Numerical Holography and Heavy Ion Collisions

Laurence Yaffe University of Washington

based on work with Paul Chesler

Equilibration in Weakly and Strongly Coupled QFT, INT, August 20, 2015

Thursday, August 20, 15

relativistic heavy ion collisions

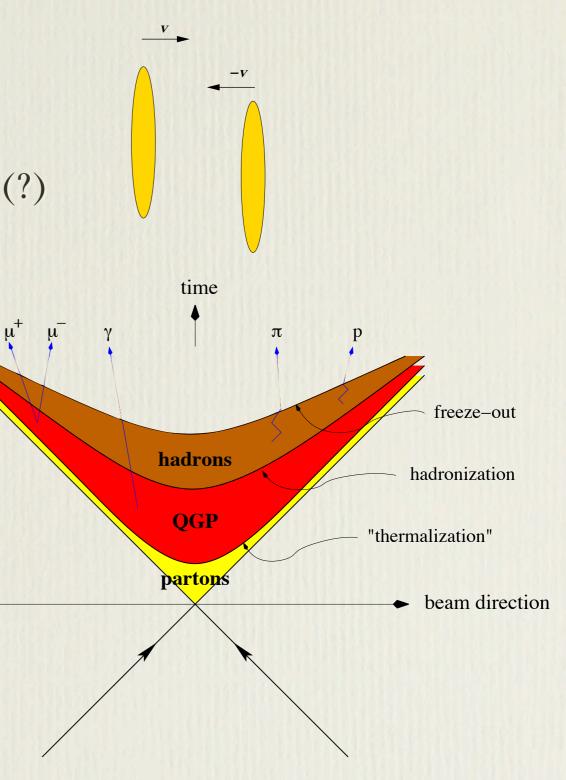
Relevant dynamics:

Very early: partonic, marginally perturbative (?)
Plasma phase: strongly coupled
Evidence: screening lengths, viscosity, ...

Many questions:

How fast do produced partons isotropize? Initial conditions for hydrodynamics? Signatures of strongly coupled dynamics?

No fully controlled theoretical methods.



idealize

QCD \checkmark $\mathcal{N}=4$ SYM# colors $N_c = 3$ \checkmark $N_c = \infty$ 't Hooft coupling $\lambda \approx 10$ \checkmark $\lambda \gg 1$ highly boosted nuclei \checkmark lightlike projectiles

non-Abelian plasma
 hydrodynamic response
 no hadronization
 conformal
 dual holographic description

holography

- strongly coupled, large NQFT = classical (super)gravity in higher dimension
 - valid description on all scales
 - gravitational fluctuations: $1/N^2$ suppressed
 - QFT state + asymptotically AdS geometry
 - $O(N^2)$ entropy \Rightarrow gravitational (black brane) horizon
 - thermalization
 gravitational infall, horizon formation & equilibration
 - non-equilibrium QFT dynamics

 classical gravitational
 initial value problem

holographic collisions

- scattering = Poincaré patch AdS asymptotics
- warm-up steps:
 - planar shocks: 2+1D PDEs no transverse dynamics
 - boost invariant: 1+1D (no radial flow) or 2+1D PDEs unrealistic longitudinal dynamics

time

L. Yaffe, INT, August 2015

- recent work:
 - finite "nuclei": 4+1D PDEs (off-center) transverse and longitudinal dynamics

initial projectiles

• Exact analytic solution for stable null "projectile" $ds^{2} = \frac{L^{2}}{s^{2}} \left[-dt^{2} + d\boldsymbol{x}_{\perp}^{2} + dz^{2} + ds^{2} + h_{\pm}(\boldsymbol{x}_{\perp}, z_{\mp}, s) dz_{\mp}^{2} \right]$

Fefferman-Graham (FG) coordinates $x_{\perp} \equiv \{x, y\}$ $z_{\mp} \equiv z \mp t$

metric deformation function

$$\begin{pmatrix} \partial_s^2 - \frac{3}{s} \,\partial_s + \nabla_{\perp}^2 \end{pmatrix} h_{\pm} = 0 \qquad \text{arbitrary} \\ \mathbf{k} \\ h_{\pm}(\mathbf{x}_{\perp}, z_{\mp}, s) = \int \frac{d^2 \mathbf{k}_{\perp}}{(2\pi)^2} e^{i\mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}} \widetilde{H}_{\pm}(\mathbf{k}_{\perp}, z_{\mp}) \, 8(s^2/k_{\perp}^2) \, I_2(k_{\perp}s)$$

• stress-energy: $\langle T^{00} \rangle = \langle T^{zz} \rangle = \pm \langle T^{0z} \rangle = \kappa H_{\pm}(\boldsymbol{x}_{\perp}, z_{\mp})$

• choose Gaussian profile for simplicity:

$$H_{\pm}(\boldsymbol{x}_{\perp}, z_{\mp}) = \frac{\mathcal{A}}{\sqrt{2\pi w^2}} \exp\left(-\frac{1}{2}z_{\mp}^2/w^2\right) \exp\left[-\frac{1}{2}(\boldsymbol{x}_{\perp} \mp \boldsymbol{b}/2)^2/R^2\right]$$

 $\mathcal{A} = 1$ $w = \frac{1}{2}$ R = 4 $\boldsymbol{b} = \frac{3}{4}R\,\hat{\boldsymbol{x}}.$

L. Yaffe, INT, August 2015

6

initial data

- Superpose left & right-moving shocks
- Transform to infalling Eddington-Finkelstein (EF): $ds^2 = \frac{r^2}{L^2} g_{\mu\nu}(x,r) dx^{\mu} dx^{\nu} + 2 dr dt$

EF coordinates $X \equiv \{x^{\mu}, r\}$ boundary affine

• compute infalling radial null geodesic congruence

coordinates

FG coordinates $Y \equiv \{y^{\mu}, s\}$ geodesic congruenceY(X)transformed metric $G_{MN}(X) = \frac{\partial Y^A}{\partial X^M} \frac{\partial Y^B}{\partial X^N} \widetilde{G}_{AB}(Y(X))$

parameter

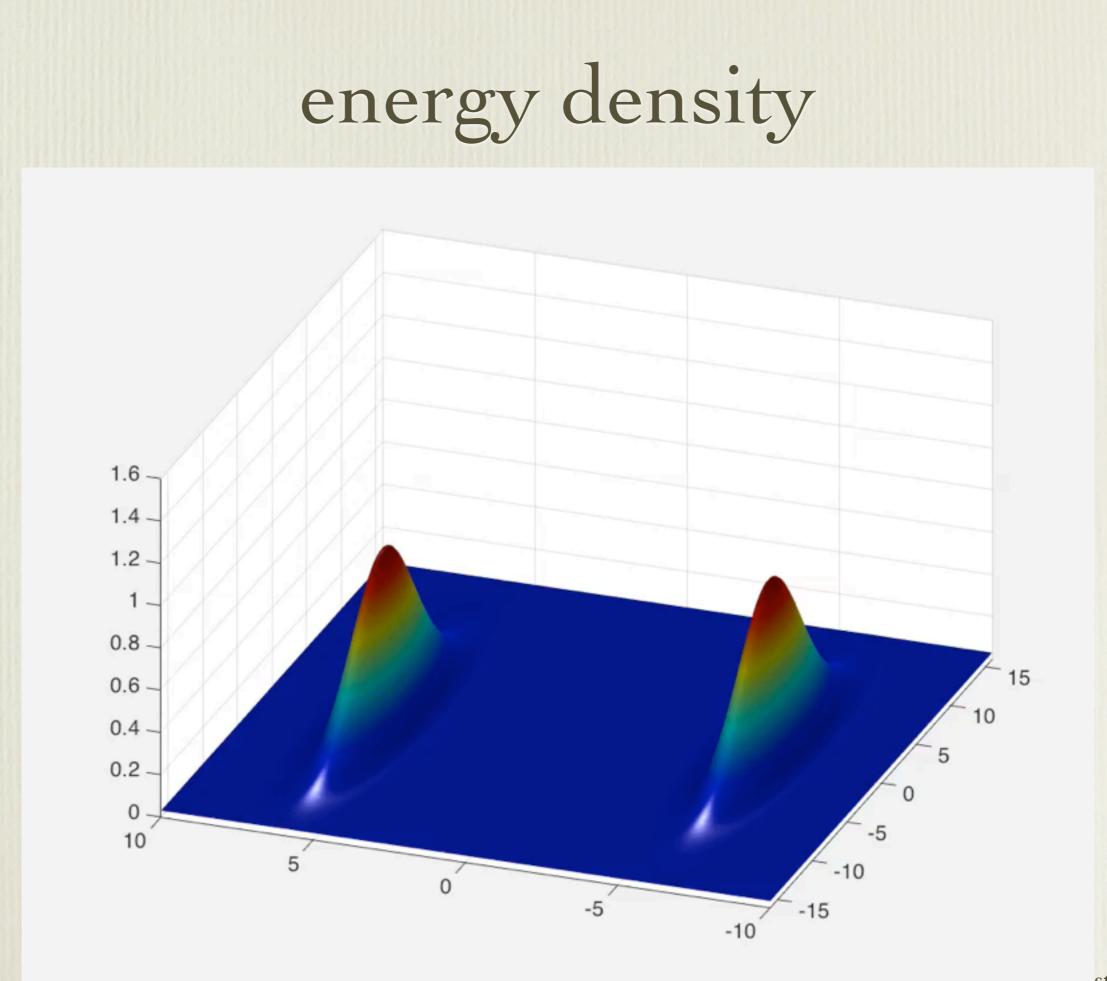
numerical techniques

- characteristic formulation of Einstein equations
- spectral methods w. domain decomposition
- residual diffeo freedom 🗭 fix apparent horizon
- periodic spatial compactification
- Matlab implementation (shared memory, multicore)

results

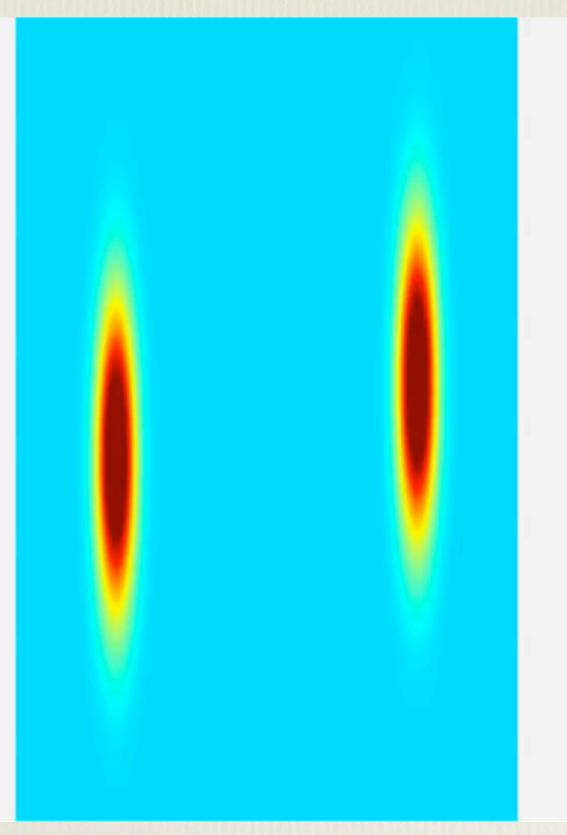
Off-center collisions

energy density

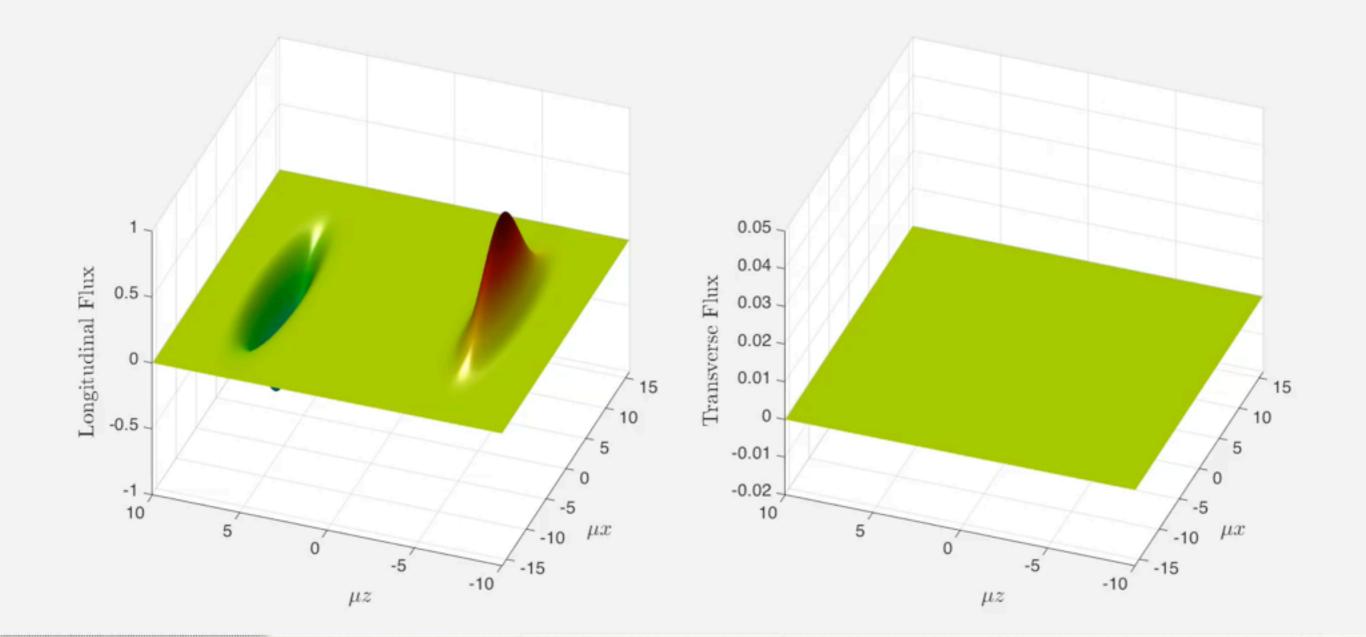


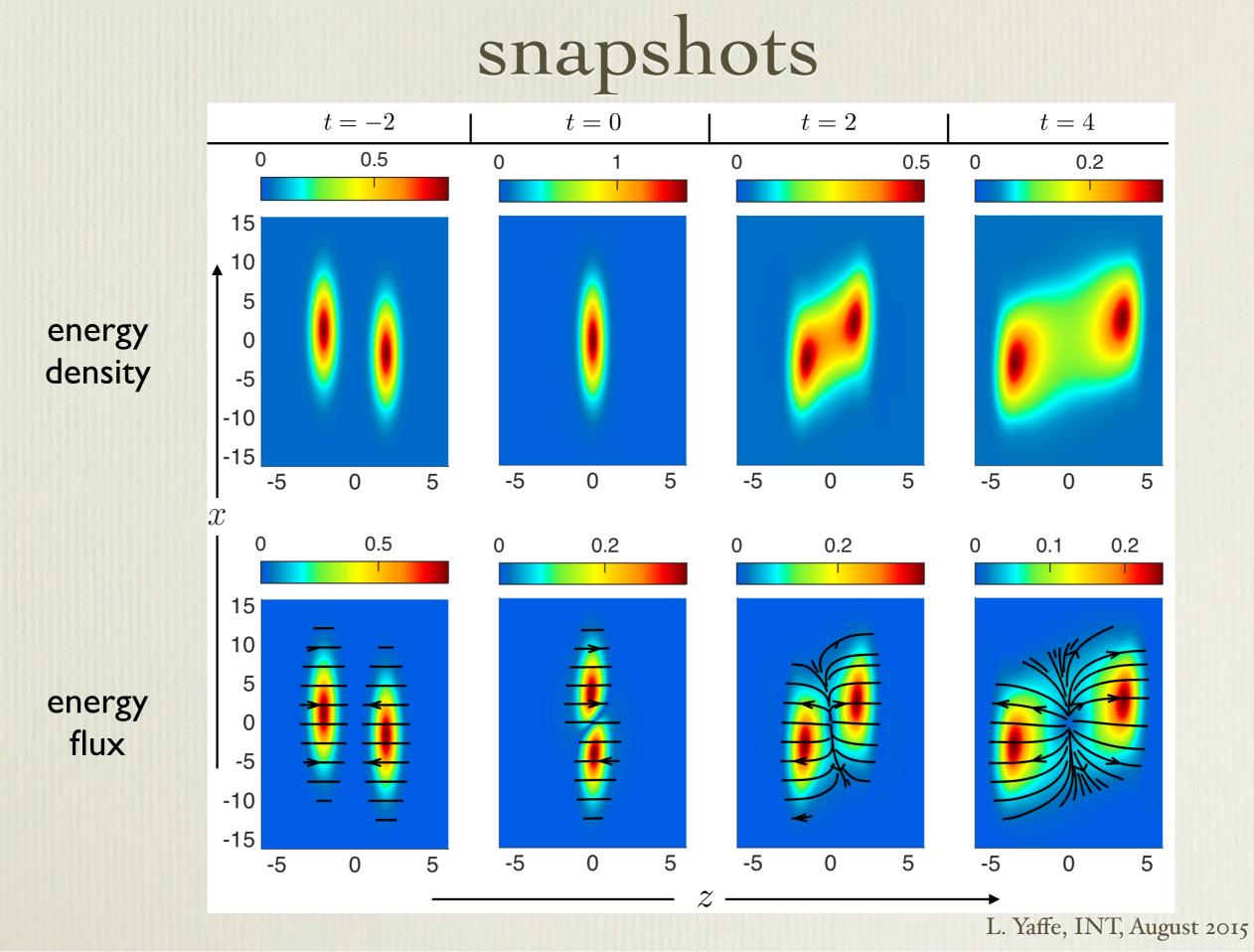
energy density

energy density



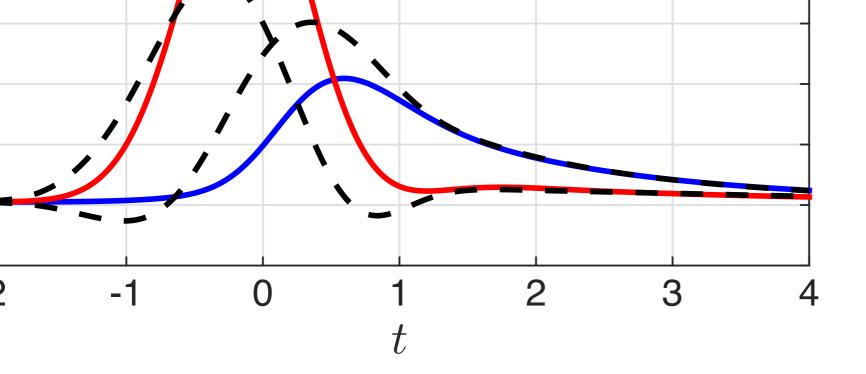
energy flux





Thursday, August 20, 15

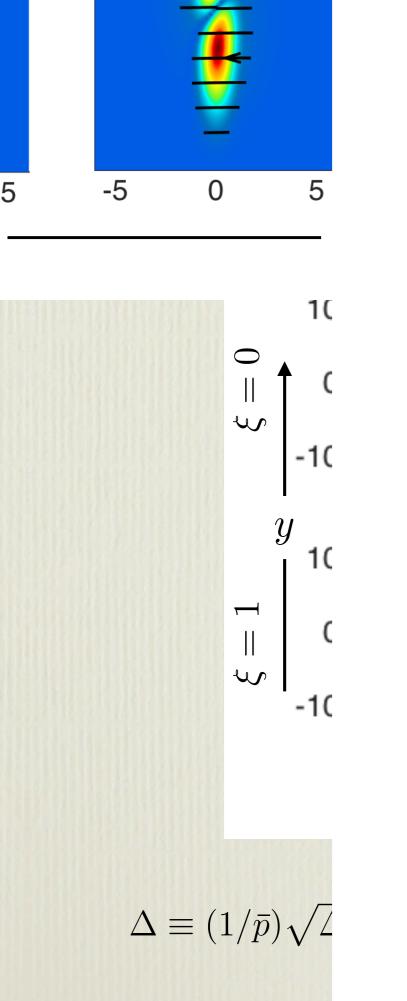
13

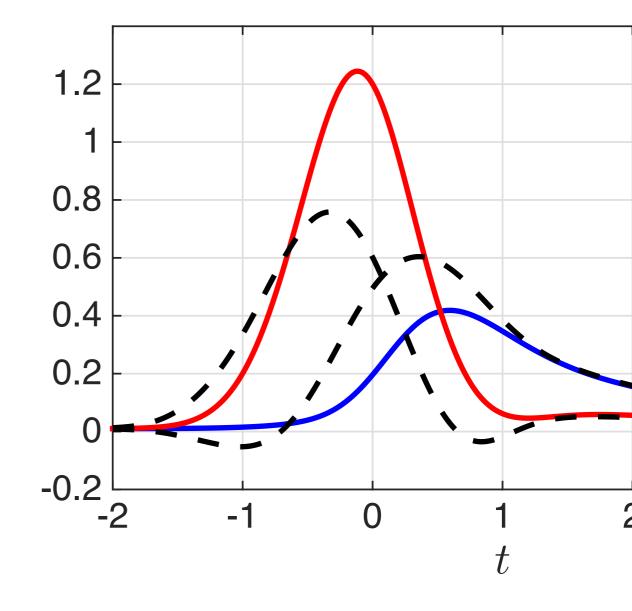


x = y = z = 0

 $t_{\rm hydro} \approx 1.25$

hydro onset $\approx 30\%$ faster than for planar shocks



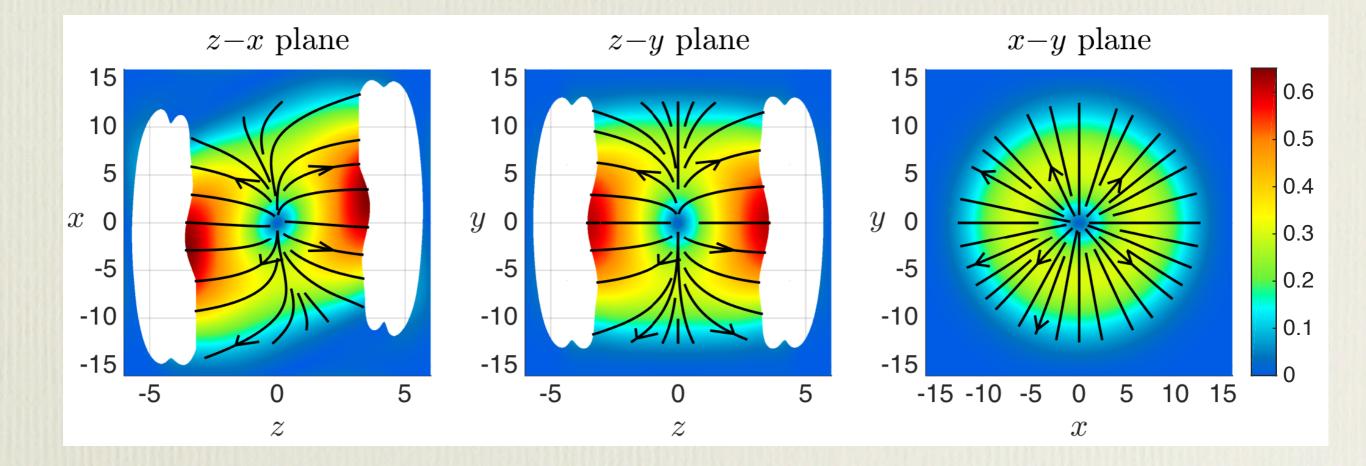


 $\bar{p} \equiv \epsilon/3$

Thursday, August 20, 15

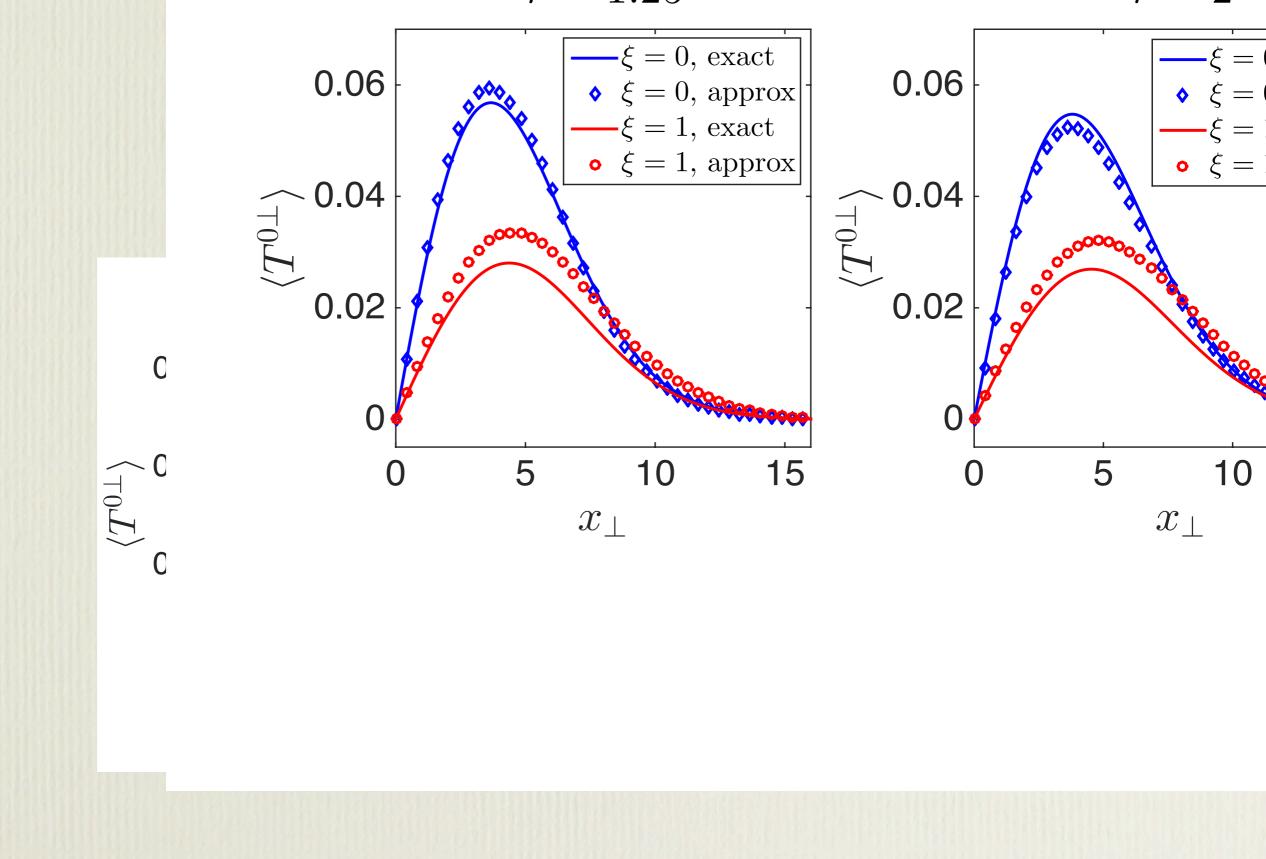
flow velocity

t = 4 non-hydro regions excised



substantial radial flow:

 $v_{\perp}(x_{\perp}=5) pprox 0.3$ $v_{\parallel}^{\max} pprox 0.64$



Vredevoogd & Pratt: "universal flow" model (assumes boost invariance & transverse rotational symmetry): $T^{0x} = -\frac{t}{2} \partial_x \epsilon$ $T^{0y} = -\frac{t}{2} \partial_y \epsilon$

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- negligible transverse pressure anisotropy: $\frac{|T_{xx} T_{yy}|}{\frac{1}{2}(T_{xx} + T_{yy})} < 1\%$
- because...

elliptic flow?

- no evident "almond" shape to fluid droplet
- transverse flow nearly symmetric
- - Gaussian choice of initial energy density profile
 - overlap function: $\varepsilon_+(\vec{x}) \varepsilon_-(\vec{x}) \propto e^{-\frac{1}{2}(\mathbf{x}_\perp \mathbf{b}/2)^2} e^{-\frac{1}{2}(\mathbf{x}_\perp + \mathbf{b}/2)^2}$ = $e^{-(\mathbf{x}_\perp^2 + (\mathbf{b}/2)^2)}$

lessons

- successful proof-of-principle: holographic calculation of colliding "nuclei" without (over)simplifying symmetry assumptions
- numerical solution of 5D gravitational initial value problems feasible with desktop computing resources (and good methods)
- substantial radial flow develops very early
- faster hydro onset in non-planar collisions
- much more to do:
 - variation w. impact parameter, longitudinal thickness, transverse size
 - more realistic non-Gaussian energy density profile
 - fluctuations in initial profile