaction of particle with static magnetic field

$$V(\vec{x}) = -\vec{\mu} \cdot \vec{B}_{\text{ext}}$$

The magnetic moment  $ec{\mu}$  is proportional to its spin ( $c=\hbar=1$ )

$$\vec{\mu} = g\left(rac{e}{2m}
ight) \vec{S}$$

The Landé g-factor is predicted from the free Dirac eq. to be

for elementary fermions

(4) (3) (4) (3) (4)

#### The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections



which results from Lorentz invariance and charge conservation when the muon is on-mass-shell and where  $q=p^\prime-p$ 

$$F_2(0) = \frac{g-2}{2} \equiv a_{\mu}$$
 ( $F_1(0) = 1$ )

(the anomalous magnetic moment, or anomaly)

#### The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by expanding  $\Gamma^{\mu}(q^2)$  in QED coupling constant



<u>hadronic contributions</u>  $\sim 6 \times 10^{-5}$  smaller, dominate theory error.

伺 とう ヨン うちょう

#### Experiment - Standard Model Theory = difference

| SM Contribution   | ${\sf Value}{\pm}{\sf Error}({	imes}10^{11})$ | Ref                       |
|-------------------|-----------------------------------------------|---------------------------|
| QED (5 loops)     | $116584718.951 \pm 0.080$                     | [Aoyama et al., 2012]     |
| HVP LO            | $6923\pm42$                                   | [Davier et al., 2011]     |
|                   | $6949\pm43$                                   | [Hagiwara et al., 2011]   |
| HVP NLO           | $-98.4\pm0.7$                                 | [Hagiwara et al., 2011]   |
|                   |                                               | [Kurz et al., 2014]       |
| HVP NNLO          | $12.4\pm0.1$                                  | [Kurz et al., 2014]       |
| HLbL              | $105\pm26$                                    | [Prades et al., 2009]     |
| HLbL (NLO)        | $3\pm 2$                                      | [Colangelo et al., 2014b] |
| Weak (2 loops)    | $153.6\pm1.0$                                 | [Gnendiger et al., 2013]  |
| SM Tot (0.42 ppm) | $116591802\pm49$                              | [Davier et al., 2011]     |
| (0.43 ppm)        | $116591828 \pm 50$                            | [Hagiwara et al., 2011]   |
| (0.51 ppm)        | $116591840\pm59$                              | [Aoyama et al., 2012]     |
| Exp (0.54 ppm)    | $116592089 \pm 63$                            | [Bennett et al., 2006]    |
| Diff (Exp-SM)     | $287\pm80$                                    | [Davier et al., 2011]     |
|                   | $261\pm78$                                    | [Hagiwara et al., 2011]   |
|                   | $249\pm87$                                    | [Aoyama et al., 2012]     |

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masi Progress on computing the hadronic light-by-light scattering co

回 と く ヨ と く ヨ と

#### New experiments+new theory=new physics

- Fermilab E989, begins in early 2017, aims for 0.14 ppm
- J-PARC E34, "late 2010's", aims for 0.1 ppm
- Today  $a_{\mu}(\mathrm{Expt})$ - $a_{\mu}(\mathrm{SM}) pprox 2.9 3.6\sigma$
- If both central values stay the same,
  - E989 ( $\sim$  4imes smaller error)  $ightarrow~5\sigma$
  - E989+new HLBL theory (models+lattice, 10%)  $ightarrow~6\sigma$
  - E989+new HLBL +new HVP (50% reduction)  $ightarrow~8\sigma$
- Big discrepancy! (New Physics ~ 2× Electroweak)
- Lattice calculations important to trust theory errors

(4月) (4日) (4日) 日

## Outline I

#### Introduction

• Nature - Standard Model

## 2 HLbL

- non-perturbative QED
- Perturbative QED in configuration space
- next steps

## 3 Summary/Outlook

## 4 References

回 と く ヨ と く ヨ と

3

## Hadronic light-by-light (HLbL) scattering



• Models:  $(105 \pm 26) \times 10^{-11}$  [Prades et al., 2009, Benayoun et al., 2014]  $(116 \pm 40) \times 10^{-11}$  [Jegerlehner and Nyffeler, 2009]

systematic errors difficult to quantify

• Dispersive approach difficult, but progress is being made

[Colangelo et al., 2014c, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

- First non-PT QED+QCD calculation [Blum et al., 2015a]
- Very rapid progress with pQED+QCD (L. Jin) [Blum et al., 2015b]
- New HLbL scattering calculation by Mainz group [Green et al., 2015]

#### Non-perturbative QED method [Blum et al., 2015a]





- quark-connected part of HLbL
- $a^{-1} = 1.7848 \text{ GeV}, (2.7 \text{ fm})^3$
- $m_{\pi}=330$  MeV,  $m_{\mu}=190$  MeV
- Consistent with model expectations (J. Bijnens)
- Agreement with models accidental

- 4 同 6 4 日 6 4 日 6

•  $O(\alpha^2)$  noise,  $O(\alpha^4)$  corrections

## Point source method in pQED (Luchang Jin) [Blum et al., 2015b]



- Compute quark loop non-perturbatively
- Photons, muon on lattice, but use (exact) tree-level propagators
- Work in configuration space
- Do QED two-loop, quark-loop integrals stochastically
- Key insight: quark loop exponentially suppressed with x and y separation. Concentrate on "short distance" (π Compton λ)
- Chiral (DW) fermions at finite lattice spacing: UV properties like in continuum, modified by  $O(a^2)$

イロン イボン イヨン イヨン 三日



$$\begin{aligned} \mathcal{F}_{\nu}(x, y, z, x_{\rm op}, x_{\rm snk}, x_{\rm src}) &= \\ &-(-ie)^{3} \sum_{q=u,d,s} (ie_{q})^{4} \Big\langle \operatorname{tr} \big[ \gamma_{\nu} S_{q} \left( x_{\rm op}, x \right) \gamma_{\rho} S_{q}(x, z) \gamma_{\kappa} S_{q}(z, y) \gamma_{\sigma} S_{q} \left( y, x_{\rm op} \right) \big] \Big\rangle_{\text{QCD}} \\ &\cdot \sum_{x',y',z'} G_{\rho\rho'}(x, x') G_{\sigma\sigma'}(y, y') G_{\kappa\kappa'}(z, z') \\ &\quad \cdot \Big[ S_{\mu} \left( x_{\rm snk}, x' \right) \gamma_{\rho'} S_{\mu}(x', z') \gamma_{\kappa'} S_{\mu}(z', y') \gamma_{\sigma'} S_{\mu} \left( y', x_{\rm src} \right) \\ &\quad + S_{\mu} \left( x_{\rm snk}, z' \right) \gamma_{\kappa'} S_{\mu}(z', x') \gamma_{\rho'} S_{\mu}(x', y') \gamma_{\sigma'} S_{\mu} \left( y', x_{\rm src} \right) \\ &\quad + 4 \text{ other permutations} \Big]. \end{aligned}$$

3

FT muon source, sink 
$$\mathcal{F}_{\nu}(\vec{q}, x, y, z, x_{\text{op}}) =$$
  

$$\lim_{\substack{t_{\text{src}} \to -\infty \\ t_{\text{snk}} \to \infty}} e^{E_{q/2}(t_{\text{snk}} - t_{\text{src}})} \sum_{\vec{x}_{\text{snk}}, \vec{x}_{\text{src}}} e^{-i\frac{\vec{q}}{2} \cdot (\vec{x}_{\text{snk}} + \vec{x}_{\text{src}})} e^{i\vec{q} \cdot \vec{x}_{\text{op}}}$$

$$\mathcal{F}_{\nu}(x, y, z, x_{\text{op}}, x_{\text{snk}}, x_{\text{src}})$$
with mom. transfer  $\vec{q} = 2\pi \vec{z}/L$ , and use translational invariance to shift origin:  
 $\mathcal{M}_{\nu}(\vec{q}) = \sum_{\vec{x}} \mathcal{F}_{\nu}(\vec{q}, \frac{x - y}{2}, -\frac{x - y}{2}, z - w, x_{\text{op}} - w)$ 

$$\begin{aligned} \mathcal{A}_{\nu}(\vec{q}) &= \sum_{x,y,z} \mathcal{F}_{\nu}(\vec{q}, \frac{x-y}{2}, -\frac{x-y}{2}, z-w, x_{\rm op} - w) \\ &= \sum_{r} \left\{ \sum_{z', x'_{\rm op}} \mathcal{F}_{\nu}(\vec{q}, r, -r, z', x'_{\rm op}) \right\} \\ &= \left( \frac{q^{t}+m_{\mu}}{2E_{q/2}} \right) \left( F_{1}(q^{2})\gamma_{\nu} + \frac{F_{2}(q^{2})}{2m} \frac{i}{2} [\gamma_{\nu}, \gamma_{\beta}](q_{\beta}) \right) \left( \frac{q^{t}-m_{\mu}}{2E_{q/2}} \right) \end{aligned}$$

$$w = \frac{x+y}{2}, \quad r = \frac{x-y}{2}, \quad z' = z - w \text{ and } x'_{op} = x_{op} - w$$

Sum over r and w stochastically, do  $x'_{\mathrm{op}}$  and z' sums exactly

$$G(x,x')_{\rho\rho'} = \sum_{k} \frac{1}{(2\sin k/2)^2} e^{ik(x-x')}$$



- QED<sub>L</sub> [Hayakawa and Uno, 2008]
- Muon propagators FV (analytic), tree-level DWF with  $L_s = \infty$
- Rand'ly choose quark loop location w
- Compute 2 point source props in QCD at *x*, *y*, connect sink points at  $x'_{op}$  and z', do the latter sums exactly
- $t_{
  m src}, \; t_{
  m snk} = w^0 \pm T/2$  for each w
- Do sums over r, w(x, y)stochastically, average over QCD configurations then yields  $\mathcal{M}_{\nu}(\vec{q})$

伺 ト イヨト イヨト

 Use importance sampling to do sum over r efficiently (sample |r| ≤ 1 fm most frequently). Empirical choice:

$$p(|x_i - w|) \propto \left\{ egin{array}{cc} 1 & (|x_i - w| < R) \ 1/|x_i - w|^{3.5} & (|x_i - w| \geqslant R) \end{array} 
ight.,$$

The distribution of the relative distance |r| between any two points drawn from this set is:

$$P(r) = \sum_{x} p(|x-r|)p(|x|)$$



- 2+1f DWF+I-DSDR ensemble RBC/UKQCD
- 171 MeV pion mass
- *R* = 4, so do *all* points with *r* = 3 or less in this case

3

#### Point source method, initial results

| Lahel | size             | $m_{-}L$    | $m_{-}/\text{GeV}$           | #acdtrai | <i>t</i>         | $F_2 \pm \text{Err}$ | Cost           |
|-------|------------------|-------------|------------------------------|----------|------------------|----------------------|----------------|
| Luber | SIZC             | $m_{\pi}$ D | $m_{\pi}/\operatorname{Gev}$ | πqcattaj | <sup>v</sup> sep | $(\alpha / \pi)^3$   | BG/Q rack days |
| 16I   | $16^3 \times 32$ | 3.87        | 0.423                        | 16       | 16               | $0.1235 \pm 0.0026$  | 0.63           |
| 241   | $24^3\times 64$  | 5.81        | 0.423                        | 17       | 32               | $0.2186 \pm 0.0083$  | 3.0            |
| 24IL  | $24^3\times 64$  | 4.57        | 0.333                        | 18       | 32               | $0.1570 \pm 0.0069$  | 3.2            |
| 32ID  | $32^3 \times 64$ | 4.00        | 0.171                        | 47       | 32               | $0.0693 \pm 0.0218$  | 10             |

Table 2. Central values and errors.  $a^{-1}=1.747 {\rm GeV}$  except for 32ID where  $a^{-1}=1.371 {\rm GeV}.$  Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model estimation is  $0.08\pm0.02.$ 



Figure 13.  $32^3 \times 64$  lattice, with  $a^{-1} = 1.371 \text{GeV}$ ,  $m_{\pi} = 171 \text{MeV}$ ,  $m_{\mu} = 134 \text{MeV}$ .

#### Current conservation

 At least one (lattice) conserved current to have convergent amplitude in continuum limit. Choose ext. photon, J<sub>μ</sub>(x<sub>op</sub>)

• 
$$\mathcal{M}_{\mu} \sim F_1(q)\gamma^{\mu} + i\gamma^{\mu}\gamma^{
u}q^{
u}F_2(q)/2m$$
 relies on WI

 To maintain constant signal-to-noise as q → 0, Ward identity must be exact on each gauge configuration

$$\partial_{\mu}\langle j^{\mu}(x_{\rm op})\bar{\psi}(x)\gamma^{\rho}\psi(x)\cdots\rangle = i\delta(x_{\rm op}-x)\langle\bar{\psi}(x)\gamma_{\nu}\psi(x)\cdots\rangle \\ -i\delta(x_{\rm op}-x)\langle\bar{\psi}(x)\gamma_{\nu}\psi(x)\cdots\rangle+\cdots$$

$$\langle j^{\mu}(x_{
m op})ar{\psi}(x)\gamma^{
ho}\psi(x)ar{\psi}(z)\gamma^{
u}\psi(z)ar{\psi}(y)\gamma^{\sigma}\psi(y)
angle =$$



#### Current conservation



- Compute all 3 diagrams so WI exact on each configuration
- signal and error vanish as  $q \rightarrow 0$ . Error on  $F_2(q^2) \sim \text{constant}$
- new diagrams require (6) sequential source props
- One more trick: restrict sum over z,

$$\sum_{x,y,z} \mathcal{F}_{\mu}(\mathbf{q}; x, y; z, x_{\text{op}}) = \sum_{\substack{x, y, z \\ |x-y| < \min(|x-z|, |y-z|)}} 3\mathcal{F}_{\mu}(\mathbf{q}; x, y; z, x_{\text{op}})$$

• Skews distribution towards small *r* where noise is smaller, signal larger

## Moment method for $F_2(0)$

• Can do calculation directly at zero momentum for large L

$$\begin{split} \mathcal{M}_{\mu}(q) &= \gamma_{0} \Big( \frac{\not q^{+} + m_{\mu}}{2E_{q/2}} \Big) \left( \frac{F_{2}(q^{2})}{2m} \frac{i}{2} [\gamma_{\nu}, \gamma_{\beta}](-q_{\beta}) \right) \Big( \frac{\not q^{-} + m_{\mu}}{2E_{q/2}} \Big) \gamma_{0} \\ &= \sum_{r} \sum_{z, x_{op}} \mathcal{F}_{\mu}(\vec{q}; -\frac{r}{2}, +\frac{r}{2}; z, x_{op}) \\ &= \sum_{r} \exp\left(iq \cdot x_{op}\right) \mathcal{F}_{\mu}'(q, x_{op}) \\ &\approx \sum_{x_{op}} \left(1 + iq \cdot x_{op}\right) \mathcal{F}_{\mu}'(q, x_{op}) \\ &\approx \sum_{x_{op}} iq \cdot x_{op} \mathcal{F}_{\mu}'(q, x_{op}) \\ &\approx \sum_{x_{op}} iq \cdot x_{op} \mathcal{F}_{\mu}'(q, x_{op}) \\ &\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} &= i \sum_{r, z, x_{op}} \mathcal{F}_{\nu}'\left(\vec{q} = 0, r, -r, z, x_{op}\right)(x_{op})_{i} \sim F_{2}(0) \end{split}$$

The "1" term vanishes in  $\infty$  volume, exponentially small in FV, FV,

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

## Excited state contamination

Usual method:

- (hadronic) external states "interpolated" far from operator insertion point x<sub>op</sub>
- excited states exp. suppressed relative to ground state

Our method:

- Sum over x<sub>op</sub>
- Includes points where  $t_{op} = t_{src}$  or  $t_{snk}$  or is nearby
- Origin of quark loop x + y in middle of  $t_{src}$  and  $t_{snk}$ , so these contributions are exponentially suppressed.
- usual choice:  $t_{snk} t_{src} = T/2$ , but check for contamination with shorter separations

#### Point source method with all improvements



• AMA used for quark propagators (1000 evecs, CG: 100 iters)

#### Point source method with all improvements

| Method        | $F_2/(\alpha/\pi)^3$ | $N_{\rm conf}$ | $N_{ m prop}$                   | $\sqrt{\mathrm{Var}}$ | $r_{\rm max}$ | SD          | LD          | ind-pair |
|---------------|----------------------|----------------|---------------------------------|-----------------------|---------------|-------------|-------------|----------|
| Exact         | 0.0693(218)          | 47             | $58 + 8 \times 16$              | 2.04                  | 3             | -0.0152(17) | 0.0845(218) | 0.0186   |
| Conserved     | 0.1022(137)          | 13             | $(58+8\times 16)\times 7$       | 1.78                  | 3             | 0.0637(34)  | 0.0385(114) | 0.0093   |
| Mom. (approx) | 0.0994(29)           | 23             | $(217 + 512) \times 2 \times 4$ | 1.08                  | 5             | 0.0791(18)  | 0.0203(26)  | 0.0028   |
| Mom. (corr)   | 0.0060(43)           | 23             | $(10+48) \times 2 \times 4$     | 0.44                  | 2             | 0.0024(6)   | 0.0036(44)  | 0.0045   |
| Mom. (tot)    | 0.1054(54)           | 23             |                                 |                       |               |             |             |          |

5% statistical error for nearly physical pion mass! Cost: 13.2 BG/Q Rack-days (Rack = 1024 nodes = 16384 cores )

#### Continuum and $\infty$ volume limits in QED



- Using all improvements
- a set using physical muon mass
- QED systematics large,  $O(a^4)$ ,  $O(1/L^2)$ , but under control
- Limits quite consistent with PT result

ullet Including all improvements, statistical errors reduced by 10 imes



• quark-connected part of HLbL,  $q = 2\pi/L$ , 0

• 
$$a^{-1} = 1.7848$$
 GeV,  $(2.7 \text{ fm})^3$ 

• 
$$m_{\pi}=330$$
 MeV,  $m_{\mu}=190$  MeV

Strong check on method(s)

## On-going calculation: physical point ( $m_{\pi} = 140$ MeV)

ALCC award on MIRA at ANL ALCF,

- Applying improved point source method to physical light quark mass 2+1f Möbius DWF ensemble (RBC/UKQCD)
- $(5.5 \text{ fm})^3$  QCD box,  $a = 0.114 \text{ fm} (a^{-1} = 1.7848 \text{ GeV})$
- $\bullet\,$  Use AMA with 2000 low-modes,  $\sim$  4500 sloppy props per configuration



on track to beat goal of 20% statistical error

#### M. Hayakawa's talk at Lattice 2015



- SU(3) Flavor (only 1 survives), Zweig suppressed
- Requires explicit HVP subtraction when any quark loop with two photons is not connected to others by gluons
- Use same importance sampling as for connected

# Solving QED FV effects

- Integrand exponentially suppressed with distance between any pair of points on the quark loop. FV effect is small.
- Amplitude *not* suppressed with distance between points on muon line and loop. FV effect is large.
- $\bullet\,$  Put QED in larger, perhaps  $\infty,$  box, QCD unchanged
- use  $\infty$  volume photon on finite box (Lehner, Lattice 2015)
- Can compute average QCD loop and do muon line once, offline, so free to experiment with size of QED box

## Outline I

#### Introduction

• Nature - Standard Model

#### 2 HLbL

- non-perturbative QED
- Perturbative QED in configuration space
- next steps

## 3 Summary/Outlook

#### 4 References

回 と く ヨ と く ヨ と

3

# Summary/Outlook

- First calculations for connected part very promisingcalculation with controlled errors clearly within reach of lattice methods.
- 5% stat. errors already for near physical pions
- FV effects large but controllable.  $\infty$  volume limit consistent with PT. Put QCD and QED in different boxes
- Applying improved point source method to physical quark mass 2+1f Möbius DWF ensemble RBC/UKQCD
- Disconnected part challenging, new ideas under investigation
- Lattice important to compare (SM) with experiment

・ 同 ト ・ ヨ ト ・ ヨ ト

## Acknowledgments

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, and USQCD Collaboration
- Lattice computations done on
  - Ds cluster at FNAL (USQCD)
  - USQCD BQ/Q at BNL

• • = • • = •

## Outline I

#### Introduction

• Nature - Standard Model

### 2 HLbL

- non-perturbative QED
- Perturbative QED in configuration space
- next steps

## 3 Summary/Outlook



回 と く ヨ と く ヨ と

3

#### Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012).

Complete Tenth-Order QED Contribution to the Muon g-2. *Phys.Rev.Lett.*, 109:111808.



Benayoun, M., Bijnens, J., Blum, T., Caprini, I., Colangelo, G., et al. (2014).

Hadronic contributions to the muon anomalous magnetic moment Workshop.  $(g - 2)_{\mu}$ : Quo vadis? Workshop. Mini proceedings.

#### Bennett, G. et al. (2006).

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL.

Phys.Rev., D73:072003.

🔋 Blum, T., Chowdhury, S., Hayakawa, M., and Izubuchi, T. (2015a).

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

*Phys.Rev.Lett.*, 114(1):012001.

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masi Progress on computing the hadronic light-by-light scattering co

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

# Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., and Lehner, C. (2015b).

Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

in preparation.

Colangelo, G., Hoferichter, M., Kubis, B., Procura, M., and Stoffer, P. (2014a).

Towards a data-driven analysis of hadronic light-by-light scattering. *Phys.Lett.*, B738:6–12.

Colangelo, G., Hoferichter, M., Nyffeler, A., Passera, M., and Stoffer, P. (2014b).

Remarks on higher-order hadronic corrections to the muon g?2. *Phys. Lett.*, B735:90–91.

Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2014c).

Dispersive approach to hadronic light-by-light scattering.

JHEP, 1409:091.

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masi Progress on computing the hadronic light-by-light scattering co

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

#### Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2015).

Dispersion relation for hadronic light-by-light scattering: theoretical foundations.

Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011).

Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ).

Eur.Phys.J., C71:1515.

Gnendiger, C., Stckinger, D., and Stckinger-Kim, H. (2013).

The electroweak contributions to  $(g-2)_{\mu}$  after the Higgs boson mass measurement.

Phys.Rev., D88:053005.

Green, J., Gryniuk, O., von Hippel, G., Meyer, H. B., and Pascalutsa, V. (2015).

Lattice QCD calculation of hadronic light-by-light scattering.



Hagiwara, K., Liao, R., Martin, A. D., Nomura, D., and Teubner, T. (2011). (2011).

#### $(g-2)_{\mu}$ and alpha $(M_Z^2)$ re-evaluated using new precise data. *J.Phys.*, G38:085003.

- Hayakawa, M. and Uno, S. (2008).

QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons.

Prog. Theor. Phys., 120:413-441.

Jegerlehner, F. and Nyffeler, A. (2009).

The Muon g-2. *Phys. Rept.*, 477:1–110.



Kurz, A., Liu, T., Marquard, P., and Steinhauser, M. (2014). Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order.

Phys.Lett., B734:144-147.

Pauk, V. and Vanderhaeghen, M. (2014a).

Anomalous magnetic moment of the muon in a dispersive approach.

Phys.Rev., D90(11):113012.

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masi Progress on computing the hadronic light-by-light scattering co

同下 イヨト イヨト 二日

#### Pauk, V. and Vanderhaeghen, M. (2014b).

Two-loop massive scalar three-point function in a dispersive approach.

#### Prades, J., de Rafael, E., and Vainshtein, A. (2009).

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.

▲圖 ▶ ★ 国 ▶ ★ 国 ▶

3