Progress on computing the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD(+QED)

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masashi Hayakawa (Nagoya), Taku Izubuchi (BNL/RBRC), Luchang Jin (Columbia), Chulwoo Jung (BNL), Christoph Lehner (BNL)

QCD for New Physics at the Precision Frontier, INT, Seattle, Sept. 29, 2015

へのへ

Outline I

1 [Introduction](#page-1-0)

[Nature - Standard Model](#page-5-0)

2 [HLbL](#page-7-0)

- [non-perturbative QED](#page-8-0)
- **[Perturbative QED in configuration space](#page-10-0)**
- **o** [next steps](#page-24-0)

3 [Summary/Outlook](#page-27-0)

御 ▶ イ君 ▶ イ君 ▶

 \leftarrow \Box

The magnetic moment of the muon

Interaction of particle with static magnetic field

$$
V(\vec{x}) = -\vec{\mu} \cdot \vec{B}_{\rm ext}
$$

The magnetic moment $\vec{\mu}$ is proportional to its spin $(c = \hbar = 1)$

$$
\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{S}
$$

The Landé g -factor is predicted from the free Dirac eq. to be

$$
g = 2
$$

for elementary fermions

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

which results from Lorentz invariance and charge conservation when the muon is on-mass-shell and where $q = p^\prime - p$

$$
F_2(0) = \frac{g-2}{2} \equiv a_\mu \qquad (F_1(0) = 1)
$$

(the anomalous magnetic moment, or anomaly)

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by expanding $\mathsf{\Gamma}^{\mu} (q^2)$ in QED coupling constant

Experiment - Standard Model Theory $=$ difference

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Mas: Progress on computing the hadronic light-by-light scattering co

New experiments $+$ new theory $=$ new physics

- **•** Fermilab E989, begins in early 2017, aims for 0.14 ppm
- J-PARC E34, "late 2010's", aims for 0.1 ppm
- Today a_μ (Expt)- a_μ (SM) ≈ 2.9 3.6 σ
- If both central values stay the same,
	- E989 (\sim 4 \times smaller error) $\rightarrow \sim$ 5 σ
	- E989+new HLBL theory (models+lattice, 10%) $\rightarrow \infty$ 6 σ
	- E989+new HLBL +new HVP (50% reduction) $\rightarrow \infty 8\sigma$
- Big discrepancy! (New Physics \sim 2× Electroweak)
- Lattice calculations important to trust theory errors

 $4.50 \times 4.70 \times 4.70 \times$

つくい

 -1

 4.17 ± 1.0

- 4 重 8 - 4 重 8

 $2Q$

Outline I

[Nature - Standard Model](#page-5-0)

2 [HLbL](#page-7-0)

- [non-perturbative QED](#page-8-0)
- [Perturbative QED in configuration space](#page-10-0)
- [next steps](#page-24-0)

3 [Summary/Outlook](#page-27-0)

 Ω

Hadronic light-by-light (HLbL) scattering

- $\bullet \,$ Models: $(105 \pm 26) \times 10^{-11}$ [\[Prades et al., 2009,](#page-35-1) [Benayoun et al., 2014\]](#page-31-2) $(116 \pm 40) \times 10^{-11}$ [\[Jegerlehner and Nyffeler, 2009\]](#page-34-1) systematic errors difficult to quantify
- Dispersive approach difficult, but progress is being made

[\[Colangelo et al., 2014c,](#page-32-1) [Colangelo et al., 2014a,](#page-32-2) [Pauk and Vanderhaeghen, 2014b,](#page-35-2)

[Pauk and Vanderhaeghen, 2014a,](#page-34-2) [Colangelo et al., 2015\]](#page-33-3)

- \bullet First non-PT QED+QCD calculation $[Blum et al., 2015a]$
- \bullet Very rapid progress with pQED+QCD (L. Jin) [\[Blum et al., 2015b\]](#page-32-3)
- **•** New HLbL scattering calculation by M[ain](#page-7-0)z [g](#page-9-0)[r](#page-7-0)[ou](#page-8-0)[p](#page-9-0) [\[](#page-7-0)[Green et al., 2015](#page-33-4)[\]](#page-35-0)

Non-perturbative QED method [\[Blum et al., 2015a\]](#page-31-3) • Evanuation and summary outlook interesting individually and all comparison comigators in thus comigators in [the](#page-7-0) part of diagrams. Thus comigators in the comparison of diagrams. Thus comigators in the comparison of the co

- quark-connected part of HLbL
- $a^{-1} = 1.7848$ GeV, $(2.7 \text{ fm})^3$
- $m_{\pi} = 330 \text{ MeV}, m_{\mu} = 190 \text{ MeV}$
- expectations (J. Bijnens)
- Agreement with models accidental

 $2Q$

 $O(\alpha^2)$ noise, $O(\alpha^4)$ corrections

 \mathcal{A} and \mathcal{A} . The \mathcal{A}

-4 E

according to which x and y are generated.

つへへ

\blacksquare Point source method in pQED (Luchang Jin) $_{\lbrack \text{Blum et al., 2015bj}\rbrack}$

 \bullet Compute quark loop non-perturbatively Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

amplitude would normally be evaluated at the smallest, non-zero lattice mome[ntu](#page-9-0)m [2](#page-11-0)[π/](#page-9-0)[L](#page-10-0)

- $A = \frac{1}{2}$ is shown in Appendix A, the short distance properties of these HLBL graphs requires of these HLBL graphs requires requires of the short distance properties of the short distance properties of the short distanc $t_{\rm r}$ at least one of the internal quark line must be a conserved must be a co $A \sim \frac{1}{2}$ is shown in Appendix A, the short distance properties of the short distance properties of these HLBL graphs requires requires of the short distance properties of the short distance properties of the short dis $t_{\rm c}$ at least one of the internal quark line must be a conserved to the internal quark line must be a conserved to the internal quark line must be a conserved to the internal quark line must be a conserved to the inte Photons, muon on lattice, but use (exact) tree-level propagators
- \bullet Work in configuration space
- · Do QED two-loop, quark-loop integrals stochastically vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic algorithmic algori
- Key insight: quark loop exponentially suppresse separation. Concentrate on "short distance" $(\pi$ Compton $\lambda)$ \bullet Key insight: quark loop exponentially suppressed with x and y
- Chiral (DW) fermions at finite lattice spacing: UV properties T_{max} algorithmic development (Sec. II α) resolves the different of evaluating the differences the differences $\sum_{i=1}^n$ for a continuum, invancul by $\sum_{i=1}^n$ T_{max} fourth algorithmic development (Sec. II $O(\epsilon^2)$ like in continuum, modified by $O(a^2)$

活

 299

$$
\mathcal{F}_{\nu}(x, y, z, x_{\text{op}}, x_{\text{snk}}, x_{\text{src}}) =
$$
\n
$$
-(-ie)^{3} \sum_{q=u,d,s} (ie_{q})^{4} \Big\langle \text{tr} \big[\gamma_{\nu} S_{q}(x_{\text{op}}, x) \gamma_{\rho} S_{q}(x, z) \gamma_{\kappa} S_{q}(z, y) \gamma_{\sigma} S_{q}(y, x_{\text{op}}) \big] \Big\rangle_{\text{QCD}}
$$
\n
$$
\cdot \sum_{x',y',z'} G_{\rho\rho'}(x, x') G_{\sigma\sigma'}(y, y') G_{\kappa\kappa'}(z, z')
$$
\n
$$
\cdot \Big[S_{\mu}(x_{\text{snk}}, x') \gamma_{\rho'} S_{\mu}(x', z') \gamma_{\kappa'} S_{\mu}(z', y') \gamma_{\sigma'} S_{\mu}(y', x_{\text{src}})
$$
\n
$$
+ S_{\mu}(x_{\text{snk}}, z') \gamma_{\kappa'} S_{\mu}(z', x') \gamma_{\rho'} S_{\mu}(x', y') \gamma_{\sigma'} S_{\mu}(y', x_{\text{src}})
$$
\n
$$
+ 4 \text{ other permutations} \Big].
$$

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masing Progress on computing the Progress on computing the hadronic light-by-light scattering co

² → 0 achieved only in the limit of infinite volume. Here we introduce [a](#page-11-0)

² → 0 achieved only in the limit of infinite volume. Here we int[rod](#page-10-0)u[ce](#page-12-0) [a](#page-10-0)

² → 0 for an amplitude which is proportional to q in finite volume. In such a case the

 $\langle \langle \rangle$ improvemen[t](#page-23-0) (Sec. III $\langle \rangle$ that we explore it [gra](#page-11-0)[ph](#page-13-0)[s](#page-11-0) [so](#page-12-0) [t](#page-13-0)[ha](#page-9-0)t t[h](#page-24-0)e graphs so that the graphs so th

FT muon source, sink
$$
\mathcal{F}_{\nu}(\vec{q}, x, y, z, x_{\text{op}})
$$
 =
\n
$$
\sum_{x_{\text{op}}, \nu} \lim_{\begin{subarray}{l} t_{\text{src}} \to -\infty \\ t_{\text{shk}} \to \infty \end{subarray}} e^{\frac{E_{q/2}(t_{\text{shk}} - t_{\text{src}})}{\vec{x}_{\text{shk}}, \vec{x}_{\text{src}}} } \sum_{\mathbf{x}_{\text{shk}}, \vec{x}_{\text{src}}} e^{-i\frac{\vec{q}}{2} \cdot (\vec{x}_{\text{shk}} + \vec{x}_{\text{src}})} e^{i\vec{q} \cdot \vec{x}_{\text{op}}} e^{i\vec{q} \cdot \vec{x}_{\text{op}}} \times \sum_{\mathbf{x}_{\text{shk}}, \mathbf{x}_{\text{sr}}} \mathcal{F}_{\nu}(x, y, z, x_{\text{op}}, x_{\text{shk}}, x_{\text{src}})}
$$
\nwith mom. transfer $\vec{q} = 2\pi \vec{z}/L$, and use translational invariance to shift origin:

 $\mathcal{L}_{\mathcal{A}}$ for a fact that can be exploited when choosing that can be exploited when choosing the distribution of

$$
\mathcal{M}_{\nu}(\vec{q}) = \sum_{x,y,z} \mathcal{F}_{\nu}(\vec{q}, \frac{x-y}{2}, -\frac{x-y}{2}, z - w, x_{\rm op} - w)
$$

\n
$$
= \sum_{r} \left\{ \sum_{z',x'_{\rm op}} \mathcal{F}_{\nu}(\vec{q}, r, -r, z', x'_{\rm op}) \right\}
$$

\n
$$
= \left(\frac{\vec{q}^{+} + m_{\mu}}{2E_{q/2}} \right) \left(F_{1}(q^{2})\gamma_{\nu} + \frac{F_{2}(q^{2})}{2m} \frac{i}{2} [\gamma_{\nu}, \gamma_{\beta}](q_{\beta}) \right) \left(\frac{\vec{q}^{-} + m_{\mu}}{2E_{q/2}} \right)
$$

$$
w = \frac{x+y}{2}
$$
, $r = \frac{x-y}{2}$, $z' = z - w$ and $x'_{op} = x_{op} - w$

Sum over r and w stochastically, do x'_{op} and z' sums exactly

$$
G(x,x')_{\rho\rho'} = \sum_{k} \frac{1}{(2\sin k/2)^2} e^{ik(x-x')}
$$

- \bullet QED_L [\[Hayakawa and Uno, 2008\]](#page-34-3)
- Muon propagators FV (analytic), tree-level DWF with $L_s = \infty$
- • Rand'ly choose quark loop location w
- Compute 2 point source props in QCD z' , do the latter sums exactly at x,y , connect sink points at $x'_{\rm op}$ and
- $\frac{A}{A}$ s is $\frac{A}{B}$ is shown in Appendix requires of the short requires $\frac{A}{B}$ $t_{\rm src}$, $t_{\rm snk} = w^0 \pm \frac{T}{2}$ for each w
- \bullet Do sums over r, w (x, y) configurations then yields $\mathcal{M}_{\nu}(\vec{q})$ stochastically, average over QCD

vanishes in the limit that \sim 0, the limit needed to evaluate g \sim 2. The third algorithmic algori

• Use importance sampling to do sum over r efficiently (sample $|r| \lesssim 1$ fm most frequently). Empirical choice:

$$
p(|x_i-w|) \propto \begin{cases} 1 & (|x_i-w| < R) \\ 1/|x_i-w|^{3.5} & (|x_i-w| \geq R) \end{cases}
$$

The distribution of the relative distance $|r|$ between any two points drawn from this set is:

$$
P(r) = \sum_{x} p(|x-r|)p(|x|)
$$

- 2+1f DWF+I-DSDR ensemble RBC/UKQCD
- 171 MeV pion mass
- • $R = 4$, so do all points with $r = 3$ or less in [thi](#page-13-0)s [c](#page-15-0)[as](#page-13-0)[e](#page-14-0) Ω

- 6

 $2Q$

Point source method, initial results and a source \sim

Label	size	$m_{\pi} L$ m_{π} /GeV #qcdtraj t_{sep}		$F_2 \pm Err$	Cost
				$(\alpha/\pi)^3$	BG/Q rack days
161	$16^3 \times 32$ 3.87	0.423	16	16 0.1235 ± 0.0026	0.63
	241 $24^3 \times 64$ 5.81	0.423	17	32 0.2186 ± 0.0083	3.0
	241L $24^3 \times 64$ 4.57	0.333	18	32 0.1570 ± 0.0069	3.2
	32ID $32^3 \times 64$ 4.00	0.171	-47	$32 \quad 0.0693 + 0.0218$	10

Table 2. Central values and errors. $a^{-1} = 1.747 \text{GeV}$ except for 32ID where $a^{-1} = 1.371 \text{GeV}$. Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model estimation is 0.08 ± 0.02 .

Figure 13. $32^3 \times 64$ lattice, with $a^{-1} = 1.371$ GeV, $m_{\pi} = 171$ MeV, $m_{\mu} = 134$ MeV.

Current conservation

 \bullet At least one (lattice) conserved current to have convergent amplitude in continuum limit. Choose ext. photon, $J_\mu (\mathsf{x}_{\mathrm{op}})$

sulting amplitude will have the form given in Eq. (3) up to finite lattice spacing corrections.

- $\bullet \hspace{0.2cm} {\mathcal M}_{\mu} \sim \mathcal{F}_1(q) \gamma^{\mu} + i \gamma^{\mu} \gamma^{\nu} q^{\nu} \mathcal{F}_2(q) / 2m$ relies on WI
- \bullet To maintain constant signal-to-noise as $q \to 0$, Ward identity must be exact on each gauge configuration

$$
\partial_{\mu} \langle j^{\mu}(x_{op}) \bar{\psi}(x) \gamma^{\rho} \psi(x) \cdots \rangle = i \delta(x_{op} - x) \langle \bar{\psi}(x) \gamma_{\nu} \psi(x) \cdots \rangle \n-i \delta(x_{op} - x) \langle \bar{\psi}(x) \gamma_{\nu} \psi(x) \cdots \rangle + \cdots
$$

$$
\langle j^\mu(\mathsf{x}_{\mathrm{op}}) \bar{\psi}(\mathsf{x}) \gamma^\rho \psi(\mathsf{x}) \bar{\psi}(\mathsf{z}) \gamma^\nu \psi(\mathsf{z}) \bar{\psi}(\mathsf{y}) \gamma^\sigma \psi(\mathsf{y}) \rangle \;\; = \;\;
$$

 Ω

Current conservation as \sim 0, we must compute the three diagrams in Fig. 5 so that the required Ward identity of \sim

- Compute all 3 diagrams so WI exact on each configuration
- \bullet signal *and* error vanish as $q \to 0.$ Error on $F_2(q^2)$ \sim constant
- $\bullet\,$ new diagrams require (6) sequential source props
- \bullet One more trick: restrict sum over $z,$

$$
\sum_{x,y,z}\mathcal{F}_{\mu}(\mathbf{q};x,y;z,x_{\mathrm{op}}) = \sum_{\substack{x,y,z}} 3\mathcal{F}_{\mu}(\mathbf{q};x,y;z,x_{\mathrm{op}})
$$

$$
|x-y| < \min(|x-z|,|y-z|)
$$

 \bullet Skews distribution towards small r where noise is smaller, signal larger station as well.

Moment method for $F_2(0)$

∂ ∂qⁱ

• Can do calculation directly at zero momentum for large L

$$
\mathcal{M}_{\mu}(q) = \gamma_0 \Big(\frac{q^+ + m_{\mu}}{2E_{q/2}}\Big) \Big(\frac{F_2(q^2)}{2m} \frac{i}{2} [\gamma_{\nu}, \gamma_{\beta}](-q_{\beta})\Big) \Big(\frac{q^- + m_{\mu}}{2E_{q/2}}\Big) \gamma_0
$$

\n
$$
= \sum_{r} \sum_{z, x_{\text{op}}} \mathcal{F}_{\mu}(\vec{q}; -\frac{r}{2}, +\frac{r}{2}; z, x_{\text{op}})
$$

\n
$$
= \sum_{x_{\text{op}}} \exp(iq \cdot x_{\text{op}}) \mathcal{F}'_{\mu}(q, x_{\text{op}})
$$

\n
$$
\approx \sum_{x_{\text{op}}} (1 + iq \cdot x_{\text{op}}) \mathcal{F}'_{\mu}(q, x_{\text{op}})
$$

\n
$$
\approx \sum_{x_{\text{op}}} iq \cdot x_{\text{op}} \mathcal{F}'_{\mu}(q, x_{\text{op}})
$$

\n
$$
\mathcal{M}_{\nu}(\vec{q})|_{\vec{q}=0} = i \sum_{r,z, x_{\text{op}}} \mathcal{F}'_{\nu} (\vec{q}=0, r, -r, z, x_{\text{op}}) (x_{\text{op}})_{i} \sim \mathcal{F}_{2}(0)
$$

The "1" term v[a](#page-17-0)nishes [in](#page-19-0) ∞ volume, exponentia[lly](#page-17-0) [sm](#page-19-0)a[ll](#page-18-0) in [F](#page-10-0)[V](#page-23-0), Ω Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Mas: Progress on computing the hadronic light-by-light scattering co

K ロ ⊁ K 御 ≯ K 君 ⊁ K 君 ≯ … 君

 $2Q$

Excited state contamination

Usual method:

- (hadronic) external states "interpolated" far from operator insertion point x_{op}
- excited states exp. suppressed relative to ground state

Our method:

- \bullet Sum over $x_{\rm on}$
- Includes points where $t_{op} = t_{src}$ or t_{snk} or is nearby
- Origin of quark loop $x + y$ in middle of t_{src} and t_{snk} , so these contributions are exponentially suppressed.
- usual choice: $t_{snk} t_{src} = T/2$, but check for contamination with shorter separations

Point source method with all improvements

 Ω

Point source method with all improvements

5% statistical error for nearly physical pion mass!

 $\text{Cost: } 13.2 \text{ BG/Q} \text{ Rack-days}$ (Rack = 1024 nodes = 16384 cores) \mathcal{L} is similar except all three arrangements of three arrangements \mathcal{L}

to what we found were the statistical error on the statistical error on the appr[oxim](#page-20-0)[at](#page-22-0)[e](#page-26-0) [and](#page-21-0) [c](#page-22-0)[or](#page-9-0)[r](#page-27-0)[ec](#page-23-0)[ti](#page-24-0)[on](#page-6-0)[t](#page-7-0)er[ms](#page-0-0) on the approximate and correction terms on the approximate and correction terms on the approximate and correctio

 $2Q$

Continuum and ∞ volume limits in QED

0.2873 ± 0.0013

- Using all improvements
- a set using physical muon mass
- \overline{O}
	- **.** Limits quite consistent with PT result

 $2Q$

Including all improvements, statistical errors reduced by $10\times$

 \bullet quark-connected part of HLbL, $q = 2\pi/L$, 0

•
$$
a^{-1} = 1.7848
$$
 GeV, $(2.7 \text{ fm})^3$

$$
\bullet \ \ m_{\pi}=330\hspace{1mm}\text{MeV},\ m_{\mu}=190\hspace{1mm}\text{MeV}
$$

 \bullet Strong check on method(s) accidental, the lattice value has a strong dependence on mµ.

 \leftarrow

 Ω

On-going calculation: physical point ($m_{\pi} = 140$ MeV)

ALCC award on MIRA at ANL ALCF,

- Applying improved point source method to physical light quark mass $2+1f$ Möbius DWF ensemble (RBC/UKQCD)
- $(5.5~{\rm fm})^3$ QCD box, $a=0.114~{\rm fm}$ $(a^{-1}=1.7848~{\rm GeV})$
- \bullet Use AMA with 2000 low-modes, \sim 4500 sloppy props per configuration

on track to beat goal of 20% statistical error

M. Hayakawa's talk at Lattice 2015

- \bullet SU(3) Flavor (only 1 survives), Zweig suppressed
	- Requires explicit HVP subtraction when any quark loop with two photons is not connected to others by gluons
- We will not discuss disconnected diagrams in this talk. Use same importance sampling as for connected

 \bullet \bullet The gluons exchange bet[w](#page-23-0)ee[n](#page-24-0)and with \bullet and \bullet [are](#page-24-0) [no](#page-26-0)t [d](#page-25-0)[ra](#page-26-0)wn[.](#page-26-0) [C](#page-6-0)[o](#page-7-0)[m](#page-26-0)[mo](#page-0-0)[n p](#page-35-0)ractice in \bullet and \bullet in $\$ Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Masa Progress on computing the hadronic light-by-light scattering co

マーター マーティング

 $2Q$

Solving QED FV effects

- Integrand exponentially suppressed with distance between any pair of points on the quark loop. FV effect is small.
- Amplitude *not* suppressed with distance between points on muon line and loop. FV effect is large.
- Put QED in larger, perhaps ∞ , box, QCD unchanged
- use ∞ volume photon on finite box (Lehner, Lattice 2015)
- Can compute average QCD loop and do muon line once, offline, so free to experiment with size of QED box

Outline I

[Introduction](#page-1-0)

[Nature - Standard Model](#page-5-0)

2 [HLbL](#page-7-0)

- [non-perturbative QED](#page-8-0)
- **[Perturbative QED in configuration space](#page-10-0)**
- **o** [next steps](#page-24-0)

3 [Summary/Outlook](#page-27-0)

[References](#page-30-0)

御 ▶ イ君 ▶ イ君 ▶

 \leftarrow \Box

Summary/Outlook

- First calculations for connected part very promising– calculation with controlled errors clearly within reach of lattice methods.
- 5% stat. errors already for near physical pions
- FV effects large but controllable. ∞ volume limit consistent with PT. Put QCD and QED in different boxes
- Applying improved point source method to physical quark mass $2+1f$ Möbius DWF ensemble RBC/UKQCD
- Disconnected part challenging, new ideas under investigation
- Lattice important to compare (SM) with experiment

 $4.60 \times 4.75 \times 4.75 \times$

Acknowledgments

- This research is supported in part by the US DOE
- Computational resources provided by the RIKEN BNL Research Center, RIKEN, and USQCD Collaboration
- Lattice computations done on
	- Ds cluster at FNAL (USQCD)
	- USQCD BQ/Q at BNL

Outline I

[Introduction](#page-1-0)

[Nature - Standard Model](#page-5-0)

2 [HLbL](#page-7-0)

- [non-perturbative QED](#page-8-0)
- **[Perturbative QED in configuration space](#page-10-0)**
- **o** [next steps](#page-24-0)

3 [Summary/Outlook](#page-27-0)

御 ▶ イ君 ▶ イ君 ▶

 \leftarrow \Box

Aoyama, T., Hayakawa, M., Kinoshita, T., and Nio, M. (2012). 螶

Complete Tenth-Order QED Contribution to the Muon g-2. Phys.Rev.Lett., 109:111808.

Benayoun, M., Bijnens, J., Blum, T., Caprini, I., Colangelo, G., et al. (2014).

Hadronic contributions to the muon anomalous magnetic moment Workshop. $(g - 2)_\mu$: Quo vadis? Workshop. Mini proceedings.

螶 Bennett, G. et al. (2006).

Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL.

Phys.Rev., D73:072003.

Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD.

Phys.Rev.Lett., 114(1):012001.

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Mas: Progress on computing the hadronic light-by-light scattering co

イロト イ押 トイモト イモト

 \equiv

Blum, T., Christ, N., Hayakawa, M., Izubuchi, T., Jin, L., and Lehner, C. (2015b).

Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment.

in preparation.

F.

JHEP, 1409:091.

量 Colangelo, G., Hoferichter, M., Kubis, B., Procura, M., and Stoffer, P. (2014a).

Towards a data-driven analysis of hadronic light-by-light scattering. Phys.Lett., B738:6–12.

譶 Colangelo, G., Hoferichter, M., Nyffeler, A., Passera, M., and Stoffer, P. (2014b).

Remarks on higher-order hadronic corrections to the muon g?2. Phys. Lett., B735:90–91.

量 Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2014c).

Dispersive approach to hadronic light-by-light scattering.

Tom Blum (UCONN/RBRC), Norman Christ (Columbia), Mas: Progress on computing the hadronic light-by-light scattering co

イロメ イ母メ イヨメ イヨメーヨー

F. Colangelo, G., Hoferichter, M., Procura, M., and Stoffer, P. (2015).

Dispersion relation for hadronic light-by-light scattering: theoretical foundations.

Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2011).

Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ).

Eur.Phys.J., C71:1515.

F

ā.

Gnendiger, C., Stckinger, D., and Stckinger-Kim, H. (2013).

The electroweak contributions to $(g - 2)$ _u after the Higgs boson mass measurement.

Phys.Rev., D88:053005.

Green, J., Gryniuk, O., von Hippel, G., Meyer, H. B., and Pascalutsa, V. (2015).

Lattice QCD calculation of hadronic light-by-light scattering.

Hagiwara, K., Liao, R., Martin, A. D., Nomura, D., and Teubner, T. (2011). K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 $2Q$

$(g-2)_{\mu}$ and alpha (M_Z^2) re-evaluated using new precise data. J.Phys., G38:085003.

ā.

Hayakawa, M. and Uno, S. (2008).

QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons.

Prog.Theor.Phys., 120:413–441.

S. Jegerlehner, F. and Nyffeler, A. (2009).

The Muon g-2.

Phys. Rept., 477:1–110.

Kurz, A., Liu, T., Marquard, P., and Steinhauser, M. (2014).

Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order.

Phys.Lett., B734:144–147.

E. Pauk, V. and Vanderhaeghen, M. (2014b).

Two-loop massive scalar three-point function in a dispersive approach.

Prades, J., de Rafael, E., and Vainshtein, A. (2009).

Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment.

 $4.50 \times 4.70 \times 4.70 \times$

 4.17 ± 1.0