Baryon Number Violation Overview

K.S. Babu Oklahoma State University

INT Workshop

"QCD for New Physics at the Precision Frontier"

September 28 – October 2, 2015

Outline

- Baryon Number Violation: Motivations
- Nucleon decay: Theory and Models $(|\Delta B| = 1)$
- Neutron-antineutron oscillations $(|\Delta B| = 2)$
- Connection with Baryogenesis at high scale

Stability of Matter

Proton stability is not guaranteed by any fundamental symmetry (unlike electron, lightest neutrino or photon)

$$p o e^+ \pi^0$$

Hermann Weyl postulated in 1929 Baryon Number symmetry Intensely studied by many experiments

$$au(p o e^+\pi^0) > 1.3 imes 10^{34} ext{ yrs}$$

SuperKamiokande

Why do we expect proton would decay?

Baryon Number postulated as a symmetry of Nature to stabilize matter

Weyl (1929), Stueckelberg (1939), Wigner (1949)

Unlike electric charge, which guarantees stability of electron, B is not a "fundamental" symmetry

Weak interactions violate B non-perturbatively 't Hooft (1977)

Quantum gravity suspected to violate all global symmetries such as ${\cal B}$

Baryon number violation essential for creation of matter asymmetry of the Universe Sakharov (1967)

Most extensions of Standard Model, notably Grand Unified Theories, lead to baryon number violation

Unification of Forces and Matter

Electromagnetic, weak and strong forces share identical structure: all belong to gauge theories with unitary symmetry

The high energy behavior of these theories support unification idea

Ordinary matter – quarks and leptons – fit neatly within multiplets of the unified symmetry

Unified theories are more predictive, many predictions agree with observations

Nucleon decay is the missing link; its discovery would be monumental

Evolution of gauge couplings with energy

Gauge coupling unification without supersymmetry

Intermediate Pati-Salam symmetry: $SU(2)_L \times SU(2)_R \times SU(4)_c$ May be identified as the Peccei-Quinn symmetry breaking scale

More Hints in favor of Unification

- Electric charge quantization
 - \diamond $Q_p = -Q_e$ to better than 1 part in 10^{21}
- Miraculous cancellation of anomalies
- Quantum numbers of quarks and leptons
- Existence of ν_R and thus neutrino mass
- Unification of gauge couplings with low energy SUSY
- $b-\tau$ unification
- Baryon asymmetry of the universe

Unifying Forces and Matter

First successful attempt by Pati and Salam (1973) Based on $SU(4)_c \times SU(2)_L \times SU(2)_R$ gauge symmetry

$$\psi_L = \begin{pmatrix} u_1 & u_2 & u_3 & e \\ d_1 & d_2 & d_3 & \nu \end{pmatrix}_L, \quad \psi_R = \begin{pmatrix} u_1 & u_2 & u_3 & e \\ d_1 & d_2 & d_3 & \nu \end{pmatrix}_R$$

Lepton number identified as fourth color

Scale of
$$SU(4)_c$$
 breaking $>$ 2300 TeV $(K_L \rightarrow \mu e)$

Baryon number violation occurs via scalar exchange with $|\Delta B| = 2$ selection rule

 $n-\overline{n}$ oscillation occurs without proton decay

Unification in SU(5)

More complete unification of forces and matter discovered in SU(5) by Georgi and Glashow (1974)

$$\mathbf{10}: \begin{pmatrix} 0 & u_3^c & -u_2^c & u_1 & d_1 \\ -u_3^c & 0 & u_1^c & u_2 & d_2 \\ u_2^c & -u_1^c & 0 & u_3 & d_3 \\ -u_1 & -u_2 & -u_3 & 0 & e^c \\ -d_1 & -d_2 & -d_3 & -e^c & 0 \end{pmatrix} \qquad \mathbf{\overline{5}}: (d_1^c, d_2^c, d_3^c, e, -\nu_e)$$

Quarks and leptons are unified

Particles unify with antiparticles ⇒ Matter is unstable

$$p \rightarrow e^+ \pi^0 \,\, {\rm decay}$$

Matter Fields in SO(10)

SO(10) theories contain Pati-Salam and SU(5) features All particles and antiparticles are unified in 16

Frist 3 spins refer to color, last 2 are weak spins $Y = \frac{1}{3}\Sigma(C) - \frac{1}{2}\Sigma(W)$

 ν^c state crucial for neutrino mass generation

$$egin{array}{lll} Q &=& egin{pmatrix} u_1 & u_2 & u_3 \ d_1 & d_2 & d_3 \end{pmatrix} \sim (3,2,rac{1}{6}) \ & \ u^c &=& (u_1^c & u_2^c & u_3^c) \sim (\overline{3},1,-rac{2}{3}) \end{array}$$

Standard Model

$$egin{array}{lll} u^c &=& (u^c_1 & u^c_2 & u^c_3) \sim (\overline{3},1,-1) \ d^c &=& (d^c_1 & d^c_2 & d^c_3) \sim (\overline{3},1,rac{1}{3}) \ L &=& \left(rac{
u}{e^-}
ight) \sim (1,2,-rac{1}{2}) \ e^c &\sim (1,1,+1) \ &
u^c &\sim (1,1,0) \end{array}$$

Nucleon Decay in SUSY GUTs

Gauge boson exchange

$$\Gamma^{-1}(p \to e^{+}\pi^{0}) = (2.0 \times 10^{35} \text{ yr})$$

$$\times \left(\frac{\alpha_{H}}{0.01 \text{ GeV}^{3}}\right)^{-2} \left(\frac{\alpha_{G}}{1/25}\right)^{-2} \left(\frac{A_{R}}{2.5}\right)^{-2} \left(\frac{M_{X}}{10^{16} \text{ GeV}}\right)^{4}$$

$$(-2\alpha_3^{-1} - 3\alpha_2^{-1} + 3\alpha_Y^{-1})(M_Z) = \frac{1}{2\pi} \left\{ 36 \ln \left(\frac{M_X}{M_Z} \left(\frac{M_\Sigma}{M_X} \right)^{1/3} \right) + 8 \ln \left(\frac{M_{\rm SUSY}}{M_Z} \right) \right\}$$

 M_{Σ} : Heavy color octet mass, uncertain: Threshold effect

 $\frac{M_{\Sigma}}{M_X} \leq 1.8$ (perturbation theory)

Hisano, Murayama, Yanagida (1993) Nath, Perez, Phys. Rept. (2007)₁₂

Supersymmetric nucleon decay mode

$$p \to \bar{\nu}K^+$$

$$\tau_p^{-1} \approx \left[\frac{f^2}{M_{Hc}M_{SUSY}}\right]^2 \left(\frac{\alpha}{4\pi}\right)^2 m_p^5 \approx \left[10^{28} - 10^{32}yr\right]^{-1}$$

Proton decay problem in minimal SUSY SU(5)

SU(5) symmetry broken by an adjoint **24** Higgs

Electroweak Higgs doublets are contained in ${f 5}+{f ar 5}$

 $\mathbf{5} + \overline{\mathbf{5}}$ Higgs contain color triplet components which mediate proton decay

Gauge coupling unification prefers color triplet mass $< 7 \times 10^{14} \text{ GeV}$

$$\Gamma_{d=5}^{-1}(p o \bar{\nu}K^{+}) \simeq 1.2 \cdot 10^{31} \, \mathrm{yrs} \times \left(\frac{0.012 \, \mathrm{GeV^3}}{\beta_H}\right)^2 \left(\frac{7}{\bar{A}_S^{\alpha}}\right)^2 \left(\frac{1.25}{R_L}\right)^2 \times \left(\frac{M_T}{2 \cdot 10^{16} \, \mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1.5 \, \mathrm{TeV}}\right)^4 \left(\frac{190 \, \mathrm{GeV}}{M_{\tilde{W}}}\right)^2$$

 β_H : Hadronic matrix element

Super-Kamiokande Limit: $\tau > 5.9 \times 10^{33}$ yr.

Proton Lifetime in Realistic SUSY SU(5)

Minimal SU(5) mass relations $m_b^0=m_\tau^0,\ m_s^0=m_\mu^0,\ m_d^0=m_e^0$ (at GUT scale) are not consistent with data

Simplest way to fix is to add $5 + \overline{5}$ fermion at GUT scale

$\Gamma_{d=5}^{-1}(p \to \bar{\nu}K^+)$	$4 \cdot 10^{33} \text{ yrs.}$	
$\Gamma_{d=5}^{-1}(n\to \bar{\nu}K^0)$	$2 \cdot 10^{33} \text{ yrs.}$	
$\Gamma_{d=5}^{-1}(p \to \mu^+ K^0)$	$1.0 \cdot 10^{34} \text{ yrs.}$	
$\Gamma_{d=5}^{-1}(p \to \mu^+ \pi^0)$	$1.8 \cdot 10^{34} \text{ yrs.}$	
$\Gamma_{d=5}^{-1}(p\to \bar{\nu}\pi^+)$	$7.3 \cdot 10^{33} \text{ yrs.}$	
$\Gamma_{d=5}^{-1}(n \to \bar{\nu}\pi^0)$	$1.5 \cdot 10^{34} \text{ yrs.}$	

Babu, Bajc, Tavartkiladze (2012)

Non-supersymmetric SO(10)

Unlike SU(5), SO(10) allows an intermediate symmetry

$$SO(10) o SU(4)_c imes SU(2)_L imes SU(2)_R imes P$$
 Pati-Salam symmetry

Unification of gauge couplings consistent with data

Intermediate scale may be identified as Peccei-Quinn scale to solve strong CP problem

Proton decays via exchange of SO(10) gauge bosons Lifetime within reach of currently envisioned experiments

Rich literature:

Rizzo, Senjanovic (1980)
Mohapatra, Parida (1993)
Deshpande, Keith, Pal (1995)
Lee, Mohapatra, Parida, Rani (1995)
Bertolini, Luzio, Malinsky (2012)
Altarelli, Meloni (2013)
Babu, Khan (2013)

Gauge coupling evolution in non-SUSY SO(10)

Intermediate symmetry: $SO(10) \rightarrow SU(4)_c \times SU(2)_L \times SU(2)_R \times P$

Nucleon Decay in non-SUSY SO(10)

SO(10) breaks to an intermediate Pati–Salam symmetry $SU(2)_L \times SU(2)_R \times SU(4)_c \times P$

Proton decays to $e^+\pi^0$ via GUT scale X,Y gauge boson exchange

$$\Gamma^{-1}(p \to e^{+}\pi^{0}) \approx (8.2 \times 10^{34} \text{ yr})$$

$$\times \left(\frac{\alpha_{H}}{0.0122 \text{ GeV}^{3}}\right)^{-2} \left(\frac{\alpha_{G}}{1/34.7}\right)^{-2} \left(\frac{A_{R}}{3.35}\right)^{-2} \left(\frac{M_{X}}{10^{16} \text{ GeV}}\right)^{4}$$

Threshold corrections play important role

GUT symmetry breaking via 126 and 54

Proton lifetime versus intermediate scale

$$au_p < 3 imes 10^{35} ext{ yrs.}$$

SUSY SO(10) with Natural Doublet-Triplet Splitting

Babu, Pati, Tavartkiladze (2010)

Higgs sector:
$$\{45_H + 10_H + 16_H + \overline{16}_H + 16'_H + \overline{16}'_H\}$$

$$W_{D-T} = \lambda (10_H 45_H 10'_H) + M' 10'_H 10'_H$$

Adjoint VEV along B-L gives mass only to color triplets and not to doublets

(Dimopoulos-Wilczek mechanism)

Dimopoulos, Wilczek (1981) Babu, Barr (1993) Barr, Raby (2000)

Correlation between proton decay modes

$$\begin{split} M_{\rm eff} \simeq 10^{19} {\rm GeV} \cdot \left(\frac{10^{16} {\rm GeV}}{M_X}\right)^3 \left(\frac{3}{\tan\beta}\right) \left(\frac{1/100}{r}\right) \frac{\exp[2\pi(\Delta_{2,w}^{(2)} - \Delta_{3,w}^{(2)} - \delta\alpha_3^{-1})]}{2.54 \cdot 10^{-2}} \; . \\ r \equiv \frac{M_\Sigma}{M_X} \approx \left(\frac{1}{100} - \frac{1}{300}\right) \end{split}$$

Proton Lifetime Predictions

$$\Gamma_{d=6}^{-1}(p \to e^+\pi^0) \simeq 1.0 \times 10^{34} \, \mathrm{yrs} \left(\frac{0.012 \mathrm{GeV^3}}{\alpha_H}\right)^2 \left(\frac{2.78}{A_R}\right)^2 \left(\frac{5.12}{f(p)}\right) \left(\frac{1/20}{\alpha_G(M_X)}\right)^2 \left(\frac{M_X}{6.24 \times 10^{15} \mathrm{GeV}}\right)^4$$

$$\begin{split} \Gamma_{d=5}^{-1}(p \to \bar{\nu} K^+) &= 3.5 \times 10^{33} \mathrm{yrs} \left(\frac{0.012 \mathrm{GeV}^3}{|\beta_H|} \right)^2 \left(\frac{6.91}{\bar{A}_S^\alpha} \right)^2 \left(\frac{1.25}{R_L} \right)^2 \left(\frac{M_{\mathrm{eff}}}{3.38 \times 10^{19} \mathrm{GeV}} \right)^2 \times \\ &\times \left(\frac{m_{\tilde{q}}}{1.5 \mathrm{TeV}} \right)^4 \left(\frac{130}{m_{\tilde{W}}} \right)^2 \left(\frac{3.1}{K_{d=5}^\nu} \right) \; . \end{split}$$

Imposing the correlation equation we obtain the predictions:

$$\Gamma_{d=6}^{-1}(p \to e^{+}\pi^{0}) \lesssim 5.3 \times 10^{34} \text{ yrs}$$

$$\Gamma^{-1}(p \to \overline{\nu}K^{+}) \lesssim (3.1 \times 10^{34} \text{ yrs}) \times \left(\frac{m_{\tilde{q}}}{1.5 \text{ TeV}}\right)^{4} \left(\frac{130 \text{ GeV}}{m_{\tilde{W}}}\right)^{2} (3/\tan\beta)^{2}$$

Both modes should be within reach of experiments!

Unification of gauge couplings in SUSY SO(10)

Gauge coupling evolution in explicit SO(10) model

Proton Lifetime Expectations

Neutron-antineutron Oscillations

In presence of baryon number violation neutron can spontaneously convert into antineutron

Kuzmin (1970), Glashow (1979), Marshak, Mohapatra (1980)

Violates B by two units: Likely analog of L violation by two units in neutrino Majorana mass

Generated by effective dimension 9 operatos such as

$$\mathcal{L}_{\mathsf{eff}} = \frac{1}{\Lambda^5} (u_R d_R u_R d_R d_R d_R)$$

Experiments sensitive to cut-off scale $\Lambda \sim 10^5-10^6$ GeV

Probes a different sector of B violation compared to proton decay which tests $|\Delta B| = 1$

 $n-\overline{n}$ oscillations may be the source of baryon asymmetry of the Universe

Discovery of $n - \overline{n}$ oscillations would likely rule out high scale models of baryon asymmetry generation (e.g. leptogenesis)

Neutron-antineutron Oscillations Phenomenology

Time evolution of a neutron in presence of $\Delta B = 2$ interactions:

$$i\hbar \frac{\partial}{\partial t} \left(\begin{array}{c} n \\ \bar{n} \end{array} \right) = \left(\begin{array}{cc} E_n & \delta m \\ \delta m & E_{\bar{n}} \end{array} \right) \left(\begin{array}{c} n \\ \bar{n} \end{array} \right)$$

Probablility of n oscillating into \overline{n} at time t is

$$P_{n\to\bar{n}}(t) = \frac{(\delta m)^2}{\Delta E_n^2 + (\delta m)^2} \sin^2 \{ \sqrt{\Delta E_n^2 + 4(\delta m)^2} t \}$$

$$E_n = m_n - \vec{\mu}_n \cdot \vec{B} + V_n, \qquad E_{\bar{n}} = m_n + \vec{\mu}_n \cdot \vec{B} + V_{\bar{n}}$$

$$\Delta E_n = E_n - E_{\bar{n}} = -2\vec{\mu}_n \cdot \vec{B} + V_n - V_{\bar{n}}$$

For $\delta m \ll \Delta E_n$, this expression reduces to:

$$P_{\overline{n}} \simeq \left(\frac{\delta m}{\Delta E_n}\right)^2 \sin^2(\Delta E_n t)$$

Case (i): $\Delta E_n t \ll 1$: In this case

$$P_{n \to \bar{n}}(t) \simeq (\delta m \cdot t)^2 \equiv \left(\frac{t}{\tau_{n-\bar{n}}}\right)^2$$

This case corresponds to free neutron oscillation in vacuum

Case (ii): $\Delta E_n \cdot t \gg 1$: $P_{n \to \bar{n}}(t) \simeq \frac{1}{2} \left(\frac{\delta m}{\Delta E} \right)^2$

This is realized when bound neutrons inside nucleus "oscillates" to antineutrons

$$au_{Nuc.} = R(\tau_{n-\bar{n}})^2 \qquad R \simeq 0.3 \times 10^{24} \text{ sec.}^{-1}$$

Friedman, Gal (2008)

Expt	source of neutrons	$ au_{Nucl.}(yrs)$	$ au_{osc.}(extsf{sec})$
Soudan	^{56}Fe	0.72×10^{32}	1.3×10^{8}
Frejus	^{56}Fe	0.65×10^{32}	1.2×10^{8}
Kamiokande	16 _O	0.43×10^{32}	1.2×10^{8}
Super-K	^{16}O	1.77×10^{32}	2.3×10^{8}

Free neutrons: $\tau_{n-\bar{n}} > 0.86 \times 10^8$ sec. (ILL, 1994)

Some Recent Developments in n-nbar Oscillations

Spin dependence in oscillations has been incorporated

Gardner, Jafari (2014)

Neutron-antinutron oscillation signals can be used to constrain Lorentz invariance violation of order 10^{-23} GeV

Babu, Mohapatra (2015)

It has been realized that free neutron—antineutron oscilation would also imply violation of CP symmetry (assuming CPT and Lorentz symmetry)

Berezhiani, Vainshtein (2015)

Baryogenesis and n-nbar oscillations in SO(10)

In SU(5) decays of heavy gauge bosons of color triplet scalars can generate baryon asymmetry

This asymmetry is however washed out by electroweak sphalerons since (B-L) is preserved

In SO(10), color sextet scalar decays can lead to sphaleron-proof baryon asymmetry K.S. Babu, R.N. Mohpatra (2012)

Recently it has been noted that non-SUSY SO(10) provides a natural dark matter candidate due to B-L symmetry

Mambrini, Nagata, Olive, Quivillon, Zheng (2015)

Minimal SO(10) can provide dark matter, n-nbar oscillations, proton decay, and LHC signals for colored scalars!

TeV-scale Color Sextet scalar and unification

 $\Delta_{u^cd^c}(6^*,1,1/3)$ scalar and a (1,3,0) fermion at 1 TeV (1,3,0) fermion stable dark matter with mass 2.7 – 3 TeV K.S. Babu, R.N. Mohpatra (2012)

Baryongenesis via Color sextet decay

 $\Delta_{d^cd^c}$: GUT mass; $\Delta_{u^cd^c}$: TeV mass

Minimal SO(10) models have two $\Delta_{d^cd^c}$ (from **126** and **54**) and one $\Delta_{u^cd^c}$

(B-L) asymmetry of the right order induced

Baryongenesis via Color sextet decay (cont.)

(B-L) asymmetry parameter ϵ_{B-L} :

$$\epsilon_{B-L} = (r - \overline{r})(B_1 - B_2)$$

r is branching ratio for $\Delta_{d^cd^c} o \Delta_{u^cd^c}^* \Delta_{u^cd^c}^*$ \overline{r} is branching ratio for $\Delta_{d^cd^c}^* o \Delta_{u^cd^c}^* \Delta_{u^cd^c}^*$

$$B_1 = -4/3$$
, $B_2 = 4/3$ (B – L of two final states)

$$\eta = rac{n_B}{s} \simeq rac{\epsilon_{B-L}}{g^*} d$$

$$\epsilon_{B-L} \simeq rac{2}{\pi |\lambda v_R|^2} {\sf Tr}(f^\dagger f) {\sf Im}[(\lambda v_R)(\lambda' v_R)^*] F \cdot {\sf Br}$$

$$F = \frac{M_{d^c d^c}^2}{M_{d^c d^c}^2 - M_{d^c d^c}'^2}$$

 $\eta_B pprox 10^{-10}$ naturally generated

Baryogenesis and n-nbar oscillations

A (B-L) Triangle

Electroweak sphaleron/instanton induced effective operator:

$$QQQQQQQLLL = [uddudd] [uude] [\nu\nu]$$

 $[uddudd]: n-\overline{n} \text{ oscillations} \qquad [uude]: p \to e^+\pi^0$

 $[\nu\nu]:\beta\beta_{0\nu}$

Discovery of $n-\overline{n}$ transition and $p\to e^+\pi^0$ would imply neutrinos are Majorana fermions!

Summary and Conclusions

- Grand Unification idea very appealing and promising
- Proton decay discovery will be a monumental and maybe within experimental reach soon
- Both $p \to e^+ \pi^0$ and $p \to \overline{\nu} K^+$ may be observable
- Large undergound detectors (HyperK, DUNE) essential to test theories
- Neutron—antineutron oscillations test a different sector of theory space
- Observable $n-\overline{n}$ oscillations may be linked to baryon asymmetry of the universe

Proton decay problem in minimal SUSY SU(5)

$$\ln \frac{M_T}{M_Z} = \frac{5\pi}{6} \left(3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) - (\alpha_1^{-1} + \Delta_{1,w}^{(2)}) \right) - \ln \kappa^{5/2}$$

$$\ln \frac{\left(M_X^2 M_\Sigma\right)^{1/3}}{M_Z} = \frac{\pi}{18} \left(5(\alpha_1^{-1} + \Delta_{1,w}^{(2)}) - 3(\alpha_2^{-1} + \Delta_{2,w}^{(2)} - \frac{1}{6\pi}) - 2(\alpha_3^{-1} + \Delta_{3,w}^{(2)} - \frac{1}{4\pi}) \right) + \frac{1}{6} \ln \kappa$$

 $\Delta_{i,w}^{(2)}$: SUSY threshold and 2-loop RGE efects $\kappa \equiv \frac{M(8,1,0)}{M(1,3,0)} = 1$

If $\kappa = 1$, $M_T < 7 \times 10^{14}$ GeV is needed for $\alpha_3(M_Z) < 0.12$

$$\Gamma_{d=5}^{-1}(p o \bar{\nu}K^{+}) \simeq 1.2 \cdot 10^{31} \, \mathrm{yrs} \times \left(\frac{0.012 \, \mathrm{GeV^3}}{\beta_H}\right)^2 \left(\frac{7}{\bar{A}_S^{\alpha}}\right)^2 \left(\frac{1.25}{R_L}\right)^2 \times \left(\frac{M_T}{2 \cdot 10^{16} \, \mathrm{GeV}}\right)^2 \left(\frac{m_{\tilde{q}}}{1.5 \, \mathrm{TeV}}\right)^4 \left(\frac{190 \, \mathrm{GeV}}{M_{\tilde{W}}}\right)^2$$

Super-Kamiokande Limit: $\tau > 5.9 \times 10^{33}$ yr.

Proton Lifetime in Realistic SUSY SU(5)

Minimal SUSY SU(5) provides a benchmark point for proton lifetime

Minimal SU(5) predicts some wrong mass relations

$$m_b^0 = m_{ au}^0, \ m_s^0 = m_{\mu}^0, \ m_d^0 = m_e^0$$
 (at GUT scale)

$$\Rightarrow rac{m_d}{m_s} = rac{m_e}{m_\mu}$$
 Off by an order of magnitude

This problem should be fixed before discussing $p \to \overline{\nu} K^+$ rate

Simplest way is to add $5 + \overline{5}$ fermion at GUT scale

Mixing of $5 + \overline{5}$ fermions with normal fermions correct wrong mass relations, and improves proton lifetime