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Introduction
BSM Operators

Standard model CP violation in the weak sector.
Anomalously small strong CP violation from dim 3 and 4.

# Dimension 3 and 4:
» CP violating mass
» Toplogical charge
e Suppressed by vpw /Magy:
« Electric Dipole Moment )%, F#"4).
» Chromo-electric Dipole Moment 4%, G/ 1.
® Suppressed by 1/M3q:
« Weinberg operator (Gluon chromo-electric dipole moment):
GGG
» Various four-fermi operators.
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Introduction

Dimensions 3 and 4

Consider the chiral and CP violating parts of the action
L D dO¢, where i is flavor and « is operator index.
Consider only one chiral symmetric CP violating term:
Convert to polar basis
d; = \di\ew?’ _ Y 0 Q| Im OF|m)
22U ZIm OF|7)

Then CP violation is proportional to:
a1 =1 -
f\di]ImE with d_zi:di @_@Zi:@

CP violation depends on ©) and on a mismatch of phases
between d¢ and d;.
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Lattice QCD
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Systematics summary

Lattice is a nonperturbative formulation of QCD.

Lattice uses a hard regulator:

Yy — oW (p)o,

where W (p) is a periodic function:

W(p) = W(p+2ma™').

Hard regulators introduce a scale and allow mixing with lower

dimensional operators.

Hard regulators are unambiguous: no renormalon problem.
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Ultraviolet divergence regulated by the periodicity:
w(m+1)/a w/a

dp = ‘/) dp — dp
/— mZoo (m—1)/a —7/a

Infrared controlled by calculating in a finite universe.
2 2mn
[ aose) » SO )

Real world reached by
lim
L—00
a—0

Current calculations a ~ 0.05—0.15 fm and L ~ 3-5 fm.
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Lattice

Euclidean Space

Equal-time vacuum matrix elements of Weyl-ordered operators.
To extract (n|O|n):

Tre PHpe HTr Qe HTipt
= e PEs (s|he HTr Qe ~HTipT|s)
S (@lalng)e M g |0fng)e T (n|aT|)
T,.,.TT;oc (n|O|n)e=Mo(Tit+Ts)
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Lattice
Lattice Basics
We can extract nEDM in two ways.

* As the difference of the energies of spin-aligned and
anti-aligned neutron states:

# By extracting the CP violating form factor of the
electromagnetic current.

|B=Et

F 2
(n]JM|n) 23]&5 )ﬁqua“”%n
n
. F3(¢?)
dy = lim 24
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Difficult to perform simulations with complex GP action

Expand and calculate correlators of the GP operator:

(CF(@,y,...) Yopror = / [DA] exp _ / d4x(£<>"+£9*‘)]

1%

XCW(QJ Yy.o.)

/[DA] exp / d4xﬁcp]

X <1 - /d‘*xcﬁf‘) C(z,y,...)

= < CQF(('%y? .. ) ﬁpﬁ(pu = 0) >CP
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Lattice

Systematics summary

o Number of quarks 2+1
Isospin breaking beyond current calculations.
Charm is sometimes included.

® Quark mass My min < 200 MeV.

May be possible to work at the physical point.
At least, xPT from M, < 400 MeV.

e Discretization a < 0.1 fm (2/3 points)
Discretization errors differ in different schemes.
May be problematic if all points @ > 0.1 fm.

e Volume ML > 4

Atleast M L > 3. OKif exp(— M, L) at 3 masses.

* Renormalization Nonpeturbative matching

At least improved 1-loop perturbation theory.

® Excited states teep max > 1.5 fm

At least tsep > 1.2 fm. Extrap from 3 t5ep OK.

» Disconnected diagrams
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Quark EDM

Quark EDM

{ _
LD —3 Z dqqo Y59 F*
Note that 0,75 em,agaaﬁ.
dv = Y dg(N|gouwa|N) = dygf

gr calculated on the lattice:
Bhattacharya, Cirigliano, Gupta, Lin, Yoon, arXiv:1506.04196 [hep-lat]

Bhattacharya, Cirigliano, Cohen, Gupta, Joseph, Lin, Yoon arXiv:1506.06411 [hep-lat]

a € [0.06,0.12] fm, m, € [130,310] MeV, m,L € [3.3,5.5]
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Excited states

CoP' = | Ao|*(0|T|0)e~Motser 4 | Ay

2
_ASAl<0‘T|1>67Motms7Ml(l/sapflms) +
‘A’{AO<1‘T|O>€_1\']ltzns_A]O(tsep_t'zins)

1>671\f’[1t5@p +

Top line has no dependence on t;,,: need multiple t).
A and M can be obtained from 2-pt functions.
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Excited states

Quark EDM

a12m310

Exrap

sep

—a
ep
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Quark EDM

Renormalization

RI-SMom scheme: Nonexceptional symmetric momentum
matrix element has tree-level value.

q(GeV) q(GeV)
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Extrapolation

—MnL

gr = c1 +c2a +c3 M;Zr + cqe

010 O ) 003 006 009 012
a(fm) M,? (Gev?)

M?2

n 7’2) +cga+cg]\[i + (:457‘MWL

010 0. 70 003 006 009 012
a(fm) M,? (Gev?)
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Extrapolation

003 006 009 012
M2 (Gev?)

0 003 006 009 012
a(fm) M,? (Gev?)

0.05 . ’ 003 006 009 0.12
a(fm) M,? (GeV?)
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Quark EDM
Extrapolation

dy <2.9%x 107 ecm [90% CL]
gr=0

“1 0 1
dg (107%° ecm)

Tanmoy Bhattacharya EDMs from Ogim>a4




Quark EDM

Comparison

Quark EDM

Comparison

PE2GeV P! U=2GeV® P=2GeV p=IGeV p=32GeV

PNDME '15

TRANSVERSITY

W ©

[1] Bhattacharya et al. 2015 [2] Pospelov-Ritz 2000
[3] Pitschmann et al. 2014 [4] Bacchetta et al. 2013
[5] Anselmino et al. 2013 [6] Kang et al. 2015
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Operator basis:
g Gt o
Lo Flu, {Q, t°} ¢
Tr [MQ%t%] 1 Tr [Mt?]
Tr [Mt] 9, ( ) 30 (
Tr [M?]

1
2
Tr [Mt?]

Renormalization and Mixing
Schwinger source method
Lattice implementation
Numerical tests

1
p)

) | traceless

Weyst®ys  Redy [Ypyhyst™y]
Re¢ys@t°yr  Re L4 {Q,t*} A 595
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RI-SMom Conditions:

(%)= (% 2)(%)
N ren 0 ZN N bare

O: Gauge-invariant operators, does not vanish by equation of
motion.
N: Gauge-dependent operators, restricted by BRST, vanish by

equation of motion.

Impose conditions on matrix elements of quarks and gluons:
® Use MS quark masses in the expansion.
® Three point functions at p2 = p’2 = ¢2 = —A? < 0 (RI-SMOM).
® Fourpointfunctionsatp? = p/2 = k2 = ¢ = s = u = t/2 = —A2.

This choice eliminates most non-1PI contributions.

(See arXiv:1502.07325 [hep-ph]).
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Quark CEDM

Schwinger source method

The quark chromo-EDM operator is a quark bilinear.
Add it to the Dirac operator in the propagator inversion routine:

P +m— 2D + o TGy — B+ — £ D? + T (0 G + 66G)
The fermion determinant gives a ‘reweighting factor’

det(Ip +m — 5 D? + SH (cey Gy + 1€G 1)
det(D +m — 5D2 + ¢4, 247 G,)

= expTrin [1 + € Z’”’éw(m +m — gDZ + cswz“”Gw)_l}

Q

exp [ie Te S G (D +m — gDQ I CswszW)_l] .
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Schwinger source method

Quark CEDM

3-point function

The chromoEDM operator is dimension 5.
Uncontrolled divergences unless ¢ < 4raAqep ~ 1.
Need to check linearity.
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Quark CEDM

Lattice implementation

Using BiCGStab in Chroma (ciover on HisQ a ~ 0.12fm, m. ~ 310Mev)
e Cost of ) increases by about 7%.
# Condition number changes by less than 5%.
e Can use ¢ = 0 as initial guess.
Each extra inversion less than the cost of the € = 0 inversion.

Accuracy ¢e¢=0.005 ¢=0.01

10-8 85% 86%
1073 51% 66%
5x 1073 28% 45%

Calculation of connected EDM measurement on each
configuration is about 1.5 times the cost of V/A form factors
measurements.
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Quark CEDM

Numerical tests

Clover-on-HISQ
a=0.12 fm, m; =310 MeV
60 meas x 125 confs

mmm@w%%

@
[E4]

Propagator = exp(—ia~ys)(p + m)exp(—ia~ys); Preliminary; Connected Diagrams Only
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CrENsEENY Numerical tests

Clover-on-HISQ
a=0.12 fm, m; =310 MeV

60 meas x 25 confs

Preliminary; Connected Diagrams Only
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CrENsEENY Numerical tests

€

Clover-on-HISQ ’ Clover-on-HISQ
a=0.12 fm, m;=310 MeV' . a=0.12 fm, m; =310 MeV
Preliminary!! 60 meas x 212 confs Preliminary!! 60 meas x 212 confs

Preliminary; Connected Diagrams Only

® Connected F3 does not get contribution from dim © < 5.
® Observed F3 from CQEDM, QEDM, or will vanish on extrapolation.

® Perturbative subtraction of QEDM contribution possible, and determination of proportionality possible.

Tanmoy Bhattacharya EDMs from Ogim >4



Introduction
Lattice

Quark EDM Summary
Quark CEDM
Conclusions
Conclusions
Summary

® QEDM contributions from u, d, and s quarks under control.
* Methods developed for QCEDM.
* Study of systematics for QCEDM needed.
* Most divergent mixing with
nEDM due to this same as due to

Current estimates of nEDM due to

e CEDMMS = 0(1)

at a ~ 0.1fm.

Expect O(1-10) cancellation. Important for disconnected diagrams.

# Chiral symmetry does not remove this mixing.
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